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Abstract

Rapid and extensive urbanization has adversely impacted humans and ecological entities in

the recent decades through a decrease in surface permeability and the emergence of Urban

Heat Islands (UHI). While detailed and continuous assessments of surface permeability and

UHI are crucial for urban planning and management of landuse zones, they mostly involve

time consuming and expensive field studies and single sensor derived large scale aerial and

satellite imageries. We demonstrated the advantage of fusing imageries from multiple sen-

sors for landuse and landcover (LULC) change assessments as well as for assessing sur-

face permeability and temperature and UHI emergence in a fast growing city, i.e. Tirunelveli,

Tamilnadu, India. IRS-LISSIII and Landsat-7 ETM+ imageries were fused for 2007 and

2017, and classified using a Rotation Forest (RF) algorithm. Surface permeability and tem-

perature were then quantified using Soil-Adjusted Vegetation Index (SAVI) and Land Sur-

face Temperature (LST) index, respectively. Finally, we assessed the relationship between

SAVI and LST for entire Tirunelveli as well as for each LULC zone, and also detected UHI

emergence hot spots using a SAVI-LST combined metric. Our fused images exhibited

higher classification accuracies, i.e. overall kappa coefficient values, than non-fused

images. We observed an overall increase in the coverage of urban (dry, real estate plots

and built-up) areas, while a decrease for vegetated (cropland and forest) areas in Tirunelveli

between 2007 and 2017. The SAVI values indicated an extensive decrease in surface

permeability for Tirunelveli overall and also for almost all LULC zones. The LST values

showed an overall increase of surface temperature in Tirunelveli with the highest increase

for urban built-up areas between 2007 and 2017. LST also exhibited a strong negative asso-

ciation with SAVI. Southeastern built-up areas in Tirunelveli were depicted as a potential

UHI hotspot, with a caution for the Western riparian zone for UHI emergence in 2017. Our

results provide important metrics for surface permeability, temperature and UHI monitoring,

and inform urban and zonal planning authorities about the advantages of satellite image

fusion.
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1. Introduction

Rapid urbanization has been globally a dominant driver of ecosystems and environmental

degradation in the recent decades [1]. United Nations projected that two-thirds of the global

population will live in urban areas by the year 2050 [2]. This will entail major landuse and

landcover changes in urban areas, which will directly impact urban ecosystem services through

a loss of agricultural and forested lands, and an increase of barren and impermeable built-up

surface areas [3]. Loss of vegetation and increasing built-up surface areas may eventually affect

climatic variability and thus lead to an increase in surface and air temperatures in urban areas

[4–6].

Urban forests and vegetation control surface and air temperatures through shading and

evapotranspiration [7]. According to the United States Environmental Protection Agency,

shaded surfaces are, on average, 11–25˚C cooler than unshaded surfaces, while evapotranspira-

tion reduces peak summer temperatures by 1–5˚C [8]. In contrast, impermeable built-up sur-

face areas have a higher solar radiation absorption, and a greater thermal capacity and

conductivity than the non-built-up areas [7,9]. Consequently, urban areas exhibit higher sur-

face and air temperatures than surrounding rural areas [10]. Rapid urbanization and conse-

quent expansion of impermeable built-up surface areas may thus lead to the emergence of

urban heat islands (UHI), which have severe consequences for urban ecosystems and humans

[4,11–13].

Monitoring the rate and extent of urbanization and consequent decrease in surface perme-

ability and emergence of UHI provide essential information for averting their adverse impacts

on urban residents and ecosystems [14]. Particularly, in fast growing cities like Tirunelveli,

India, which are experiencing rapid and abrupt expansion due to extensive rural-urban migra-

tion and urban sprawl, UHI can emerge spontaneously through the loss of vegetation and

expansion of impermeable surfaces [15]. Hence, they require detailed and continuous moni-

toring of landuse and landcover (LULC) changes. Emergence of UHI can be controlled and

prevented through proper urban planning, management and regulations of landuse zones that

are informed by detailed and continuous LULC change monitoring [16]. Monitoring anthro-

pogenic LULC changes may also provide quantification of environmental processes and

respective sustainable living standards in urban areas [17].

Remote sensing provides important tools for detailed and continuous monitoring of LULC

changes in fast growing cities as well as for assessing expansion of impermeable surfaces and

detecting emergences of UHI [10,11]. Remote sensing tools demonstrate clear advantage for

monitoring and estimating spatiotemporal changes of LULC over conventional methods that

are based on time consuming and expensive field studies combined with large scale aerial pho-

tography [18]. Hence, remote sensing techniques have been widely applied for assessing LULC

changes, surface permeability and temperature, and detecting emergence of UHIs, in several

regions of the world, e.g. Egypt [11], Eritrea [13], Germany [14] and Vietnam [19]. Particu-

larly, the advent of high quality satellite imageries from multiple sensors for a certain location

enables the fusion of those imageries to arrive at a combined image for that location [20]. Such

combined images are substantially more detailed than images from individual sensors as they

fuse images with diverse spatial and spectral resolutions and thus enable the detection of a

diverse range of objects, which are often undetected through single sensor derived images [21–

25]. However, monitoring of surface permeability and UHI emergence mostly involve time

consuming and expensive field studies and single sensor derived aerial and satellite imageries.

