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Abstract
Objective: To quantify the clinical performance of a machine learning (ML) algo-
rithm for organ-at-risk (OAR) dose prediction for lung stereotactic body radiation
therapy (SBRT) and estimate the treatment planning benefit from having upfront
access to these dose predictions.
Methods: ML models were trained using multi-center data consisting of
209 patients previously treated with lung SBRT. Two prescription levels were
investigated, 50 Gy in five fractions and 54 Gy in three fractions. Models were
generated using a gradient-boosted regression tree algorithm using grid search-
ing with fivefold cross-validation. Twenty patients not included in the training set
were used to test OAR dose prediction performance, ten for each prescription.
We also performed blinded re-planning based on OAR dose predictions but
without access to clinically delivered plans. Differences between predicted and
delivered doses were assessed by root-mean square deviation (RMSD), and
statistical differences between predicted, delivered, and re-planned doses were
evaluated with one-way analysis of variance (ANOVA) tests.
Results: ANOVA tests showed no significant differences between predicted,
delivered,and replanned OAR doses (all p ≥ 0.36).The RMSD was 2.9,3.9,4.3,
and 1.7Gy for max dose to the spinal cord, great vessels, heart, and trachea,
respectively, for 50 Gy in five fractions. Average improvements of 1.0, 1.4, and
2.0 Gy were seen for spinal cord,esophagus,and trachea max doses in blinded
replans compared to clinically delivered plans with 54 Gy in three fractions, and
1.8, 0.7, and 1.5 Gy, respectively, for the esophagus, heart and bronchus max
doses with 50 Gy in five fractions. Target coverage was similar with an average
PTV V100% of 94.7% for delivered plans compared to 97.3% for blinded re-
plans for 50 Gy in five fractions, and respectively 98.4% versus 99.2% for 54 Gy
in three fractions.
Conclusion: This study validated ML-based OAR dose prediction for lung
SBRT, showing potential for improved OAR dose sparing and more consistent
plan quality using dose predictions for patient-specific planning guidance.
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1 INTRODUCTION

Radiation therapy treatment planning is an iterative
process with the goal of achieving the best possi-
ble treatment plan for a given patient. A treatment
plan is generated following the physician’s prescrip-
tion and is then discussed and further optimized until
all clinical goals are met or an acceptable compro-
mise has been achieved between target coverage
and organ-at-risk (OAR) sparing. This can be a time-
consuming process, especially when dealing with
complex intensity-modulated radiation therapy (IMRT)
treatments. Oftentimes the discussion regarding trade-
offs and achievable OAR sparing for an individual
patient requires having access to a fully generated
treatment plan, or set of plans if the treatment involves
sequential boosts. Automatic plan generation and
dose prediction using machine learning (ML) methods
provide an excellent opportunity for streamlining the
treatment planning workflow.1

Recently, substantial progress has been made in the
field of knowledge-based planning (KBP) as a way to
automate the treatment planning process and assist
treatment planners.2–8 Currently, the main goals of
KBP strategies are to increase efficiency by reducing
the time and effort needed to generate a clinically
acceptable treatment plan and to reduce the inter- and
intra-planner variability in plan quality that is inherent
to manual treatment plan generation, which has been
shown previously using a set of prostate cancer cases.4

Head and neck cancer (HNC) is another site where
KBP efforts have been focused, with one group suc-
cessfully showing that KBP strategies developed at
one institution can be implemented for patients at other
institutions.7

Dose prediction is another avenue for ML meth-
ods to improve the radiation therapy treatment plan-
ning workflow, with HNC being a commonly inves-
tigated treatment site.9–12 Dose prediction strategies
strive to estimate patient-specific OAR doses with-
out the need to generate a treatment plan, facili-
tating quick and efficient discussions about achiev-
able plan quality and trade-offs to consider. A recent
study evaluated two different methods of DVH pre-
diction for the treatment of nasopharyngeal cancer
and rectal cancer.10 The authors found that prediction
of specific dose-volume histogram (DVH) points was
achievable within 5% accuracy for most of the studied
OARs.

