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Abstract: Since most computer vision approaches are now driven by machine learning, the current
bottleneck is the annotation of images. This time-consuming task is usually performed manually
after the acquisition of images. In this article, we assess the value of various egocentric vision
approaches in regard to performing joint acquisition and automatic image annotation rather than
the conventional two-step process of acquisition followed by manual annotation. This approach is
illustrated with apple detection in challenging field conditions. We demonstrate the possibility of high
performance in automatic apple segmentation (Dice 0.85), apple counting (88 percent of probability
of good detection, and 0.09 true-negative rate), and apple localization (a shift error of fewer than 3
pixels) with eye-tracking systems. This is obtained by simply applying the areas of interest captured
by the egocentric devices to standard, non-supervised image segmentation. We especially stress the
importance in terms of time of using such eye-tracking devices on head-mounted systems to jointly
perform image acquisition and automatic annotation. A gain of time of over 10-fold by comparison
with classical image acquisition followed by manual image annotation is demonstrated.

Keywords: egocentric vision; image annotation; apple detection; eye-tracking

1. Introduction

In the era of machine learning-driven image processing, unequaled performances are accessible
with advanced algorithms, such as deep learning, which are highly used in computer vision for
agriculture and plant phenotyping [1]. The bottleneck is no more the design of algorithms than the
annotation of the images to be processed. When performed manually, this annotation can be very
time consuming, and therefore very costly. Consequently, it is useful to investigate all possibilities
to accelerate this process. Annotation time can be reduced via multiple approaches, which have
all started to be investigated in the domain of bioimaging and especially plant imaging [2–9]. First,
(i) annotation time can be reduced by parallelizing the task via online platforms [5]. Additionally,
(ii) it can be reduced by using shallow machine learning algorithms that automatically select the most
critical images or parts of the images to be annotated via active learning [4]. Transferring segmentation
models (iii) learned over available datasets can significantly reduce the need for annotated data
[10]. Another approach to reducing annotation time (iv) is to do the training on synthetic datasets
that are automatically annotated [2,3,6,7,9,11]. At last, (v) annotation time can be reduced via the
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use of ergonomic tools, which enable human annotators to accelerate the process without loss of
annotation quality [8]. In this article, we contribute to the latter approach (v) to reduce annotation time.
We introduce a novel use of egocentric devices in computer vision for plant phenotyping and assess
their value to speed up image annotation.

The term “egocentric device” is used to designate all wearable imaging systems that record images
from the first-person perspective. Images captured from egocentric devices are possibly of high value,
since their field of view benefits from the attention of the person who wears the device and who is in
charge of the targeted task to be done on the images. Reducing the field of view to a part of specific
interest may reduce the complexity of the inspected scene and thus help the automatic processing of
the acquired images. This is expected to be especially useful in complex scenes, such as those found
outdoors in agriculture and phenotyping in the fields. Additionally, some egocentric devices, namely,
head-mounted eye-trackers, can even include the capture of the ocular position of the annotator during
the recording of the videos. This would, in theory, open up the possibility to annotate images directly,
whereas acquisition and annotation are usually two separate steps. Such use of egocentric devices
opens up the possibility to conduct these steps jointly and hence reduce annotation time. However,
eye-trackers can never be perfectly calibrated, and their practical value in terms of both performance
and time is still to be assessed in order to speed up annotation. That is what we propose here.

For the first application of egocentric devices to accelerate annotation, we considered as a proof
of concept, a standard problem in computer vision for plant phenotyping. We chose the detection,
i.e., segmentation, counting, and localization of apples in color images. This task has been addressed
in many ways, including recently, with deep learning. This canonical problem is challenging for
computer vision, since it includes self-occlusion of multiple instances, occlusion by the shoots of the
apple trees, the variation of illumination, clutter from the self-similar background, variety in sizes and
colors of fruits, etc. Additionally, this computer vision problem is significant for various agricultural
applications, such as the design of automatic harvesters, automatic estimation of the fruit pack out,
and variety testing. Most state-of-the-art methods developed for apple detection are currently working
with supervised learning. Such methods require annotated images of apples to be efficient. In this
article, we demonstrate how the use of egocentric devices can accelerate the annotation of apples in
images. This acceleration in image annotation, illustrated here with apples, is of high value since it
could benefit from reducing the annotation cost of any supervised learning segmentation method.