Fused remotely sensed imageries provide important metrics for the quantification of LULC

changes, surface impermeability and consequent increase in surface temperature in urban

areas as well as for the assessment of the relationship between changes in surface permeability
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and surface temperature [10–12]. For instance, the Soil Adjusted Vegetation Index (SAVI)

quantifies changes in vegetation cover and health in relation with soil moisture, saturation and

color [26]. Hence, it has been widely used as an important proxy for surface permeability and

also as an early warning metric for food security and ecological health [27]. Moreover, Land

Surface Temperature (LST) is a metric for measuring the temperature of the interface between

the earth’s surface and the atmosphere [16,28], which is often shaped by LULC and, particu-

larly, vegetation cover [29]. Fused remotely sensed imageries provide considerably quicker

continuous measurement of LST when compared with the conventional extrapolation of non-

contiguous meteorological station measurements [30]. LST is also an important metric for the

identification of the emergence and propagation of UHI [31]. Calculated SAVI can indicate

climate change impacts in urban areas and hence, is associated with the changes in LST [26].

In general, areas with higher SAVI typically exhibit lower LST and vice-versa, given constant

soil moisture and evapotranspiration capacity of the surface [32]. Overall, understanding the

patterns of LULC, SAVI and LST changes, and their associations using fused remotely sensed

imageries may provide quick and precise information crucial for urban ecosystem zoning and

UHI control in fast growing cities like Tirunelveli [33,34].

This study quantified the LULC, SAVI and LST changes, as well as the relationship between

SAVI and LST changes, in a fast-growing city, i.e. Tirunelveli, Tamilnadu, India, during a 11

years period, i.e. between 2007 and 2017. We fused satellite imageries from two different sen-

sors, i.e. IRS-LISSIII and Landsat-7 ETM+, to arrive at combined high spatial resolution

(23.5m of IRS P6-LISSIII) and high thermal band (30m of Landsat-7 ETM+) imageries for Tir-

unelveli. The objectives of our study are twofold: (i) To demonstrate the advantage of using

fused imageries over non-fused single images through a comparison of image classification

accuracies and (ii) to identify the potential zones for UHI emergence using a SAVI-LST com-

bined metric for Tirunelveli in 2017.

2. Study area

Tirunelveli is one of the largest and oldest municipal corporations at Tirunelveli district in

Tamilnadu state of India with a total population of 473,637 according to the 2011 census [35].

The city lies between 8˚44’ and 9˚30’of the Northern latitude, and 77˚05’ and 78˚25’ of Eastern

longitude with an altitude of 47m above the mean sea level (Fig 1). Tirunelveli is situated on

the East bank of Thamirabarani River, the major water course for domestic usage, power gen-

eration and irrigation in Tirunelveli and other neighboring cities (Tuticorin, Sankarankovil

and Valliyur) [36].

The climate of Tirunelveli is dominantly tropical and receives rainfall in all seasons

throughout a year [33]. The average annual rainfall during 2010–2016 was 947.6mm [37], with

a contribution of 555.08mm and 189.6 mm rain from the North-East and South-West Mon-

soons, respectively. The average annual surface temperature of the city varies between 24.4˚C

and 34.6˚C, with the lowest winter (November to February) and highest summer (March to

June) temperatures of 27.1˚C and 30.4˚C, with an average precipitation of 127.7mm and

74.5mm, respectively [37].

Tirunelveli experienced a rapid and extensive urbanization and urban sprawl during the

last two decades [15]. The city population has doubled during this time, which depicts Tirunel-

veli as one of the fastest growing cities in the India [34]. As a principal business hub of South-

ern India, Tirunelveli experienced a substantial immigration of people from neighboring cities

and rural areas in search for better standard of lives, income and employments [15]. This has

caused an uncontrolled expansion of the city and associated adverse effects on the city land,

water and air [38]. According to the Centre for Agriculture and Rural development studies
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(CARDS), the rapid urbanization driven conversion of agriculture lands in Tirunelveli and

surrounding districts have adversely impacted the region’s food security [39,40]. The rapid

urbanization also entailed rapid industrialization leading to the establishment of more than 25

large-scale industries such as cement factories, cotton yarn manufacturers, calcium carbide

production plants, sugar factories, cotton seeds oil refinery plants, brick factories, paper and

flour mills, and several hundreds of small-scale industries. This, in turn, led to air pollution,

water scarcity, degradation of vegetation, ecosystems fragmentation, floods and droughts [41].

We selected an area of 104.2 km2 covering the central area and periphery of Tirunelveli city

(Fig 1). According to CARDS, this area has undergone the highest LULC conversion in Tiru-

nelveli district between 2007 and 2017 [40]. Hence, we chose the years 2007 and 2017 for

assessing LULC zones, SAVI and LST in Tirunelveli, as well as for quantifying their changes

and detecting UHI emergence in our study.

