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Shewanella algae is an emerging marine zoonotic pathogen and accounts for considerable mortality and morbidity in compromised
hosts. However, there is scarce literature related to the understanding of the genetic background of virulence determinants in S. algae.
In this study, we aim to determine the occurrence of common virulence genes in S. algae using whole-genome sequence and
comparative genomic analysis. Comparative genomics reveals putative-virulence genes related to bile resistance, chemotaxis, he-
molysis, and motility. We detected the existence of hlyA, hlyD, and hlyIlII involved in hemolysis. We also found chemotaxis gene
cluster cheYZA operon and cheW gene. The results provide insights into the genetic basis underlying pathogenicity in S. algae.

1. Introduction

Shewanella algae is an emerging marine zoonotic pathogen.
The organism was first classified in 1990 by Simidu et al. [1],
emended by Nozue et al. [2], and described as a Gram-
negative, motile bacillus, with hydrogen sulfide production,
exhibiting hemolysis on sheep blood agar. S. algae is found in
marine environments throughout the world and has been
linked with both human and marine animal infections [3, 4].
Currently, there are at least three other Shewanella species
found in clinical specimens and S. algae accounts for the
majority of isolates from humans [5, 6]. S. algae has also been
reported to cause diseases in marine animal, both wild and
cultured [7-9]. However, there is scarce literature related to
the understanding of the genetic background of virulence
determinants in S. algae.

Marine ecosystem consists of a large variety of organisms
that impact human health [10]. The advance of sequencing
technology allows the identification of determinants in

pathogenic microorganisms and has become an important
approach to study the fundamental mechanisms of patho-
genesis [11, 12]. Comparative genomics further enables the
investigation of core elements of pathogenesis factors in great
detail [13]. Recently, there have been attempts to use whole-
genome sequencing in the study of marine pathogens [14].
Therefore, genomic comparison of the clinical S. algae isolates
could provide clues for pathogenic or fitness determinants [15].

The aims of the study were to determine the occurrence of
common virulence genes found in S. algae isolates from clinical
setting using whole-genome sequence and comparative ge-
nomic analysis and to explore the relationship among the tested
genomes.

2. Materials and Methods

2.1. Bacterial Strains, Media, and Growth Conditions. S. algae
strains ACCC, YHL, and CHL were obtained from various
clinical sources (Table 1). Glycerol stock of stored isolates
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TaBLE 1: Strains and genomic features of S. algae strains in this study.

Genome

GC

Strain ISS?)ISEICZH Gegrgiraii hic assembly Cci)evlg?z sci;;:((){)n e) content CDSs Pseudogenes orljelr\z)?ls tRNAs
& status & P (%) P
. . 6, 5, 2 (5S,
CHL Bile Taiwan Scaffold 243.0x 4,888,589 52.96 4,281 122 168, 239) 88
. 6, 5,2 (5,
YHL Wound Taiwan Scaffold 257.0x 4,850,439 53.00 4,212 71 165, 235) 86
ACCC Bile Taiwan Scaffold 186.0x 4,744,804 53.08 4,223 143 4 146é§8’ 91
6, 3, 3 (5S,
MARS 14 Lung France Scaffold 91.0x 5,005,849 52.90 4,347 90 168, 239) 104

was grown in trypticase soy agar with 5% sheep blood
(Becton, Dickinson and Company, Franklin Lakes, NJ, USA)
at 30°C for 24 hours. Single colonies were inoculated in
tryptic soy broth (Becton, Dickinson and Company,
Franklin Lakes, NJ). The isolates were preliminarily iden-
tified using 16S rRNA gene sequencing and matrix-assisted
laser desorption ionization-time of flight mass spectrometry
(bioMérieux, Marcy I'Etoile, France). A part of 16S rRNA
gene was amplified using the primers of B27F (5'-
AGAGTTTGATCCTGGCTCAG-3') and UI1492R (5'-
GGTTACCTTGTTACGACTT-3") [9, 16]. The nucleotide
sequences were aligned, and BLAST search was performed
against the GenBank database of the National Center for
Biotechnology Information (NCBI) [17].