A visual abstract of the proposed original approach for a joint image acquisition-annotation
process is illustrated with apple detection in Figure 1. For comparison, the conventional approach is
also depicted in Figure 1 wherein a handy camera is used to acquire images, and after image transfer
to a computer, images are manually annotated. We propose a single-step approach where hands-free,
head-mounted cameras with embedded computational resources are jointly acquiring and annotating
images. The article is organized as follows. After positioning our work with the most related work
(Section 2), we present (Section 3) the egocentric devices used, the acquisition protocol, and the dataset
created for this study. A classical algorithm adapted from the literature is described, as we use it to
detect apples in color images (Section 4). The same algorithm is then applied to compare five different
computational strategies, specially designed for this study, to reap benefits from egocentric vision
(Section 5). We finally conclude on the best practice identified via this comparison.
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Figure 1. Visual abstract of the article. The red dotted-line encapsulates the conventional two steps of
the acquisition and annotation process. We jointly perform image acquisition and image annotation
by the use of a head-mounted egocentric device, which simultaneously captures images and the
gaze of the person who wears the device and reaps benefits from both factors to annotate images
automatically. It is to be noted that the post-processing step to separate touching annotated objects is
not included here. It remains a step necessary in the conventional two-step approach and our proposed
single-step approach.

2. Related Work

Egocentric (first-person) vision is a relatively new research topic in the field of computer
vision which is increasingly attracting interest for understanding human activities [12–15], object
detection [16,17], creation of models of the environment with different levels of precision [18,19],
perception of social activity[20], user–machine interactions [21], driving assistance [22], and medical
applications [23–25]. There are different types of egocentric systems, such as smart glasses, action
cameras, and eye-trackers. Based on the processing capabilities, embedded sensors, such as the one
used in this article, are now more and more utilized in conjunction with egocentric video analysis [21].
Features such as hand appearance and head motion give essential cues about the attention, behavior,
and goals of the viewer [26–29]. In our case, we also used the fact that, usually, in egocentric vision,
salient objects of interest tend to occur at the center of the image, since they attract the attention of the
viewer [16,30]. In this article, we primarily used an eye-tracking system for egocentric vision to speed
up image annotation. The use of eye-tracker to speed up image annotation has been proven useful for
annotation with a screen-based system in [8,31,32]. Those studies demonstrated a possible gain of time
for annotation of 30-fold (approximately) by comparison with manual annotation. Here, we use, for the
first time to the best of our knowledge, an embedded eye-tracking system in the form of glasses (see
Figure 1) to jointly conduct image acquisition and annotation and thus extend the results of [8,31,32].
Embedded eye-tracking systems are known to be less accurate than screen-based eye-tracking systems
because they can move slightly on the head of the observer during acquisition. However, embedded
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eye-tracking systems open the door for an accelerated procedure with joint acquisition and annotation,
as illustrated in Figure 1. In this article we will compare the performances in terms of accuracy of apple
detection and annotation time of both screen-based eye-tracking systems and embedded eye-tracking
systems for image annotation.