3. Materials and methods

3.1 Data

We used Landsat Enhanced Thematic Mapper (ETM+) and Indian Remote Sensing Satellite

Resourcesat-1—Linear Imaging Self-Scanning Sensor -3 (IRS LISS-III) images with 30 m and

23.5 m spatial resolutions, respectively, from June 2007 and June 2017. Freely available Landsat

satellite data were downloaded from Unites States Geological Survey (USGS) gateway in Geo-

Tiff format [42]. IRS-LISSIII data was purchased from the National Remote Sensing Centre

(NRSC), Indian Space Research Organisation (ISRO) in GeoTiff format [43]. Daytime images

from 11th June (summer) were chosen for both years to obtain the least cloud coverage possible

as well as to control for the seasonal homogeneity in plant phenology for LULC classification,

and SAVI and LST calculation, and thus to exclude impacts of seasonal variation of plant phe-

nology [44]. Landsat ETM+ and IRS-LISSIII were georeferenced using the World Geodetic

System (WGS) 1984 and then projected to the Universal Transverse Mercator (UTM) coordi-

nates [45,46]. The data has been geo-corrected and cropped to the study area (Fig 1).

3.2 Image pre-processing

We first pre-processed the Landsat ETM+ and IRS-LISSIII images, separately, for 2007 and

2017 (Fig 2). Triangulation and Digital Elevation Model (DEM) were generated for IRS-LIS-

SIII images from each year to examine the land dynamics and prime variations [47].

Fig 1. Geographic location and area of Tirunelveli city. The maps were generated using Google Maps.

https://doi.org/10.1371/journal.pone.0208949.g001
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Triangulation process for IRS-LISSIII was performed by fitting a second order polynomial in

Leica Photogrammetry Suite (LPS) [48]. Then DEMs were generated using built-in image

matching techniques [49]. DEMs were further edited using the built-in pit removal technique

in LPS, where the abrupt elevational changes were identified [50]. The final DEMs of 2007 and

2017 were further orthorectified for LULC classification and analysis (Fig 2).

The Landsat ETM+ images were first geometrically corrected and orthorectified using the

“georef” and “geoshif” functions of the “Landsat” package in R [51]. Then the orthorectified

images were checked for scan line errors that occurred in the Landsat 7 ETM+ sensor from

2003 onward and consequently, influenced our images from 2007 and 2017 [52]. The missing

data occurred due to scan line error were filled with the Landsat 7 Scan Line Corrector (SLC)-

off Gap function in ERDAS Imagine (version 8.7) [46,53]. The SLC-off images were further

rectified by mosaicking as recommended by USGS, and the residual gaps were filled using the

histogram correction technique [52].

We performed radiometric and atmospheric corrections of the orthorectified and SLC-off

Landsat ETM+ images. First, we transformed Digital Number (DN) integer values (0–255) in

Landsat ETM+ images to at-satellite radiance values using the ETM+ radiometric calibration

of Top-of-Atmosphere (TOA) radiance [53]. Then, we applied atmospheric correction to

Fig 2. Methodological flow for landuse and landcover classification, surface permeability, surface temperature

and urban heat islands emergence assessment. DEM: Digital Elevation Model; LULC: Landuse and Landcover; ETM:

Enhanced Thematic Mapper; SAVI: Soil-Adjusted Vegetation Index; LST: Land Surface Temperature; UHI: Urban

Heat Island.

https://doi.org/10.1371/journal.pone.0208949.g002
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minimize the mismatch between surface reflectance and at-sensor reflectance [54]. The cloud,

aerosol, and cirrus were identified and classified, and removed using Dark Object and Modi-

fied Dark Object Subtraction method [54]. Finally, to ensure the homogeneity of reflectance

values for the analysis of surface permeability, invariant features in images from 2007 and 2017

were identified using the Pseudo-invariant features (PIF) function and subsequently corrected

using a major axis regression [53]. The radiometric and atmospheric corrections were con-

ducted in R environment [51].

3.3 Image fusion

The pre-processed IRS-LISSIII and Landsat 7 images were combined using the “Ehlers” image

fusion technique [55,56]. Ehlers fusion works based on an Intensity-Hue-Saturation (IHS)

transformation coupled with adaptive filtering in the Fourier domain to prevent the fused

image from color distortion, which frequently occurs in conventional statistical or color trans-

formation fusion methods (see [57] for details on Ehlers image fusion techniques). To avoid

loss of information and further minimize color distortion, we also used all bands from

IRS-LISSIII and Landsat ETM+ for the fusion process. The image fusion was performed using

the “panSharpen” function of the “RStoolbox” package in R [58]. We maintained 30m resolu-

tion in fused images for further classification and indices calculation.

3.4 Image classification

We classified the fused images using a Rotation Forest (RF) machine learning algorithm [59].

