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Objective. This study was aimed at analyzing the expressions of long noncoding RNAs (lncRNAs) in Botulinum Toxin Type A
(BoNTA) treated human dermal fibroblasts (HDFs) in vitro.Methods. We used RNA sequencing to characterize the lncRNAs and
mRNAs transcriptome in the control and BoNTA treated group, in conjunction with application of GO (gene ontology) analysis
and KEGG (kyoto encyclopedia of genes and genomes) analysis to delineate the alterations in gene expression. We also obtained
quantitative real time polymerase chain reaction (qRT-PCR) to confirm some differentially expressed genes. Results. Numerous
differentially expressed genes were observed by microarrays between the two groups. qRT-PCR confirmed the changes of six
lncRNAs (RP11-517C16.2-001, FR271872, LOC283352, RP11-401E9.3, FGFR3P, and XXbac-BPG16N22.5) and nine mRNAs (NOS2,
C13orf15, FOS, FCN2, SPINT1, PLAC8, BIRC5, NOS2, and COL19A1). Farther studies indicated that the downregulating effect of
BoNTA on the expression of FGFR3P was time-related and the dosage of BoNTA at a range from 2.5U/106 cells to 7.5U/106 cells
increased the expression of FGFR3P and COL19A1 in HDFs as well. Conclusion. The expression profiling of lncRNAs was visibly
changed in BoNTA treated HDFs. Further studies should focus on several lncRNAs to investigate their functions in BoNTA treated
HDFs and the underlying mechanisms.

1. Introduction

Botulinum Toxin Type A (BoNTA) is the most effective
one among the seven neurotoxins secreted by Clostridium
botulinum [1]. BoNTA causes muscle relaxation and this con-
cept nowadays is widely being used in the cosmetic treatment
of wrinkles [2, 3]. In 2005 and 2008, some researchers found
a face-lifting effect after intradermal injection of BoNTA
to the mid and lower face [4, 5]. However, some other
researchers reported that needle pricks themselves without
BoNTA can make the skin become smoother as well [6].
In order to find out whether BoNTA can affect the human
dermal fibroblasts (HDFs) directly, in 2012, Oh et al. studied
the in vitro effects of BoNTA on normal HDFs and found
that BoNTA has a notable effect in increasing the level
of collagen production and downregulating its degradation
[7]. Collagen is the most abundant basic element of fibrous
components in the dermis and is responsible for maintaining

the structural integrity of the skin by joining cells together
and to the extracellular matrix (ECM) [8, 9]. These studies
not only showed the positive effects of BoNTA on HDFs for
remodeling skin but also implied the importance of HDFs.
In 2016, Zhu et al. proved that topical BoNTA application
could enhance the rejuvenation effect of fractional CO2 laser,
further indicating that BoNTA can refine skin texture via
improving the activity of HDFs [10]. But until now, the
molecular mechanisms through which BoNTA could affect
HDFs are still not completely understood.

Long noncoding RNAs (lncRNAs) are a group of non-
coding RNA transcripts longer than 200 nucleotides which
cannot encode proteins [11]. In comparison with protein-
coding genes, lncRNAs have limited coding potential and
show little evolutionary conservation in sequence. Fur-
thermore, some researchers have detected that lncRNAs
expression is more tissue specific and at apparently lower
levels [12]. LncRNAs, which were previously thought to be

Hindawi Publishing Corporation
BioMed Research International
Volume 2017, Article ID 2957941, 13 pages
http://dx.doi.org/10.1155/2017/2957941

http://dx.doi.org/10.1155/2017/2957941


2 BioMed Research International

transcriptional “noise,” are now proved to have some func-
tions by regulating gene expression at the epigenetic, tran-
scriptional, and posttranscriptional levels and participating
in some biologic functions, such as genomic imprinting,
chromosomemodification, intranuclear transport, transcrip-
tional activation, and interference [13]. Therefore, the under-
standing of cellular processes in physiological conditions will
not be complete without analyzing the contributionsmade by
lncRNAs.Until now, no information is available regarding the
effect of BoNTAon expression profiling of lncRNAs inHDFs.