Object detection in agricultural conditions has been investigated with a large panel of computer
vision approaches [33–45]. In the early works, such as [33], methods were handcrafted both from
the hardware side and the software side. Nowadays, it is more common practice to use standard
RGB cameras, and base the detection of apples on supervised machine learning methods learned
end-to-end via deep learning, as in [44,45]. Such modern methods, neural network-based, show
high performances but require large amounts of annotated images. Manual pixel-wise annotation is,
in general, a time-consuming operation, taking approximately 1.5 h per 100 images (308× 202 pixels).
In practice, apple detection is also challenging because of illumination conditions [46–48]. In this
article, we will not provide a novel method to detect apples automatically. Instead, we will investigate
the possibility of performing acquisition and annotation of apples in an orchard environment
simultaneously by using head-mounted egocentric devices. Indeed, while there has been significant
recent interest in fruit detection, segmentation, and counting in orchard environments, the cost of
providing a unified annotated dataset of the fruit on trees makes it the bottleneck in the state-of-the-art
literature [49].

The head-mounted egocentric camera provides areas of interest located in the vicinity of the
targeted objects in the scene. Therefore, these areas of interest are less accurate than if a manual
annotator was pointing at the object with a mouse. We propose in this article to test a standard
image segmentation approach to detect the targeted object in the areas of interest provided by the
head-mounted egocentric camera. As a consequence, the work relates to the literature on weakly or
semi-supervised learning [50] with inexact supervision; that is, the training data are given with labels
that are not as exact as desired. Different semi-supervised learning models have been introduced,
such as iterative learning (self-training), generative models, graph-based methods, and vector-based
techniques [51,52]. The color-based clustering technique for apple detection by using Gaussian Mixture
Models was explained in [53]. In this approach, the SLIC superpixel was applied to the input image
using the LAB color space. The superpixel’s results were clustered into approximately 25 color classes.
Finally, based on the KL-divergence between Gaussian Mixtures, each superpixel was classified into
an apple or background [54], from hand-labeled classes. Our objective was not to design a novel
semi-supervised algorithm. Instead, we revisited existing standard methods based on superpixels and
assessed the value of the areas of interest extracted by the head-mounted egocentric camera for a given
task of object detection.

3. Material and Method

3.1. Egocentric Vision Device

The egocentric imaging system used was VPS-16 head-mounted eye-tracking glasses equipped
with stereoscopic cameras in the nose bridge, a front camera with a diagonal coverage of 88 degrees,
and an audio microphone sampling at 10 kHz. The front camera was calibrated with the eye-tracker
before acquisition. The visual task defined to the wearer was to find apples on the targeted trees.
The acquisition time was nearly 90 s for the whole dataset (calibration time included). This acquisition
time is quite similar to the time required with a digital camera fixed on a tripod or hand-held,
the former of which would need to be located in different positions to cover all apples located on a tree.
The distance of the viewer and the tree was set approximately to one and a half meters. The viewer
was counting the number of apples as evidence of the ground-truth, which was recorded via the audio
microphone. Fixation points were recorded by the eye-tracker to investigate how they could serve to
automatically annotate apples on the trees.



Sensors 2020, 20, 4173 5 of 18

3.2. Dataset

With the sensor described in the previous subsection, we generated a new dataset of 10 videos
(25 fps) from 10 various apple trees in the orchard environment captured by the egocentric head-mounted
glasses’ eye-tracker. The total number of extracted images from the entire dataset was 24,618 (frames).
A fundamental parameter of eye-tracking analysis depends on the definition of the fixation and the
algorithm used to separate fixation from saccades [55]. Fixation refers to a person’s point-of-focus as
they look at a stationary target in a visual field. Although the mean duration of a single fixation may
depend on the nature of the task [56], numerous studies have been done to measure the average duration
for a single fixation [56–65]. The mean fixation duration for visual search is 275 ms, and for tasks that
require hand-eye coordination, such as typing, the mean fixation can be 400 ms [56]. Among our dataset,
the number of frames which received gazing of at least 275 ms was 419. The acquisitions were made
on two days at midday with different weather conditions at the orchard of INRAE Angers, France. No
difference was found in the results of the data coming from the two days. This dataset includes a variety of
apple colors together with apple and foliage density, which are representative of the dataset found in the
literature for apple detection [66–68]. Due to the complexity of each orchard tree, the illumination, and the
environment itself, different natural colors were found in the images, including various shades of green,
red, yellow, brown, or gray for the appearance of foliage, grass, apples, and tree trunks. Ground-truth was
created by manual annotation of the raw color images at approximately 54 s per image by using the Image
Segmenter application in Matlab 2017a. A sample of raw color images from different apple trees and their
corresponding manual ground-truth are illustrated in Figure 2. For the whole dataset, which consists
in 419 images, it roughly took 6 h to manually annotate all images. These manual annotations were
generated for evaluation of the accuracy of the egocentric vision methods presented in the next section.