Previous studies have demonstrated the higher accuracy levels of RF than other available meth-

ods for fused and non-fused image classification, such as GentleAdaBoost and Random Forest

[60]. RF is based on an ensemble construction and is associated with a Decision Tree (DT),

where each classifier is individually constructed [59]. The DT classifier is constructed follow-

ing a five-fold process: (1) a K subset is randomly split from the feature set. The split subset are

intersecting and disjoint, while we chose the disjoint subsets for a high diversity of features; (2)

a Principal Component Analysis (PCA) is applied to each of the subsets to identify the variabil-

ity information in the data; (3) undefined LULC classes are categorized; (4) the regular buoy-

ancy for each class is computed; and (5) the label for each class is allocated to the one with the

maximum buoyancy value [59].

We delineated eight LULC classes from the fused images of 2007 and 2017 using RF with

the built-in DT classifier (see Table 1 for LULC classes definition). The delineation process

includes the following steps in R [59] for training the DT classifier and image classification:

1. Build the stack for the fused raster data;

Table 1. Landuse and landcover (LULC) classes definition.

No LULC Classes Definition

1 Barren land Dry lands and non-irrigated

2 Crop land pasture Agriculture lands, grazing area, coconut and banana farm

3 Fallow land Non-plowed, dry farming area and real estate plots

4 Forest Deciduous forest

5 Scrubs Bushes and shrubbery

6 Urban Roads, temples, and built-up areas

7 Water bodies Rivers, lakes, open water, and ponds

8 Wetland Marsh, bog, fen and swamp

https://doi.org/10.1371/journal.pone.0208949.t001
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2. Divide the feature data set d into K feature subsets, each subset holds M = n/K number of

feature;

3. Let Fi,j be the jth, j = 1,..,K, subset of features for Li, and Xi,j be the features in Fi,j from X;

4. Select new training set from Xi,j randomly using a bootstrap algorithm;

5. Transform Xi,j to get the coefficient mi,j, . . ., mi,j, the size of mi,j is M � 1;

6. Implement the following sparse rotation matrix Ri, which is systematized with the above

coefficients.

Ri ¼

mi; 1; :::;mi; 1 0 . . . 0

0 mi; 2; :::;mi; 2 :: 0

: : : :

: : . .
.

:

: : : :

0 0 : mi; k; :::;mi; k

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð1Þ

7. Rearrange matrix Ri to Ra
i with respect to the initial feature set;

8. Train the classifiers in a parallel style;

9. Compute the confidence of the given data χ for each landuse class by an average combina-

tion method:

mK xð Þ ¼
1

L
PL

i¼1
gi; kðwRa

i Þ;K ¼ 1; . . . :; c ð2Þ

Where gi; kðRa
i Þ is the probability produced by Li

10. Allocate χ to the landuse class with the highest confidence.

11. Transform the raster LULC classes into homogenized vector polygons. We selected the

classification and regression tree (CART) transformation method, which is based on a

decision tree algorithm and Gini index.

GiniðtÞ ¼
Pc

i¼1
pwi ð1 � pwiÞ ð3Þ

Where c is the number of LULC classes and pwi is the probability of class wi at node t.

pwi ¼
nwi

N
ð4Þ

Where N is the total number of training set samples and nwi is the number of samples of

class wi

12. Extract the DN values of polygon classes derived from CART;

13. Generate numbers of polygons cohering to the DN values;

14. Allocate color bands to the LULC classes.
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We also applied the above image classification algorithm on the non-fused IRS-LISSIII and

Landsat ETM+ images of 2007 and 2017 to compare the image classification accuracies

between the fused and non-fused images.

3.5 Accuracy assessment

We assessed and compared the accuracy of classification between the fused and non-fused

images of 2007 and 2017 [61]. Cartographic map of 2007 and classified Google Earth images of

2017 (as cartographic map wasn’t available) of the Tirunelveli city obtained from BHUVAN,

ISRO India and Google Earth Engine (GEE), respectively, were used as reference images

(ground truth) for the accuracy assessment of the classified LULC maps and comparison

between the fused and non-fused images [62]. 75 Random pixels were generated from the clas-

sified LULC data and LULC values were extracted for those pixels for 2007 and 2017. Then,

the LULC values were identified for the same pixels in the referenced images and compared

with the LULC values of classified images. We employed the kappa coefficient as the accuracy

indicator [61]. A kappa coefficient of more than 0.8 indicates a satisfactory accuracy of LULC

maps, i.e., classified images are satisfactorily analogous to the reference data [63]. Kappa coeffi-

cients were computed for the classified fused and non-fused images in ERDAS Imagine (ver-

sion 8.7) and compared. We also computed the producer and user accuracies of image

classification through a confusion matrix [61].

3.6 Surface permeability assessment

We computed Soil-Adjusted Vegetation Index (SAVI) to assess the changes in surface perme-

ability in Tirunelveli between 2007 and 2017. Generally, SAVI indicates vegetation coverage

and health with respect to soil moisture, saturation and color, and thus accounts for the high

variability of built-up and non-built-up land cover in urban areas [26,64]. SAVI also controls

for the influence of soil brightness in Normalized Difference Vegetation Index (NDVI) and

thus, minimizes soil brightness-related noise in vegetation coverage estimation [65]. Since cov-

erage, brightness and health of vegetation are strongly associated with surface permeability,

SAVI provides an important proxy for the identification of impermeable surfaces, particularly

in urban areas [27]. We calculated SAVI using Eq (5) [66].