Institutions typically have OAR dose constraints or
guidelines that need to be met for a treatment plan to be
considered clinically acceptable. However, depending
on patient anatomy and disease location there may
be cases for which OAR dose constraints are met,
even though the treatment plan is not optimal and
further OAR sparing could be achieved.13 While KBP

strategies have shown great promise for improving
consistency and reducing variability in treatment plan
quality, dose prediction offers a further avenue for
pushing OAR sparing and plan quality beyond what
has been previously achieved in the library of treat-
ment plans used to generate a KBP model. Estimating
the expected OAR doses based on the anatomy of
an individual patient creates a set of patient-specific
dosimetric guidelines that could be used to achieve
the best treatment plan, akin to the “best feasible DVH”
estimation strategy previously reported.9 Furthermore,
having access to dose predictions from different frac-
tionation protocols would allow the treating physician
to rapidly assess the most suitable option for a given
patient without the need for comparative treatment
plans.

Here we performed a study to assess the perfor-
mance of an ML dose prediction algorithm for two
different fractionation protocols for patients treated with
lung stereotactic body radiation therapy (SBRT). We
also evaluated the estimated benefit in terms of OAR
sparing fromhaving access to these dose predictions
upfront in the treatment planning process.

2 MATERIALS AND METHODS

2.1 Patient cohort

The training data used to build the dose prediction
models consisted of an anonymized dataset of 209
lung cancer patients previously treated with SBRT, with
21.6% of the training data coming from our institu-
tion. In the training cohort, 121 patients were treated
with 54 Gy in three fractions and 88 were treated
with 50 Gy in five fractions. The test set consisted
of 20 patients treated at our institution in 2020 that
were not part of the training cohort. Ten of these
patients were treated with 50 Gy in five fractions and
the other ten with 54 Gy in three fractions.Eight patients
were treated on a Varian TrueBeam linear accelera-
tor, 11 on a TrueBeam Edge, and one patient on a
Trilogy.

2.2 Machine learning model building

ML models were trained to estimate the OAR DVH
metrics utilized in our institutional practice for lung
SBRT (cf. Table 1), which are based on recommenda-
tions from RTOG 0618,14 RTOG 081315, and the AAPM
TG-101 report.16 For each OAR dose metric, a sep-
arate model was constructed to estimate OAR doses
for SBRT prescriptions of 50 Gy in five fractions and
54 Gy in three fractions. Predictive models were gener-
ated using a gradient-boosted regression tree algorithm,
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TABLE 1 Treatment planning guidelines in terms of target
coverage and organ-at-risk dose limits for the two lungs stereotactic
body radiation therapy (SBRT) protocols studied