Figure 2. Example of RGB images of apple trees from our dataset and the corresponding ground-truth
(manually annotated).
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4. Image Processing Pipeline

In this section, we present the image processing pipeline developed to automatically annotate
apples from the attention areas captured with egocentric vision. A global view of this pipeline
is depicted in Figure 3 and includes three main steps: image pre-processing, segmentation,
and performance evaluation.

Figure 3. The three-step image processing pipeline proposed to automatically segment apples from the
attention areas captured with egocentric devices.

The pre-processing started with the extraction of the frames with a resolution of 960× 544 pixels
from recorded videos. Next, an attention area was extracted from each frame based on egocentric
priors. The extraction of this attention area constitutes the main contribution of the article. Several
strategies have been tested and are presented in the next section. The pre-processed images were then
segmented with a standard approach for apple detection similar to the one presented in [49,53,69–71].
A classical superpixel technique (SLIC) [72] was applied followed by a simple non-supervised
clustering technique, K-means [73], to select superpixels corresponding to apples. To keep the size of
superpixel independent of the size of the attention area, we defined the number of superpixels as the
ratio of

N =
A
S

, (1)
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where A represents the size of the attention area, and S the size of an average apple, which is equal to
900 pixels in our dataset.

To simplify the images, the tree-labels (blue in our case) and sky parts were removed by applying
color thresholding (optimized on a small dataset) in the RGB color domain on the superpixel segmented
attention areas, as shown in Figure 4. The number of cluster K was found optimal for K = 2 and
was applied to feature space composed of (R, G, B, H, S) respectively for red, green, brightness, hue,
and saturation from each superpixel. The cluster with the smaller size was considered as the apple
cluster based on the assumption that the background occupied the largest area in the attention area.
Because blue parts were withdrawn and no green apples were present, the optimal value of K = 2
was reasonable for our use-case of apple detection in the orchard. Indeed, the local complexities in
attention areas extracted from the egocentric devices were limited to objects on a background with a
contrast of color. For other use-cases, where local contrast between the object and background could
depend on other features (size, texture, shape, etc.), it would be necessary to adapt this segmentation.

Figure 4. Color thresholding to remove blueish color belonging to the sky or blue tree-labels on
superpixel segmented attention areas. Each row represents from left to right: the attention area,
the superpixel segmented attention area, and the thresholded one, respectively.

Finally, the segmented apples were superimposed over the original image for qualitative
assessment and localization, and compared with the manual binary ground-truth to compute the
segmentation accuracy via the Dice Dc(X, Y) and Jaccard index J(X, Y) given by

Dc(X, Y) =
2 ∗ |X ∩Y|
|X|+ |Y| , (2)

J(X, Y) =
|X ∩Y|
|X ∪Y| , (3)

where X and Y represent the segmented image and the ground-truth respectively.
In addition to the segmentation of apples, counting and localization were also computed in the

following way. For object counting, we counted the number of connected components among detected
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objects which shared sufficient overlaps with ground-truth. An empirical threshold of 75 percent was
chosen for the overlap. The probability of good detection was computed as

PD =
TP

TP + FN
, (4)

with TP number of true-positive objects and FN number of false-negative objects. We also computed
the probability of true-negative rate as