SAVI ¼
ðNIR � REDÞ
ðNIRþ REDþ LÞ

� 1þ Lð Þ ð5Þ

Where, RED is the reflectance of the band 3 (RED band) and NIR is the reflectance value of

the near infrared band (Band 4). L is the soil brightness correction factor. For dense vegetation

and highly permeable surface areas, L = 0 and for vegetation scarce and impermeable surface

areas, L = 1 [65]. Due to high dynamics of vegetation and built-up coverage in Tirunelveli

(urban areas in general), L was set to 0.5 [66].

SAVI was computed for each pixel of the fused images from 2007 and 2017. We delineated

five raster zones based on natural breaks in SAVI values of the pixels to distinguish among

degrees of surface permeability, e.g. 0.54–1 and −1–0.08 zones indicated highly permeable

surface with high density healthy vegetation and impermeable surface with low density un-

healthy or no vegetation (mostly barren and fallow land, and built-up surfaces), respectively.

We computed the area coverage of each soil permeability zone in 2007 and 2017 and calculated

percentage changes in their coverage between 2007 and 2017. Areal average and standard devi-

ation of SAVI were also computed for each LULC class in 2007 and 2017.
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3.7 Land surface temperature measurement

We calculated Land Surface Temperature (LST) index for each pixel of the fused images from

2007 and 2017 to measure the radiative skin temperature of the surface and its features, which

depends on the optical brightness and reflectance of the surface (Albedo) [32]. Generally, bare

soil and built-up settlements with low SAVI exhibit high Albedo whereas dense vegetation

with high SAVI exhibits low Albedo and hence, low radiative skin temperature [67]. Thus,

LST indicates climatic variability across vegetation and urban settlements associated with the

degree of surface permeability [68]. LST for each pixel was calculated using Eq (6) according

to the Landsat user’s hand book, in which the digital number (DN) of thermal infrared band is

converted into spectral radiance (Lλ) [69,70].

Ll ¼ fLMAX � LMIN � QCALMAX � QCALMINg � DN � 1þ LMINg ð6Þ

Where,

LMAX = the spectral radiance that is scaled to QCALMAX in W/(m2 �sr �μm)

LMIN = the spectral radiance that is scaled to QCALMIN in W/(m2 �sr�μm)

QCALMAX = the maximum quantized calibrated pixel value (corresponding to LMAX) in

DN = 255

QCALMIN = the minimum quantized calibrated pixel value (corresponding to LMIN) in

DN = 1

Raster maps of the LST index were computed for 2007 and 2017 from the fused satellite

images and compared to assess changes in surface radiant temperatures in Tirunelveli between

2007 and 2017. To be coherent with SAVI classes, we delineated five LST raster zones based on

natural breaks and computed their area coverage in 2007 and 2017. The average and standard

deviation of LST for each LULC class were also computed. We also quantified the association

between surface permeability and temperature through a Spearman raster correlation analysis

between SAVI and LST for entire Tirunelveli also for the classified LULC zones.

3.8 Emergence potential for Urban Heat Islands

We quantified the emergence potential of Urban Heat Islands (UHI) in Tirunelveli using a

combined metric computed from LST and SAVI in 2017 [14]. Generally, impermeable surface

areas with lower SAVI exhibit higher solar radiation absorption, and a greater thermal capacity

and conductivity, and consequently exhibit higher potential for UHI emergence, and vice-

versa [9,71]. Moreover, areas with high surface temperature (LST) exhibit higher number of

daily high degree-hours and lower differences between daily maximum and minimum temper-

atures, and thus also exhibit higher potential for UHI emergence, and vice-versa [72]. Hence,

we first coded the five SAVI and LST classes from 1 to 5 in descending and ascending orders,

respectively. Subsequently, we sum aggregated the recoded SAVI and LST class values for each

pixel to compute the combined metric for UHI emergence potential. Pixels with higher com-

bined UHI metric value indicated higher potential for UHI emergence and vice-versa. Finally,

we delineated the zones with high UHI emergence potential in Tirunelveli.

4. Results and discussion

4.1 Landuse and landcover changes

The LULC maps of 2007 and 2017 show that the Tirunelveli city has undergone a rapid urbani-

zation at an average rate of 4% between 2007 and 2017, with a 32% total increase in the cover-

age of urban built-up areas (Fig 3, Table 2). Fertile cropland pastures have been substantially

converted (59% decline between 2007 and 2017) into fallow lands (mostly real estate plots,
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178% increase between 2007 and 2017) and fallow lands (transitioning into built-up areas, 6%

increase between 2007 and 2017). Forested areas in the Northeastern part of the city decreased

by 12% whereas the bushes and shrubbery covered infertile areas increased by 164%

Fig 3. Classified landuse and landcover (LULC) maps of Tirunelveli city for 2007 (a) and 2017 (b).

https://doi.org/10.1371/journal.pone.0208949.g003

Table 2. Change in the area coverage of the landuse and landcover (LULC) classes between 2007 and 2017.