50 Gy in five fractions 54 Gy in three fractions

PTV V100% ≥ 95% PTV V100% ≥95%

Spinal cord Dmax < 30 Gy Spinal cord Dmax < 18 Gy

Spinal cord V13.5Gy < 0.5 cm3 Spinal cord V13.5 Gy <

0.5 cm3

Esophagus Dmax < 52.5 Gy Esophagus Dmax < 27 Gy

Heart Dmax < 52.5 Gy Heart Dmax < 30 Gy

Skin Dmax < 32 Gy Skin Dmax < 24 Gy

Trachea Dmax < 52.5 Gy Trachea Dmax < 30 Gy

Bronchus Dmax < 52.5 Gy Rib V30Gy < 30 cm3

Great vessels Dmax < 52.5 Gy Whole lungs-GTV V20Gy
< 10%

Rib V37.5Gy < 30 cm3

Whole lungs-GTV V12.5Gy <

1500 cm3

implemented using Python scikit-learn v. 0.23.1. This
type of model is a non-parametric supervised learning
algorithm with decision rules learned from the training
data.17 Predictive features used for these models have
been reported in detail previously18; they consisted of
a variety of geometric calculations based on the plan-
ning CT scans and associated target and OAR contours,
and historical data regarding prior treatment directives.
To prevent overfitting, the hyperparameters of the ML
algorithm (learning rate, loss function,number of estima-
tors, tree depth, minimum number of samples per split,
and number of boosting stages) were selected using
grid searching with fivefold cross-validated L3 (cubed)
error on the training set. A detailed description of the
model hyperparameters can be found in Table S1 of
the Supporting Information. The L3 loss function was
chosen for the hyperparameter grid search to increase
the importance of minimizing max error of the train-
ing cohort and the authors direct the interested reader
to Hastie et al.19 for a detailed discussion of the loss
function.

2.3 Model performance testing

Dose predictions for the 20 test patients (10 per frac-
tionation protocol) were obtained by feeding the plan-
ning CT scan along with target and OAR contours to
the ML models implemented in the InsightRT CDS soft-
ware v.3.1 (Siris Medical, Burlingame, CA, USA) as part
of a research agreement with our institution. All plan-
ning CT scans were acquired with 1.25 mm slice thick-
ness and the Eclipse AAA v.15.6 dose calculation model
with 1.25 mm dose grid was used for all dose calcula-
tions. The prediction dose metrics were extracted and
compared to the dose metrics from the DVHs of the

clinically delivered treatment plans extracted from the
Eclipse treatment planning system (Varian Medical Sys-
tems, Palo Alto, CA, USA) for the same 20 patients.

2.4 Blinded re-planning comparison

To estimate the benefit of having access to these dose
predictions in the treatment planning process, we per-
formed a blinded re-planning study. The CT scan and
contour data were anonymized and uploaded to the
Eclipse treatment planning system. Three junior plan-
ners were then tasked with generating treatment plans
for these patients, without any access to the clini-
cally delivered plans, but with access to the tabulated
dose predictions from the ML models. Planners were
instructed to meet that at least 95% of the target vol-
ume receives the prescription dose (PTV V100% ≥

95%) and our institutional OAR dose constraints for
lung SBRT in Table 1. The suggested treatment tech-
nique was volumetric-modulated arc therapy (VMAT)
with two or three arcs not entering through the con-
tralateral lung, generating the plan on the same treat-
ment machine as the clinical plan was delivered, ensur-
ing the same collimation system and available beam
geometry. Once completed, the plans were reviewed
by a senior medical physicist making sure they met
the standard for clinical acceptability, and the DVH
dose metrics were tabulated and compared to the
predictions and to those from the clinically delivered
plans.

2.5 Statistical analysis

The DVH dose metrics from the predictions were com-
pared to those from the clinically delivered plans by
calculating the root-mean square deviation (RMSD)
for each dose metric. Hence, the RMSD quantifies the
average uncertainty in the predicted dose compared
to what was delivered clinically. We also assessed the
RMSD between the replanned and clinically delivered
plans. The mean difference for each OAR dose metric
between the clinically delivered plans and the blinded
re-plans was tabulated, as well as the mean difference
between the prediction estimates and the clinically
delivered plans. Maximum doses (Dmax) were calcu-
lated as the highest dose to at least 0.03 cm3 of the
corresponding OAR, following our institutional standard.
To compare the OAR doses between all three scenarios
(predicted, delivered, and replanned) we used one-way
analysis of variance (ANOVA) tests following assess-
ment of normality and equal variance assumptions.
All statistical analyses were performed using MATLAB
R2018b (The MathWorks Inc, Natick, MA, USA), and
p < 0.05 would be considered a statistically significant
difference between the groups.
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F IGURE 1 Violin plots showing the distribution of predicted, delivered, and replanned dose metrics for each organ-at-risk (OAR) for the
50 Gy in five fractions protocol. Vertical bars represent the inter-quartile range and horizontal bars show the corresponding OAR tolerance limit