2.2. Genome Sequencing and Assembly. Nucleic acids were
extracted from overnight culture using the QIAGEN Ge-
nomic-tip 100/G kit and the Genomic DNA Buffer Set
(QIAGEN, Paisley, UK) according to the manufacturer’s
protocol. The DNA concentrations were measured by Qubit
dsDNA HS Assay kit using Qubit 2.0 fluorometer (Life
Technologies, Carlsbad, CA, USA). The DNA sample was
sheared, in a microTUBE using Covaris S2 (Covaris, Woburn,
MA, USA), into the desired size fragment of the library. The
indexed PCR-free library preparation was performed using
multiplexed high-throughput sequencing TruSeq DNA
Sample Preparation Kit (Illumina) with 2 ug of DNA on the
basis of the manufacturer’s introduction. Genome sequencing
was performed using paired-end 250 bp sequencing on the
Mumina MiSeq platform (Illumina, Inc., San Diego, CA).
Raw sequence files were artifact-filtered and trimmed with
DUK (http://duk.sourceforge.net/) and FASTX-toolkit
fastx_trimmer  (https://github.com/agordon/fastx_toolkit),
respectively. Assembly was performed with a hybrid approach
by ALLPATHS, version R46652 and Velvet version 1.2.07.

2.3. Public Genome Download. Genome sequence of human
isolated S. algae MARS 14 was retrieved from the NCBI
Genome website (https://www.ncbi.nlm.nih.gov/assembly/
GCF_000947195.1/).

2.4. Phylogenetic Analysis Based on Whole-Genome Sequences.
Genome-based phylogenic analysis was performed using
pairwise comparison of average nucleotide identity. The

whole-genome average nucleotide identity (ANI) was cal-
culated with the use of a modified algorithm [18]. Phylo-
genetic trees were visualized using MEGA7.

2.5. Annotation and Comparative Genomics. The annotation
was performed using the NCBI Prokaryotic Genome An-
notation Pipeline (PGAP) [19] and the DOE-JGI Microbial
Genome Annotation Pipeline version 4.10.5 [20]. The pre-
diction was done using Glimmer 3.02 [21]. The non-
translated genes were predicted by tRNAscan-SE [22],
RNAmmer [23], and RFAM [24]. Functional classification of
the predicted genes was carried out using RPSBLAST program
v. 2.2.15 [25]. Analysis of the functional annotation was further
performed using the Integrated Microbial Genomes &
Microbiomes system v.5.0 [26] and the Pathosystems Resource
Integration Center [27]. CDS count for these strains was de-
rived. Comparative genome analysis was performed using
EDGAR platform (http://edgar.computational.bio) [28]. The
core genome and the singletons for the 4 related S. algae
genomes were generated for Prokka-annotated genomes using
EDGAR (http://edgar.computational.bio). We compared the .
algae genomes using the MUMmer software package [29]
together with the Circos visualization engine [30].

3. Results

3.1. Genome Sequencing and Assembly. The genomic se-
quencing consisted of 250bp paired-end reads, yielding
approximately 0.88 Gbp to 1.24 Gbp for each isolate. The de
novo assembly of genome sequence data revealed that the
number of contigs (>200 bp) varied from 27 to 74 for each
genome. The maximum contig size among the genomes was
976,090 bp aligned to YHL. The GC content ranged from
52.96% for CHL to 53.08% for ACCC. Table 1 shows the
descriptive statistics of the genomic characteristics for the
strains in this study. The sequence data were publicly
available in NCBI SRA database (accession number: ACCC
[LVCY00000000.1], CHL [LVDF00000000.1], and YHL
[LVDU00000000.1]).

3.2. Genome-Based Phylogenetic Analysis. The average nu-
cleotide identity (ANI) was calculated and revealed that
tested S. algae strains were identical in terms of nucleotide
sequences, as shown in Figure 1.
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FIGURE 1: Whole-genome phylogeny of S. algae in the study.

3.3. Comparative Genomics. We constructed a pan-genome
dataset using whole-genome sequence of sequenced S. algae
strains. Figure 2 shows orthologous genes shared among strains
and depicts the position and color-coded function of the S.
algae genes. The numbers of orthologous and strain-specific
unique genes are shown in the Venn diagram. Core genome for
the S. algae strains consists of 1354 coding sequences (Fig-
ure 3). The set of unique genes harbored by each strain varies
from 335 for S. algae YHL to 466 for S. algae CHL. Following
genome map construction, we conducted genome mapping
among the S. algae strains in the study. In this comparison,
colored arcs indicate regions of high similarity as revealed by

the NUCmer script from the MUMmer software package. As
shown in Figure 4, the alignment revealed an obvious syntenic
relationship in these strains.