Classes 2007 (km2) 2017 (km2) Change (%)

Barren land 10.07 10.69 6.15

Cropland pasture 45.42 18.43 -59.42

Fallow land 5.79 16.11 178.23

Forest 1.78 1.56 -12.35

Scrubs 3.37 8.89 163.79

Urban 27.85 36.73 31.88

Water bodies 3.84 4.25 10.67

Wetland 6.08 7.54 24.01

Total 104.2 104.2

https://doi.org/10.1371/journal.pone.0208949.t002
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throughout the city between 2007 and 2017. The Western riparian part of the city has under-

gone the most expensive LULC conversion from cropland pasture to fallow lands and built-up

areas (Fig 3), which is in line with the findings of CARDS [40]. Although the wetland and

waterbodies showed an aggregate increase by 35% between 2007 and 2017, forest cover and

vegetation exhibited substantial decrease and conversion into urban areas (Fig 3, Table 2).

These results are in line with [3], which estimated a rapid urbanization and urban sprawl in

the Tirunelveli city between 2007 and 2017.

We obtained kappa coefficient values of 0.84 and 0.83 with an overall accuracy value of 86%

and 85% for the LULC classification for 2007 and 2017, respectively, using fused images

(Table 3). In contrast, the average kappa coefficient and overall accuracy values for LULC clas-

sification using non-fused images for 2007 and 2017 were considerably lower, i.e. 0.72 and

0.75, 71% and 74%, respectively. Hence, the accuracy of LULC classification using fused

images was considerably higher than the LULC classification using non-fused images because

of the substantially higher spatial resolution and number of bands available in fused images

than non-fused images [25]. These results are also in line with [23].

4.2 Changes in soil permeability and surface temperature

We observed a substantial decrease (58% on average) in the area coverage of permeable sur-

faces (SAVI values 0.08–1) while a substantial increase (33% on average) in the area coverage

of impermeable surfaces (SAVI values -1-0.08) in Tirunelveli between 2007 and 2017 (Fig 4

and Table 4). The riparian zone at the Western part of Tirunelveli, which experienced the

most extensive LULC conversion (Fig 3), also undergone the highest decline in highly and

medium permeable surfaces (SAVI values 0.34–1) with dense vegetation between 2007 and

2017, i.e., the average SAVI value decreased from 0.54 to 0.08 (Fig 4). In general, the highly

(SAVI 0.54–1) and medium (0.34–0.54) permeable zones undergone the highest decline, i.e.

more than 87%, in Tirunelveli between 2007 and 2017 (Fig 4 and Table 4). Conversely, imper-

meable surface zones (SAVI values -1-0.08) exhibited a substantial increase, mostly around the

built-up Southeastern part of Tirunelveli.

Generally, we observed high areal average SAVI values, i.e. high surface permeability, for

the LULC zones with vegetation cover, e.g. cropland and scrubs, in contrast to the low SAVI

values for built-up LULC areas, e.g. urban and barren land (Table 5). The average SAVI values

for all LULC zones decreased between 2007 and 2017 apart from the Wetlands (Table 5). The

highest average changes in SAVI values were observed for the barren and fallow lands

(Table 5). Fallow land also represents the LULC class that has undergone the highest transition

Table 3. Accuracy assessment results for the landuse and landcover classification using fused images of 2007 and 2017.

Classes 2007 2017

Producer Accuracy User Accuracy Producer Accuracy User Accuracy

Barren land 82.01 83.12 87.12 86.20

Crop land and pasture 84.15 87.14 82.56 83.21

Fallow land 82.34 89.16 87.32 92.35

Forest 84.15 90.12 84.51 87.18

Scrubs 88.11 84.21 83.15 82.13

Urban 91.32 89.34 88.29 96.07

Waterbodies 85.21 87.43 79.45 81.32

Wetland 89.01 91.03 84.56 89.04

Overall accuracy 85.75 84.62

Kappa 0.84 0.83

https://doi.org/10.1371/journal.pone.0208949.t003
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(178%) into real estate plots and built-up areas, i.e. urbanization (Table 2). This indicates that

the extensive urbanization has adversely affected the soil permeability in Tirunelveli between

2007 and 2017, which is in line with [64]. Although the area coverage by water bodies has

increased by 11% between 2007 and 2017 (Table 2), the permeability of the surface beneath

also decreased for this LULC class (Table 5), indicating marginal or no improvement of soil

permeability through anthropogenic development of water courses [65].

Fig 4. Soil-Adjusted Vegetation Index (SAVI) (surface permeability) maps of the Tirunelveli city in (a) 2007 and (b) 2017.

https://doi.org/10.1371/journal.pone.0208949.g004

Table 4. Changes in the coverage of soil permeability (indicated by soil-adjusted vegetation index (SAVI)) classes in Tirunelveli between 2007 and 2017.