3 RESULTS

Comparisons of the DVH dose metrics between the pre-
dicted, delivered, and replanned scenarios are shown in
Figure 1 for 50 Gy in five fractions and Figure 2 for 54 Gy
in three fractions,evaluated on the test set of 20 patients.
Figure 1 shows that the predicted max doses to the
spinal cord, esophagus, heart, great vessels, bronchus,
and trachea agreed well with the clinically delivered
plans. In the blinded replans, the max doses to esoph-
agus, heart, and bronchus having were on average 1.8,
0.7 ,and 1.5 Gy lower, respectively, compared to the clin-
ically delivered plans.There were a few instances where
the replanned doses to skin, heart, and bronchus were
higher than for the clinically delivered plans,owing to the
higher priority placed on target coverage in the blinded
replan for those cases.Figure 2 shows that the predicted
and delivered max doses for spinal cord and esophagus,
and the volumetric dose measures for ribs and whole
lungs minus gross tumor volume (GTV) agreed well
also for the 54 Gy in three fractions protocol. For the
skin and trachea max doses the model predictions were
lower than those from the clinically delivered plans,
which turned out to be achievable in the blinded replans
with access to these model estimates. Improvements
of on average 1.0, 1.4 ,and 2.0 Gy were seen for spinal
cord, esophagus, and trachea max doses, respectively,
in the blinded replans compared to the delivered plans.

Table 2 shows the quantitative results for the 20 test
patients in terms of the RMSD estimates between the
different scenarios and the mean difference for the var-
ious dose metrics. For both fractionation protocols, the
ANOVA p-values were ≥0.36 for all reported dose met-
rics, and as such there were no significant differences
between the predicted, delivered, or replanned doses.
The RMSD shows low average prediction uncertainty,at
or below 10% of the corresponding dose constraint limit
for all OARs except for esophagus Dmax in the 50 Gy
in five fractions protocol. The relative mean difference
between predicted and delivered doses across all OAR
DVH metrics was between 0.3% to 3.7% of the toler-
ance limit for 50 Gy in five fractions and 0.3% to 7.6%
for 54 Gy in three fractions. The smallest differences
were seen for the heart and esophagus max doses,
and the largest difference was seen for the skin max
dose. Target coverage was similar with an average PTV
V100% of 94.7% for clinically delivered plans compared
to an average PTV V100% of 97.3% for blinded re-
plans for 50 Gy in five fractions, and respectively 98.4%
versus 99.2% for 54 Gy in three fractions.

Figures 3 and 4 show the comparison between pre-
dicted,delivered,and replanned dose metrics for each of
the individual patients in the test set for the 50 Gy in five
fractions and 54 Gy in three fractions protocol, respec-
tively. For the OARs not included in Figures 3 and 4 due
to space limitations these data are provided in Figure S1



BRODIN ET AL. 5 of 9

F IGURE 2 Violin plots showing the distribution of predicted, delivered, and replanned dose metrics for each organ-at-risk (OAR) for the
54 Gy in three fractions protocol. Vertical bars represent the inter-quartile range and horizontal bars show the corresponding OAR tolerance limit

TABLE 2 The dose prediction performance for each of the organs-at-risk included in the respective fractionation protocol, as estimated by
the root-mean square deviation and mean the difference between predicted and delivered doses, and replanned and delivered doses, as well as
one-way analysis of variance (ANOVA) comparisons between all three scenarios

50 Gy in five fractions

RMSD (Predicted
vs. Delivered)

Mean difference
(predicted -
delivered)

RMSD (replanned
vs. delivered)

Mean difference
(replanned -
delivered)