In this study, we investigated on lncRNA expression
signature together with messenger RNA (mRNA) expression
profile in BoNTA treated HDFs and confirmed the changing
of some differentially expressed lncRNAs and mRNA using
qRT-PCR. In conjunction, we also conducted functional
analysis using Gene Ontology (GO) analysis and pathway
analysis, in which genes are mapped to Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways.

2. Materials and Methods

2.1. Cell Separation andCulture. Normal human skin samples
were obtained from the prepuce of young healthy individuals
in accordance with the ethics committee approval process of
The First Affiliated Hospital of Nanjing Medical University
(Nanjing, China). The acquirement of HDFs can be divided
into two procedures. Initially dispase enzyme was used to
separate the dermis and epidermis, and then collagenase
enzyme was used to extract the HDFs. HDFs were grown
in Dulbecco’s modified Eagle medium (DMEM) with 1%
penicillin-streptomycin and 10% fetal bovine serum in an
environment of 5% CO2 at 37

∘C. The cells used in our study
were from passages 8–11.

2.2. Group Divisions and Botulinum Toxin Type A (BoNTA)
Treatment. In order to study differentially expressed lncR-
NAs and mRNAs, we separated the cells into two groups,
control group and BoNTA group: (1) control group: HDFs
were grown in DMEM with 1% penicillin-streptomycin and
10% fetal bovine serum for 5 days and then serum-starved
for 4 days, without receiving BoNTA treatment; (2) BoNTA
group (48 h):HDFswere grown inDMEMwith 1%penicillin-
streptomycin and 10% fetal bovine serum for 5 days, serum-
starved for 2 days, and then were grown in serum-free
DMEM with BoNTA at a dose of 5U/106 cells for 2 days.

In order to determine whether the changes of RNAs
expression in BoNTA treated HDFs were time or dosage
dependent, the cells were divided into 4 groups: (1) BoNTA
group (24 h):HDFswere grown inDMEMwith 1%penicillin-
streptomycin and 10% fetal bovine serum for 5 days, serum-
starved for 2 days, and then were grown in serum-free
DMEM with BoNTA at a dose of 5U/106 cells for 24 h; (2)
BoNTA group (72 h): HDFs were grown in DMEM with
1% penicillin-streptomycin and 10% fetal bovine serum for
5 days, serum-starved for 2 days, and then were grown in
serum-free DMEMwith BoNTA at a dose of 5U/106 cells for
72 days; (3) BoNTA group (48 h 2.5U): HDFs were grown
in DMEM with 1% penicillin-streptomycin and 10% fetal
bovine serum for 5 days, serum-starved for 48 h, and then

were grown in serum-free DMEM with BoNTA at a dose of
2.5U/106 cells for 48 h; (4) BoNTA group (48 h 7.5U): HDFs
were grown in DMEM with 1% penicillin-streptomycin and
10% fetal bovine serum for 5 days, serum-starved for 2 days,
and then were grown in serum-free DMEMwith BoNTA at a
dose of 7.5U/106 cells for 48 h.

All groups were rinsed with Phosphate Buffer Solution
(PBS) and the medium was changed every day, except during
BoNTA treatment. Eachmethod of detection consists of these
six groups of cell culture, containing about 1 × 107 cells in
each group, and there were at least 3 samples in each group.
The BoNTA used in this study wasmanufactured by Lanzhou
Institute of Biological Products Co., Ltd., Lanzhou, China.

2.3. Isolation of RNA and Preparation of Array Hybridization.
The RNA extraction was conducted using the TRIZOL
reagent and then was dissolved in RNase-free water. The
purified labeled genomic DNA was used for quantification
and the RNA quantity was decided spectrophotometrically as
A260/A280 ratio (1.9–2.1 were obtained).The collected RNAs
were stored at −70∘C for microarray analysis and qRT-PCR.