TNR =
TN

TN + FP
, (5)

with TN number of true-negative objects and FP number of false-positive objects.
In localization, the Euclidean distance between the centroid xi of detected objects Xi and the

centroid yj of objects Yi with a maximum intersection with ground-truth was computed as

d(xi, yj) =
√
(uxi − vyj)

2 + (uxi − vyj)
2 , (6)

with u and v, which stand for Cartesian coordinates in the images and

j = arg max
j0

∣∣Xi ∩Yj0

∣∣ . (7)

The average distance

d =
1
N

N

∑
i=1

d(xi, yj), (8)

was computed over all detected objects sharing sufficient overlap with ground-truth. Here again,
a threshold of 75 percent of overlap was chosen. Distance d represents the average shift error of
localization of apples with an egocentric device from manual ground-truth.

5. Strategies for Extracting Attention Area

In the following we mention different approaches for extracting attention area either using
eye-tracking or not.

5.1. Attention Area from Eye-Tracking

In this section, we present strategies that we developed to extract attention areas from the
eye-tracking devices to perform joint acquisition-annotation after passing these areas to the image
processing pipeline of the previous section.

5.1.1. Selection by Eye-Tracking Glasses

The first approach extracted attention areas via the viewer fixation computed from the egocentric
eye-tracking glasses. In order to fix a threshold, a gazing position was recorded when the same fixation
position was observed during an interval of 6 frames, as calculated by

f i = Fps× f d , (9)

where f i is the frame interval, Fps = 25 is the number of frames per second, and f d is the average
fixation duration, which was set as 275 ms. Despite careful calibration before the acquisition, small shift
errors of alignment between the front camera of the device and the gazing point of the viewer can
occur. Therefore, we extended the attention area around each gazing position with a given radius
to compensate for the remaining small shift error of calibration of the eye-tracker. An illustration
of the creation of an attention area around a fixation point is provided in Figure 5. A systematic
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analysis of the evolution of the average segmentation accuracy as a function of the radius of the
attention area around each gazing position was undertaken. It is shown in Figure 6 and demonstrates
a non-monotonic evolution culminating at a value corresponding to triple the size of an average apple
size in our dataset. Consistently, this optimal value was also found to be very close to the maximum
shift error of calibration of the eye-tracker found in the whole dataset. For attention areas that are
too small, due to the shift error, apples can be missed. For overly large attention areas, due to the
complexity of the scene, the segmentation process fails to detect all apples correctly in the area.

Figure 5. Construction of attention areas. (a) The average diameter of an average apple is 30 pixels in
our dataset; (b) a cross indicates the center of the gaze of the annotator. There is a shift error from the
apple of (a). The maximum distance of the gazing point with the center of the closest object was found
at 169 pixels. (c) Chosen attention area with a size of 180× 180 pixels.

Figure 6. Apple segmentation accuracy as a function of the radius of attention area expressed in the
size of apples taken as 30 pixels. Maximum accuracy achieved when the radius size of the attention
map is equal to 80 (160× 160 pixels) corresponding to the red dotted line. The purple dotted line
corresponds to the maximum gaze shift error of (169 pixels) between eye-tracker and ground-truth
when computed on the whole dataset.



Sensors 2020, 20, 4173 10 of 18

5.1.2. Selection by Screen-Based Eye-Tracking

For comparison with the attention area created with the egocentric eye-tracker directly acquired
in the orchard, we also generated an attention map from the gazing point recorded with a screen-based
eye-tracker. Of course, this approach is less interesting for gain of time than the previous one with the
head-mounted eye-tracker, since it does not allow a joint acquisition annotation. However, desktop
eye-trackers are more accurate than head-mounted ones and thus are expected to constitute a reference
serving as an upper bound in terms of quality of annotation with ego-centric vision. The experiment
was performed on a screen with a resolution of 1920× 1080 pixels while the eye movements of the
viewer were recorded with an SMI binocular remote eye-tracker [74]. In this approach, for each apple
tree, we peaked out one frame, which included all the apples.