SAVI Classes Surface permeability Total Area Coverage

(Km2)

Change in area coverage (%)

2007 2017

0.54–1 Very high 12.6 1.64 -86.98

0.34–0.54 High 8.34 0.87 -89.56

0.24–0.34 Medium 5.67 3.13 -44.79

0.08–0.24 Low 11.76 10.54 -10.37

-1-0.08 No 68.15 90.34 32.56

https://doi.org/10.1371/journal.pone.0208949.t004
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The overall climatic impact of extensive LULC conversion and decrease in surface perme-

ability was evident by an average increase of LST by 1.3˚C in Tirunelveli city between 2007

and 2017 (Fig 5 and Table 6). Particularly, the Western riparian zone, which has undergone

the highest conversion of LULC and highest decrease in SAVI, also experienced the highest

increase in LST, i.e. 4˚C on average from 28˚C to 32˚C, between 2007 and 2017 (Fig 5 and

Table 5. Areal average SAVI values for the LULC zones.

LULC zones 2007 Standard deviation (±) 2017 Standard deviation (±)

Barren land 0.09 0.59 -1 0.70

Cropland pasture 0.42 0.13 0.29 0.08

Fallow land 0.08 0.48 -1 0.61

Forest 0.24 0.03 0.21 0.04

Scrubs 0.54 0.14 0.34 0.12

Urban 0.16 0.10 0.08 0.19

Waterbodies 0.97 0.24 0.54 0.37

Wetland 0.24 0.11 0.34 0.17

https://doi.org/10.1371/journal.pone.0208949.t005

Fig 5. Land Surface Temperature (LST) maps of the Tirunelveli city for (a) 2007 and (b) 2017.

https://doi.org/10.1371/journal.pone.0208949.g005
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Table 6). LST zone 30–32˚C exhibited the highest increase in area coverage (165%) whereas

the highest decrease was observed for the coverage of LST zone 26–28˚C (64%) (Table 6).

Overall, the low temperature zones (26–30˚C) showed a decreasing coverage whereas the high

temperature zones (more than 30˚C) exhibited an increasing coverage in Tirunelveli between

2007 and 2017 due to extensive LULC conversion and surface permeability deterioration

(Table 6), which is also in line with [69].

In general, we detected higher LST values for the LULC zones with lower vegetation cover,

e.g. barren and fallow land, and urban built-up areas, and with lower surface permeability

(lower SAVI), and vice-versa, which is in line with [70] (Table 7). The highest areal average

LST of above 34˚C was observed for the urban built-up areas and barren lands in 2007, which

has increased to above 36˚C in 2017. In contrast, the lowest areal average LST of below 27˚C

was observed for croplands, fallow lands, water bodies and wetlands in 2007, which has also

increased to below 28˚C in 2017. The highest increase in areal average LST, i.e. 2.4˚C, was

observed for the urban area and barren lands (Table 7). Areal average LSTs of wetland and

waterbodies also exhibited an increase of 1˚C between 2007 and 2017 (Figs 4 and 5 and

Table 7). Moreover, the deciduous forest area exhibited a decrease (0.03) and an increase

(0.3˚C) in the areal average SAVI and LST, respectively, between 2007 and 2017, indicating the

adverse impact of overall rapid and extensive urbanization in Tirunelveli (Tables 5 and 7).

Note that we obtained lower SAVI (lower surface permeability) and higher LST (higher sur-

face temperature) values for the forested area at the Northeastern part of Tirunelveli than

other vegetated areas, i.e. cropland pastures and scrubs (Tables 5 and 7). This is because the

deciduous forest of Tirunelveli sheds its leaves completely during summer (March—June)

[34]. During this season, the surface of the dry forest receives the least precipitation with no

other sources of irrigation, and absorbs the highest solar radiation with the highest tempera-

ture of the year [73]. Consequently, this dry decidous forest area exhibits relatively lower sur-

face permeability and higher surface temperature than other vegetated areas during July in our

Table 6. Statistics of the area between 2007–2017 with corresponding changes in LST.

LST Classes

(0C)

Area Coverage

(km2)

Change in area coverage

(%)

2007 2017

26–28 28.46 10.21 -64.12

28–30 19.97 7.21 -63.89

30–32 10.43 27.69 165.48

32–34 14.77 18.20 23.22

>34 30.57 40.89 33.75

https://doi.org/10.1371/journal.pone.0208949.t006

Table 7. Average land surface temperature (LST) in degrees Celsius by landuse and landcover cover (LULC) zones.

LULC zones 2007 Standard deviation (±) 2017 Standard deviation (±)

Barren land 34.106 5.32 36.604 7.92

Cropland pasture 26.861 5.89 27.112 6.32

Fallow land 34.127 3.21 35.821 6.87

Forest 32.153 3.15 32.462 3.91

Scrubs 26.242 6.13 27.357 7.44

Urban 34.196 1.11 36.620 2.73

Water bodies 26.824 6.98 27.868 8.03

Wetland 26.291 8.44 27.731 9.34

https://doi.org/10.1371/journal.pone.0208949.t007
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study (Figs 4 and 5, Tables 5 and 7). Similar climatic responses of decidous forest were

observed in summer by other studies investing impacts of climatic changes on forests [73].