2.4. Microarray Analysis of lncRNAs and mRNAs Expression.
The Agilent Human lncRNA (8 ∗ 60K) arrays were designed
in this experiment for measuring the expression profiles of
lncRNAs and mRNAs.The lncRNA sequences were acquired
from the following databases: NCBI-RefSeq, NONCODE v4,
Ensembl, broad lincRNA, and frnadb v3.4. We conducted
the sample labeling, microarray hybridization, and washing
according to the manufacturer’s proposals. Briefly speaking,
we initially transcribed the total RNA to double stranded
cDNA, synthesized them into cRNA, and labeled them with
Cyanine-3-CTP and then hybridized the labeled cRNAs onto
the microarray. We applied the Agilent Scanner G2505C
(Agilent Technologies) to scan the arrays after washing.

2.5. Quantitative Reverse-Transcription Polymerase Chain
Reaction (qRT-PCR). In order to confirm the results obtained
from microarray, we applied qRT-PCR to remeasure the
abundance of differentially expressed lncRNAs and mRNAs
selected frommicroarray analysis. RNAs in themediumwere
determined based on the protocol of KeyGen Biotech Co.,
Ltd., Nanjing, Jiangsu, China. In brief, we applied TRIzol
to extract the total RNAs from HDFs and then synthesized
the cDNAs from the separated RNA using SuperScript
III Reverse Transcriptase (KeyGen, China). QRT-PCR was
performed on ABI Prism 7700 Sequence Detector (Applied
Biosystems).The reactions were performed at 9∘C for 10min,
then at 40 cycles at 95∘C for 15 s, and followed by at 60∘C for
30 s. The 2 (−ΔΔCt) methods were used to evaluate relative
quantification of lncRNAs and mRNAs expression. Primer
sequences of lncRNAs and mRNAs for qRT-PCR are listed in
Table 1. The results were expressed as mean ± SD (standard
deviation) of each independent experiment.

2.6. Data Analysis. We applied the Feature Extraction soft-
ware (version 10.7.1.1, Agilent Technologies) to analyze array
images to get raw data and used GeneSpring (version 13.1,
Agilent Technologies) to complete the fundamental analysis
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Table 1: Primer sequences for long noncoding RNAs and protein-coding RNAs.

Gene name Primer sequences

RP11-517C16.2-001 Forward primer: TTTGTCAACGGGCTCTACCC
Reverse primer: TTTGTCAACGGGCTCTACCC

FR271872 Forward primer: CACCTCCTTCCCTGGACTAGA
Reverse primer: CACCTCCTTCCCTGGACTAGA

LOC283352 Forward primer: AAGGGTTTATGTGCTCGGAGG
Reverse primer: CTGGCTGAGGAGTCTCACTT

RP11-401E9.3 Forward primer: CCAGTCATGCCCATCCAGAA
Reverse primer: CCATGCAGCAACTAGCAAAGG

FGFR3P Forward primer: ATGGAAGGCTGCTTCATGCT
Reverse primer: GTTTCAAGACCTCAGCGGGA

XXbac-BPG16N22.5 Forward primer: AGACTCAAGGGGACCAGACC
Reverse primer: CTGCAGGCAGGTGTATCTCA

COL19A1 Forward primer: TCGAGTACGAAGAAACGCCAA
Reverse primer: TGCCACTGACGATCAAACAAA

NOS2 Forward primer: ACATCGACCCGTCCACAGTAT
Reverse primer: CAGAGGGGTAGGCTTGTCTC

C13orf15 Forward primer: CTGAATTCTCCAACAGACT
Reverse primer: ATGGGAAAGCTTACTGCT

E2F1 Forward primer: AGCTGGACCACCTGATGAAT
Reverse primer: GAGGGGCTTTGATCACCATA

SPINT1 Forward primer: AGACTACTGCCTCGCATCCAA
Reverse primer: CAAGCAGCCTCCATAAACGAA

FOS Forward primer: TGACAGATACACTCCAAGCGG
Reverse primer: GGGAAGCCAAGGTCATCG

FCN2 Forward primer: GTAAAACGACGGCCAGTTATGGCCCTGCTTCTTCCTC
Reverse primer: TTCCAGAGTGTGTTCTCCCAC

PLAC8 Forward primer: CCTCTACACTGCCTCAGCATC
Reverse primer: GTAAAACGACGGCCAGTTTCTACACAATAAGGGAGGAATGG