The annotation protocol was the same as in the previous method. Each image was displayed to
the viewer, who was asked to find the apples on the trees. The locations of the fixations of the viewer
were recorded at 60 Hz. For a fair comparison, the attention area diameter around each recorded
fixation was taken at the optimal value found for the eye-tracking systems embedded in glasses.

A comparison of the accuracy of the screen-based eye-tracking recording and the recording
with eye-tracking embedded in glasses was conducted. Figure 7 shows that in the form of heatmap
visualization of the attention of the viewer. The precision and accuracy of the produced gaze points with
the screen-based eye-tracker were found to be higher than when using the head-mounted eye-tracker.
The average shift error of Equation (8) was found to be 125 pixels less with the screen-based eye-tracker
than with the head-mounted eye-tracker.

Figure 7. Heatmap visualization of the attention of the viewer captured by the head-mounted (glasses)
eye-tracker (a) versus the screen-based eye-tracker (c). (b) Comparison of the heatmap generated by
the glasses eye-tracker (left) vs. the heatmap generated by the screen-based eye-tracker (right).

5.2. Attention Area without Eye-Tracking

Other strategies were developed to extract attention areas for comparison with performances
obtained with eye-tracking systems.
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5.2.1. Full-Frame

In this approach, the attention map was considered as the full-frame recorded by the camera. Thus,
in Figure 3, instead of a small patch of the entire original image, the full original image was directly
transmitted to the superpixel segmentation. Such a choice assumes that the camera field of view is
already a focus of the overall field of interest for the human annotator in charge of detecting apples.

5.2.2. Egocentric Prior

In this approach, we assumed, as is often done in egocentric vision [16], that the attention of
the viewer was focused at the center of the frame. Therefore, we selected the attention area as a disk
positioned at the center of the image with the size of 180× 180 pixels for a fair comparison with the
other approaches developed for eye-trackers.

5.2.3. Saliency Map

As the last method to compute an attention area, we turned toward a computational approach in
charge of numerically identifying areas of interest. Such a concept has been developed in the computer
vision literature under the name of the saliency map. Saliency acts as a local filter that enhances regions
of the image which stand out relative to their adjacent parts in terms of orientation and/or gray level
and/or color contrast [75]. Introduced in [76], saliency was inspired by the mechanisms of human
visual attention and the fixation behavior of the observer. There are numerous computational models
for salient object detection. In this study, for illustration and without any claim of optimality, we used
the algorithm proposed by [77], which computes saliency map in images using low-level features
and was proposed with codes included for reproducible science. Saliency maps were thresholded to
binary masks following the fixed threshold procedure described in [77]. Each connected component
of the binary saliency map served to produce an attention area. For a fair comparison with the other
approaches, attention areas of size 180× 180 pixels were chosen.

6. Results and Discussion

We are now ready to compare the results of the different approaches proposed for apple
detection by extracting attention areas through egocentric vision in the perspective of a joint
acquisition-annotation process. As shown in Table 1, we assessed the image annotation quality
by the same image segmentation pipeline of Section 4 (depicted in Figure 3). Comparison is provided
between the five different approaches presented in Section 5 for the extraction of attention areas from
egocentric devices. In terms of segmentation, accuracy was estimated by the Dice Equation (2) and
Jaccard Equation (3) indexes. The probability of good detection indicates the true counted apples
computed by Equation (4). The true-negative rate Equation (5) represents the proportion of actual
negatives that are correctly identified. The next column in Table 1 specifies the error of localization
of detected apples computed by Equation (8). Time is the approximate consumed execution time
(automatic annotation) acquired from each approach of the whole dataset. Finally, the time gain
indicates the ratio of manual annotation time over the consumed execution time obtained from each
automatic annotation approach. All these experimental results correspond to an average of over 10
different trees available in the dataset.