ANOVA
p-value

Spinal cord Dmax 2.9 Gy −0.3 Gy 2.2 Gy −0.7 Gy 0.90

Esophagus Dmax 5.3 Gy 0.1 Gy 2.9 Gy −1.8 Gy 0.78

Heart Dmax 4.3 Gy 0.6 Gy 2.4 Gy −0.7 Gy 0.99

Skin Dmax 2.9 Gy −1.2 Gy 2.2 Gy −0.2 Gy 0.91

Trachea Dmax 1.7 Gy −0.3 Gy 0.6 Gy 0.1 Gy 0.97

Bronchus Dmax 3.9 Gy 0.5 Gy 3.8 Gy −1.5 Gy 0.96

Great vessels Dmax 3.9 Gy −0.4 Gy 2.9 Gy −0.4 Gy 0.99

Rib V37.5Gy 1.2 cm3 0.8 cm3 0.2 cm3
−0.1 cm3 0.93

Lungs-GTV V12.5Gy 104.9 cm3 31.2 cm3 37.0 cm3
−16.6 cm3 0.80

54 Gy in three fractions

RMSD (predicted
vs. delivered)

Mean difference
(predicted -
delivered)

RMSD (replanned
vs. delivered)

Mean difference
(replanned -
delivered)

ANOVA
p-value

Spinal cord Dmax 1.6 Gy −0.1 Gy 2.1 Gy −1.0 Gy 0.65

Esophagus Dmax 1.9 Gy 0.5 Gy 2.8 Gy −1.4 Gy 0.36

Heart Dmax 2.8 Gy 1.5 Gy 1.3 Gy −0.1 Gy 0.86

Skin Dmax 2.4 Gy −1.8 Gy 2.0 Gy −0.9 Gy 0.52

Trachea Dmax 2.6 Gy −1.6 Gy 3.6 Gy −2.0 Gy 0.65

Rib V30Gy 1.4 cm3 0.2 cm3 1.1 cm3
−0.1 cm3 0.95

Lungs-GTV V20Gy 1.2% 0.5% 0.4% 0.2% 0.52
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F IGURE 3 Individual patient dose estimates for the 50 Gy in five fractions protocol comparing the predicted, delivered, and replanned
doses for a given organ-at-risk (OAR) dose metric. The horizontal black line shows the corresponding OAR dose limit

and Figure S2 in the Supporting Information. Figure 3
shows that the individual dose metrics for the spinal
cord,heart,skin,and great vessels generally agreed well
between the predicted,delivered,and replanned scenar-
ios.Patients for which the OAR dose metrics were above
or close to the tolerance limit were accurately identified
as such in the model predictions, such as patients
number one, three, and five in terms of the heart and
great vessel max dose. Similarly, patients with low OAR
doses far from the limit value were predicted as such.

In the case of the 54 Gy in three fractions protocol
Figure 4 shows that the dose metrics for the spinal cord,
esophagus, heart, and skin agreed well, with the excep-
tion of the heart max dose for patient 1. The model cor-
rectly identified patients with OAR dose metrics close to
or above the tolerance limit also for the 54 Gy in three

fractions protocol, although the patients receiving this
higher dose protocol had mainly peripheral lung tumors.
Furthermore, the spinal cord max dose was consider-
ably lower in the replanned compared to delivered plans
for 3/10 patients, and the skin max dose was lower for
4/10 patients.

4 DISCUSSION

This study evaluated the performance of ML dose pre-
diction for lung SBRT using a test set of 20 patients,half
treated with 50 Gy in five fractions and half with 54 Gy
in three fractions. The results showed that the predicted
DVH dose metrics agreed well with those from the clini-
cally delivered plans for these patients. There were also
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F IGURE 4 Individual patient dose estimates for the 54 Gy in three fractions protocol comparing the predicted, delivered, and replanned
doses for a given organ-at-risk (OAR) dose metric. The horizontal black line shows the corresponding OAR dose limit

several instances where having access to these dose
predictions in a blinded re-plan setting yielded better
OAR sparing compared to the clinically delivered plans,
despite these plans being generated by junior planners
with limited lung SBRT experience. This highlights the
potential for improved OAR sparing by using the pre-
dicted dose as a further goal to aim for in the treat-
ment planning process, even if the plan already meets
the tolerance limit for the respective OAR. This is fur-
ther supported by a recent study showing that automati-
cally generated treatment plans for lung SBRT were able
to achieve lower heart, esophagus, trachea, and spinal
cord max doses compared to manual planning.3