Nevertheless, this deciduous forest area exhibited a decrease (0.03) and an increase (0.3˚C) in

the areal average SAVI and LST, respectively, between 2007 and 2017, indicating the adverse

impact of overall rapid and extensive urbanization in Tirunelveli (Tables 5 and 7), which is in

line with [15].

4.3 Urban heat Islands emergence

We observed a negative correlation between LST and SAVI overall, as well as by the LULC

zones (Table 8). The overall correlation coefficients obtained for entire Tirunelveli in 2007 and

2017 were -0.24 and -0.72, respectively (both statistically significant at p� 0.01). Urban built-

up areas exhibited the highest correlation coefficients in 2007 and 2017, along with the highest

increase in correlation coefficient values (Table 8). In general, LULC zones with lower surface

permeability exhibited higher correlation coefficient values, and vice-versa. This indicates that

a decrease in surface permeability entails an increase in surface temperature [68] and hence,

exhibit a high potential for the emergence of UHIs [74].

The emergence potential for UHI was high for the Eastern periphery of Tirunelveli in 2017

with the highest potential for the urban built-up areas at the Southeastern part (Fig 6). The

Western riparian zone, which has undergone the highest LULC transition from cropland to

barren and fallow lands, and urban built-up areas, also exhibited high emergence potential for

UHI (Fig 6). Consequently, we suggest the Southeastern built-up areas in Tirunelveli as a

potential UHI hotspot, while a caution for the Western riparian zone for UHI emergence that

requires continuous and detailed monitoring. The waterbodies and wetlands, however,

showed the lowest potential for UHI emergence, proving the importance of including water-

bodies and greenspaces into urban planning to prevent the emergence of UHI [68].

Note that our analysis is limited to daytime imageries due to the unavailability of nighttime

imageries and hence, did not measure nighttime temperature to determine the difference

between minimum and maximum surface temperatures. This might affect the accuracy of

UHI emergence detection using our SAVI-LST metric. However, since ours is a study on sur-

face temperature and not air temperature, the variation between daytime and nighttime tem-

peratures is marginal due to nighttime surface radiation [69]. Moreover, we used SAVI as an

additional surrogate of LST, which provided important proxies for mean, range and variance

of surface temperatures [64]. Furthermore, previous studies accurately detected and delineated

UHIs based on only daytime imageries [14,31,75]. Hence, we suggest that our SAVI-LST

Table 8. Spearman correlation between soil-adjusted vegetation index (SAVI) and land surface temperature

(LST) by landuse and landcover (LULC) zones. All correlation coefficients are statistically significant at p� 0.01.

LULC zones Correlation coefficients p-values

2007 2017

Barren land -0.19 -0.25 0.0023

Cropland pasture -0.11 -0.21 0.0049

Fallow land -0.17 -0.27 0.0031

Forest -0.07 -0.13 0.0012

Scrubs -0.11 -0.13 0.0015

Urban -0.29 -0.52 0.0062

Water bodies -0.14 -0.16 0.0017

Wetland -0.13 -0.25 0.0037

https://doi.org/10.1371/journal.pone.0208949.t008
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metric is sufficiently robust for detecting UHIs emergence although nighttime imageries

should be included when available.

5. Concluding remarks

We demonstrated the advantage of using fused satellite imageries combining multiple sensors

in detecting and monitoring changes in land surface permeability and temperature and emer-

gence of Urban Heat Island (UHI) in fast growing cities like Tirunelveli. Future studies should

fuse higher temporal and spectral resolution imageries than the ones used in our study to pro-

vide a continuous, seasonal and more detailed assessment of Landuse and Landcover (LULC),

Soil-Adjusted Vegetation Index (SAVI) and Land Surface Temperature (LST) changes, and

UHI emergence in Tirunelveli [14].

The UHI emergence potential, which was computed by aggregating SAVI and LST provide

important metrics for the identification and quantification of UHI zones. These metrics can be

integrated in sophisticated UHI detection models for a more accurate and precise identifica-

tion and quantification of UHI [75].

We suggest that urban landuse measures and zonal planning should be informed by

detailed and continuous RS and GIS based assessment of LULC, SAVI and LST [26,67]. Possi-

ble measures include the conservation of agriculture and forested lands, and proper manage-

ment of the reclamations of barren lands to pasture lands to avoid the decrease in surface

permeability and ecosystem fragmentation [76]. Urban expansion should include provision of

Fig 6. UHI emergence potential map of Tirunelveli city for 2017.

https://doi.org/10.1371/journal.pone.0208949.g006
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water bodies and afforestation to preserve surface moisture, permeability and radiative capac-

ity, and thus to prevent the increase in surface temperature [71].
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