The best average performances (highlighted in bold in Table 1) in terms of segmentation accuracy
of apples were obtained with the eye-tracking-based methods. Challenging images and resulting
annotations with eye-tracking-based methods are provided in Figure 8 for qualitative assessment.
Overall, the screen-based eye-tracker provided the best result but only slightly above the one obtained
from the glasses eye-tracker. This embedded glasses eye-tracker, despite its substantial shift errors,
had a high value since it enabled joint image acquisition and annotation. The saliency approach
provided a result close to the one obtained with the baseline method (full-frame). This could certainly
be improved with a systematic benchmark of other saliency methods of the literature. However,



Sensors 2020, 20, 4173 12 of 18

a fundamental reason for the failure of the saliency approach, which would be common to all generic
saliency maps, is that saliency is, so to say, attracted by contrasting objects which may not be apples
(for example, stems, leaves, items in the background, a data matrix positioned in the field to identify
trees). As a consequence, saliency creates many true-negatives in attention areas since the task of
detecting apples does not specifically drive it. In contrast, human attention focuses on the apple as
captured by eye-tracking systems.

Interestingly these results were consistent for the three tasks assessed: segmentation, counting,
and localization. This demonstrates the robustness of the interest of eye-tracker devices for annotation.
Eye-tracking systems, such as the two used in this study, can be considered as expensive devices
(typically between 10,000 and 20,000 euros currently). It is interesting to see that the egocentric prior
approach gave the third-best performance, and this could be accessible with any camera embedded on
glasses (for 10 to 100 euros).

Table 1. Performance of apple detection with the five approaches developed for automatic apple
annotation in the attention area captured by the egocentric devices. Each column corresponds to
an average over the 10 trees of the dataset. Dice and Jaccard assess in percentage the quality of
segmentation via Equations (2) and (3); good prediction and true-negative rate assess in percentage the
quality of object detection via Equations (4) and (5); and the shift error of Equation (8) assesses in pixels
the quality of good localization. The time corresponds to the approximate execution time for automatic
annotation for the whole dataset in seconds. Time gain indicates the ratio of manual annotation time
(6 h) over automatic annotation time obtained from each approach. Time was measured on a windows
machine with an Intel Xeon CPU and 32.0 GB RAM by Matlab 2017a.

Method (Section) Dice Jaccard Good
Detection

True-Negative
Rate Shift Error Time

(Second)
Time
Gain

Full-Frame (Section 5.2.1) 0.24 ± 0.22 0.21 ± 0.16 0.31 ± 0.20 0.17 ± 0.72 174.11 ± 34 880 24

Glasses Eye-tracker (Section 5.1) 0.78 ± 0.08 0.64 ± 0.08 0.84 ± 0.16 0.09 ± 0.07 15.97 ± 11 1960 11

Screen-based Eye-tracker (Section 5.1.2) 0.85 ± 0.09 0.77 ± 0.13 0.88 ± 0.12 0.09 ± 0.13 2.37 ± 1.86 3240 6

Egocentric Prior (Section 5.2.2) 0.46 ± 0.36 0.38 ± 0.31 0.54 ± 0.39 0.28 ± 0.23 84.82 ± 7.25 1960 11

Saliency (Section 5.2.3) 0.27 ± 0.13 0.16 ± 0.08 0.42 ± 0.45 0.51 ± 0.17 7.21 ± 8.28 2358 9