Generating the dose prediction estimates from the
planning CT scan and contours takes approximately ten

seconds using the method employed in this study,allow-
ing for a very quick assessment of expected OAR doses
and comparison between different fractionation proto-
cols. For patients receiving lung SBRT this can aid the
upfront decision-making process by selecting the opti-
mal fractionation schemes without the need for generat-
ing comparative treatment plans. For both fractionation
protocols the models accurately captured cases with
OAR dose metrics close to the stated tolerance limit,
which is key for alerting the planner and treating physi-
cian to trade-offs that need to be addressed.

Similar concepts of DVH prediction have been pro-
posed by others using different methodologies. One
research group used two different methods, one based
on the uniform field doses of nine equidistant IMRT
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beams and the other utilizing geometric information
about relative target and OAR positions.10 With similar
results for the two methods the study found mean pre-
diction errors across OARs of between 1% to 8% for
nasopharyngeal cancer cases, and 2% to 6% for rectal
cancer cases, compared to 0.3% to 3.7% for 50 Gy in
five fractions and 0.3% to 7.6% for 54 Gy in three frac-
tions in our study. Another approach also focusing on
patients with nasopharyngeal cancer adopted multiple
linear fitting of DVH metrics from various sub-regions of
OARs based on how far away each sub-region is from
the target.12 This approach showed similar performance
with average differences between predicted and deliv-
ered mean doses of 1.2% to 4.3% across OARs, albeit
with rather large standard deviations (∼5%) indicating
that the predictions may not agree well for each individ-
ual patient.

There have also been efforts to utilize deep learning
methods to predict the entire three dimensions dose
distribution rather than focusing on DVH metrics. A
recent study used a U-net implementation to predict the
dose distribution for left-sided breast cancer patients
treated with VMAT. This showed promising results when
compared with the clinically delivered dose distributions
for 10 test cases, with some larger uncertainty seen for
the max dose to the lungs and heart.20 It is important
to note that in addition to average estimates of predic-
tion performance, comparing estimates for individual
patients is key to understanding prediction performance,
since average doses can agree well even if there are
considerable under- or overestimates for a given patient.

A limitation of the methodology employed in this
study is the need for relatively large training sets to
avoid problems with overfitting or not capturing the
clinically relevant distribution of anatomical and geo-
metrical variations in target volumes and OARs. Thus,
widespread clinical implementation would require large
datasets across each disease site, which may be chal-
lenging to obtain.While the results presented here show
promising prediction performance when evaluated on
test patients from our institution, that does not guaran-
tee accurate model performance across other centers
where SBRT practices may vary. A strong feature of
the current study is the use of multi-center input data
used to construct the models. Generally, a diverse input
data set is important when using decision trees, as the
learned model would have limited accuracy if extrapo-
lated beyond the input training data. The diversity of the
training data used here should capture a large number
of clinical scenarios and thereby improve generaliz-
ability. Nonetheless, further testing of these models
in different institutions with varying SBRT practices is
warranted to confirm the results found in our study. To
further this point,we would not recommend applying the
models developed here to different lung SBRT fraction-
ation schedules without an analysis of proper scaling.

A further enhancement of this type of DVH dose pre-
diction could be to combine it with automated treat-
ment plan generation for example using knowledge-
based techniques. This would allow the potential for
generating an individualized automated treatment plan
that attempts to achieve the predicted DVH estimates,
which can then be improved upon if needed follow-
ing a quick clinical discussion. Whether used mainly for
time-saving and improving efficiency in treatment plan
decision-making, or to facilitate better OAR sparing and
plan consistency, dose prediction is a promising new
avenue that can help improve modern radiation oncol-
ogy practice.
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