3.4. Analysis of Putative-Virulence-Related Genes. As illus-
trated in Table 2, genes encoded exbBD, galU, and htpB are
shared with S. algae genomes. Heat shock protein gene clpP and
hemolysis homologous genes, hlyA, hlyD, hlyIll, and tolC, were
found in each S. algae genome. Gene cluster cheYZA operon and
cheW involved in chemotaxis were detected in all tested S. algae.
Flagellar gene operons are present in all tested S. algae genome.
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F1GURE 2: Circular genomes representation map and genome comparison of Shewanella algae (CHL, ACCC, MARS 14, and YHL). Predicted
coding sequences (CDSs) are assigned various colors with respect to cellular functions. Circles show, from the outermost to the innermost,
(1) DNA coordinates; (2, 3) function-based color-coded mapping of the CDSs predicted on the forward and reverse strands of the S. algae
CHL genome, respectively; (4) orthologous CDSs shared between S. algae CHL and S. algae ACCC; (5) S. algae CHL-specific CDSs,
compared with S. algae ACCC; (6) orthologous CDSs shared between S. algae CHL and S. algae MARS 14; (7) S. algae CHL-specific CDSs,
compared with S. algae MARS 14; (8) orthologous CDSs shared between S. algae CHL and S. algae YHL; (9) S. algae CHL-specific CDSs,
compared with S. algae YHL; (10) GC plot with regions above and below average in green and violet; (11) GC skew showing regions above
and below average in yellow and light blue. This figure was plotted in Scalable Vector Graphics format via an in-house script, which
calculates the radius and ribbon width according to the BLAST alignments and adds colors by COG classification of all orthogonal genes.

4, Discussion

S. algae has become an emerging marine zoonotic pathogen
world-wide [5]. The spectrum of S. algae infection is broad
with considerable morbidity and mortality in compromised

hosts [31, 32]. Thus, understanding genomic characteriza-
tion of S. algae is important for determining molecular
epidemiology, understanding its pathogenesis, identifying
specific biomarkers, tracing evolution of these strains, and
developing control strategy of these pathogens in host
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F1GURE 3: Comparison of the gene contents of the Shewanella algae in this study, Venn diagram showing the numbers of conserved and
strain-specific coding sequences (CDSs).
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FIGURE 4: Genomes mapping between strains in the study. Each colored arc indicates an orthologous match between two species. The color
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reservoirs. In this study, we investigated the core genetic
structure underlying S. algae virulence. The pathogenicity
and distribution patterns of the S. algae strains extended our
understanding of their pathogenic potential.

Previous attempts have been made to report the basic
features of the genome of S. algae from various sources
[33, 34]. In the present study, we used comparative genomics
to analyze chromosomal sequence of four isolates to de-
termine the common genetic content and organization,
unique virulence attributes, and evolutionary relationship
with other strains. Whole-genome sequence analysis of S.
algae detected the presence of chemotaxis gene cluster
cheYZA operon that is conserved in the chemotactic bacteria
[35]. Chemotaxis is a directed motility in response to
concentration gradients of signals. The cheA was demon-
strated to be essential for chemotaxis using a two-compo-
nent pathway [36]. In brief, CheA phosphorylates cheY and
then is dephosphorylated by the phosphatase cheZ [37].
Previous studies revealed that CheW and CheA share
structural homology and bind to the same site on chemo-
receptors [37]. CheW is essential to the activation of CheA
and the formation of CheA-CheW complex [38]. Owing to
the wide range of S. algae habitats, the drivers of its che-
motaxis could be very diverse. Previous studies have dem-
onstrated that pathogenic bacteria use chemotaxis to localize
reservoirs. Further study would be needed to identify the
microenvironments suit for S. algae and the trigger of its
chemotaxis.

Biliary tract infection is main manifestation of S. algae
infection, and bile resistance has been noted in pathogenic
strains [31]. In the study we also identified genes associated
with bile adaption. The exbBD gene encodes Ton energy
transduction system implicated in the response to bile
[39, 40]. We also detected galU, htpB, and wecA involved in
bile resistance [41-43]. The results support an earlier ge-
nomic study suggesting a common mechanism of bile re-
sistance in Shewanella.

Motility is one characteristic of S. algae [3]. We identified
series of flagellar gene operons in S. algae genomes. These
flagellar systems are unique and require more study re-
garding the evolution and organization. Hemolysis is a main
pathogenic feature in S. algae [44]. The gene hlyA encodes
RTX pore-forming toxin a-hemolysin, which alters mem-
brane permeability and causes cell lysis in a variety of human
and animal hosts [45].

5. Conclusions

In conclusion, this is one of the few studies tracking genetic
background of putative virulence-related genes in S. algae.
Although the number of strains was limited, we highlight the
unique characteristics of core virulence determinants in
these strains, as a high level of genomic conservation.
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