The values of the obtained results in terms of segmentation, counting, and localization were
also assessed in terms of timing. As expressed in Section 3.1, acquisition time with an egocentric
device is comparable with acquisition time with any standard camera. Therefore gains of time were
compared regarding the annotation time only. This timing is provided in the last column of Table 1
for automatic annotation based on the image processing pipeline applied to extracted attention areas.
Without any surprise, the full-frame approach, which requires no computation of attention map, is the
fastest method. The second most rapid methods are the egocentric prior and glasses eye-tracker.
The screen-based eye-tracker method, which gave the best performance in terms of apple detection,
came with the slowest timing. However, these timings for automated annotation are to be compared
with the timing requested by a human annotator to manually annotate all apples in the dataset.
The estimated timing was 6 h for the 419 frames. The gain of time for all methods is presented in
Table 1. Saliency, as presented here, could be criticized since many other variants of the saliency
map could be tested and possibly provide better results. In terms of timing, however, we believe the
performances are realistic, and it was worth mentioning them here. All in all, the glasses eye-tracker
method appears to be a good trade-off between speed and annotation performance (as summarized in
Table 2). For this head-mounted device, the gain in performance was about 11 times, which is smaller
than what was found in the closest related work with desktop eye-trackers for object detection [8,31,32].
This difference may come from the fact that in this literature, the tasks targeted were relatively more
straightforward and required less post-processing. Optimization of the code could thus increase the
gain in time. We are currently investigating all those perspectives.
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Figure 8. Qualitative assessment of results. From left to right, an example of the attention area
captured by eye-tracking, automatic annotation obtained from the proposed image processing pipeline
of Figure 3, ground-truth manually recorded, and comparison of manual ground-truth and automatic
segmentation. (a) Examples of good performance; (b) Some challenging conditions wherein more
errors were found (missed detection, false detection).

Table 2. Qualitative summary of the five uses of egocentric devices compared in this study.

Method Joint Acquisition
Annotation

Fastest
Execution Time Best Annotation Best Counting Best Localization

Full-Frame + + - - -

Glasses Eye-tracker + - + + -

Screen-based Eye-tracker - - + + +

Egocentric Prior + - - - -

Saliency + - - - +
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7. Conclusions

We have assessed the value of egocentric imaging devices to jointly perform acquisition and
automatic image annotation. This was illustrated with apple detection in orchards, which is known
to be a challenging task for computer vision applied to phenotyping or agriculture. Despite shift
errors in the calibration of egocentric imaging devices, the performance of the detection of apples
from the gazed recorded areas was found to be very close to the one obtained from the manual
annotation. The compensation for these shift errors was obtained by applying a standard non
supervised segmentation algorithm only applied in attention areas centered on the gazing positions
captured by the egocentric devices. Specific interest was shown for head-mounted eye-tracking
systems with an estimated gain of time in comparison with manual annotation of 11 times with
non-GPU-accelerated software.

This first use of egocentric vision to speed up image annotation opens up interesting perspectives,
especially in plant phenotyping. The task here was focused on apples, but the approach is in fact
generic. Thus, it would be interesting to extend the applicability to other phenotyping items of interest.
The non-supervised image segmentation algorithm applied in gazed areas was purposely chosen
simply in this article to demonstrate the value of the eye-tracking device. It is interesting to notice
that performances obtained with this simple algorithm were already interesting quantitatively and
qualitatively. The literature of non-supervised image segmentation with superpixels is huge [78,79],
and it would be interesting to revisit more exhaustively this literature for the segmentation of gazed
areas. Specific attention could focus on the methods addressing the limitation of superpixels [80],
also observed in this article, with "leakage" of boundaries in the vicinity of the targeted objects [81].
To remain on the topic of apples, this could include the determination of flowering stages or the
detection of diseases. Additional technological services from egocentric vision could be tested to speed
up annotation. For instance, this includes the use of sound recording, which could be coupled to
automatic speech recognition for later fusion with information extracted from the captured images.
The pilot study presented here is promising. For a tool to be used by technicians and engineers in the
field, it would be necessary to implement an ergonomic version of the software to experiment on a
large network of users the method developed to accelerate image annotation with egocentric devices.
Validation of the quality of the annotation was performed at various levels, including location, object
detection, and pixel-wise segmentation. Another stage of validation of the quality of the annotation
would be to train a machine learning algorithm on the annotated images and compare the performance
with the manually annotated data.
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