BIRC5 Forward primer: AGGACCACCGCATCTCTACAT
Reverse primer: AAGTCTGGCTCGTTCTCAGTG

with the raw data. First of all, the raw data was normalized
with the quantile algorithm. The probes which have signed
with P (𝑝 value ≤ 0.05 is recommended) were selected
for further data analysis. Deferentially expressed lncRNAs
and protein-coding RNAs were then identified through fold
change. The critical value set for up- and downregulated
genes was a fold change ≥ 2.0. Afterwards, GO analysis and
KEGG analysis were applied to depict alterations in the gene
expression. SPSS 17.0 software (SPSS Inc., Chicago, IL, United
States) was used to analyze the statistical data.The differences
in RNA expression between the two groups and more than
three groups were analyzed using the Student’s t-test and one-
way ANOVA, separately. 𝑝 < 0.05 was considered to indicate
a statistically significant difference.

3. Results

3.1. Different Expression Profiles of lncRNAs and mRNAs in
Control Group and BoNTA Treated Group. Data analysis
showed 2124 differentially expressed lncRNAs and 638 dif-
ferentially expressed mRNAs of the cells in BoNTA (48 h

5U) treated group (fold change > 2) compared with control
group. Hierarchical clustering heat-map showed the expres-
sion ratios ofmRNAs (Figure 1(a)) and lncRNAs (Figure 1(b))
between the two groups. Of the 2124 differentially expressed
lncRNAs, 1122 were upregulated and 1002 were downregu-
lated. Of the 638 differentially expressed mRNAs, 303 were
upregulated and 335 were downregulated. The distinctly
expressed lncRNAs are listed in Table 2 (fold change > 5) and
the distinctly expressed mRNAs are summarized in Table 3
(fold change > 3).

3.2. QRT-PCR Analysis of lncRNAs and mRNAs Expres-
sion. QRT-PCR analysis indicated the transcription of the
selected lncRNAs: RP11-517C16.2-001, FR271872, LOC283352,
RP11-401E9.3, FGFR3P, XXbac-BPG16N22.5, and mRNAs:
collagen 19a1 (COL19A1), nitric oxide synthase 2 (NOS2),
chromosome 13 open reading frame 15 (C13orf15), FBJ
murine osteosarcoma viral oncogene homolog (FOS), ficolin
(collagen/fibrinogen domain containing lectin) 2 (hucolin)
(FCN2), serine peptidase inhibitor, Kunitz type 1 (SPINT1),
placenta-specific 8 (PLAC8), E2F transcription factor 1



4 BioMed Research International

Table 2: Differentially expressed long noncoding RNAs in HDFs (fold change > 5).

Probe name Gene symbol Expression Chromosome Strand Start End Fold change
CUST 18266 RP11-262H14.3-005 Up Chr9 − 66513657 66553531 18.14
CUST 28663 linc-TCTE3-3 Up Chr6 − 170470884 170475667 9.33
CUST 73981 linc-GRAMD3-2 Up Chr5 + 124372380 124486527 8.12
CUST 25057 Z83001.1-003 Up Chr11 − 31710730 31789373 7.07
CUST 54220 RP11-517C16.2-001 Up Chr16 − 84492865 84500967 6.13
CUST 77914 PI429545380 RP11-444D13.1-001 Up chr1 − 183723553 183724072 5.70
CUST 42824 PI429545402 RPS2P41 Up chr12 − 112317141 112318053 5.63
CUST 24581 PI429545380 FR271872 Up chr1 + 40364066 40364332 5.55
CUST 27762 PI429545402 KLRD1 Up chr12 + 10378664 10467608 5.45
CUST 42463 PI429545376 linc-SCGB1D4-2 Up chr11 − 62178649 62179162 5.35
CUST 83283 PI429545395 RSPH10B Up chr7 − 5995734 6002990 5.34
CUST 63264 PI429545410 LOC283352 Up chr12 + 129594234 129597843 5.34
CUST 70508 PI429545399 RP11-401E9.3 Up chr10 − 7875580 7875920 5.05
CUST 70526 MTHFD1 Down Chr14 + 64924714 64926721 −25.69
CUST 86832 AC010136.2-001 Down Chr2 + 218843430 218857338 −8.43
CUST 75452 PNKP Down Chr19 − 50369397 50370818 −8.04
CUST 89880 STPG1 Down Chr1 − 24717747 24742643 −7.77
CUST 45703 RP11-643A5.2-002 Down Chr15 − 54239821 54267147 −6.66
CUST 15063 FGFR3P Down chr6 cox hap2 + 2857852 2858455 −6.52
CUST 29613 linc-HOXA11 Down Chr7 − 27226865 27232305 −6.25
CUST 33771 FR081392 Down Chr6 + 161943497 161943737 −6.21
CUST 75093 CTA-292E10.6-001 Down Chr22 + 29196671 29244547 −6.04
CUST 90031 PI429545395 RP11-73B2.7 Down chr7 − 63398282 63398887 −5.63
CUST 81910 PI429545380 AC007131.2-003 Down chr2 − 59465851 59476702 −5.5
CUST 92526 PI429545402 ZFAND6 Down chr15 + 80364932 80413144 −5.2
CUST 62442 PI429545395 XXbac-BPG16N22.5 Down chr6 + 31483755 31483988 −5.14
CUST 19370 PI429545380 FR316649 Down chr3 + 188550879 188551155 −5.07

2.55

1.7

1.66

0.86
Control BoNTA

(a)

5.76

4.79

3.81

1.83
Control BoNTA

5.76

4.79
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1.83
Control BoNTA

(b)

Figure 1: Heat maps presentation of the expression profiling of mRNAs (a) and lncRNAs (b) in different groups of HDFs. Red and blue
represent high and low relative expressions, respectively. Control indicates the normal HDFs and BoNTA indicates the HDFs treated by
BoNTA (5U/106 cells 48 h).
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Table 3: Differentially expressed protein-coding RNAs in HDFs (fold change > 3).

Probe name Gene symbol Expression Chromosome Strand Start End Fold change
A 33 P3367396 FAM177B Up Chr1 + 222923479 222923538 30.05
A 33 P3400699 SLC26A5 Up Chr9 − 10 2993259 102993200 5.16
A 23 P502464 NOS2 Up Chr17 − 26083921 26083862 4.21
A 33 P3423270 TMEM40 Up Chr3 − 12775584 12775525 4.08
A 24 P183128 PLAC8 Up Chr4 − 84015842 84012077 4.03
A 23 P135226 OR1N2 Up Chr9 + 125316281 125316340 3.91
A 23 P153616 MADCAM1 Up Chr19 + 505192 505251 3.89
A 23 P49060 SPINT1 Up Chr15 + 41149316 41149375 3.58
A 24 P10137 C13orf15 Up Chr13 + 42042937 42044635 3.42
A 24 P630490 DFNB59 Up Chr2 + 179325165 179325759 3.38
A 23 P106194 FOS Up Chr14 + 75748214 75748273 3.05
A 23 P313588 TMPRSS6 Up Chr22 − 37480125 37480066 3.04
A 23 P134085 CNKSR3 Down Chr6 − 154726608 154726549 −14.99
A 24 P323598 ESCO2 Down Chr8 + 27662101 27662160 −5.44
A 23 P216756 FCN2 Down Chr9 + 137779164 137779223 −4.27
A 24 P225616 RRM2 Down Chr2 + 10270487 10270546 −4.19
A 23 P15844 BRIP1 Down Chr17 − 59760967 59760908 −4.04
A 23 P126212 CLSPN Down Chr1 − 36204176 36204117 −3.85
A 33 P3807062 HJURP Down Chr2 − 234746088 234746029 −3.84
A 23 P100127 CASC5 Down Chr15 + 40917525 40917584 −3.81
A 33 P3257678 HIST2H3A Down Chr1 + 149824626 149824685 −3.79
A 33 P3326210 ESCO2 Down Chr8 + 27660830 27660889 −3.72
A 23 P8452 LFNG Down Chr7 + 2567971 2568030 −3.70
A 23 P51085 SPC25 Down Chr2 − 169728015 169727956 −3.61
A 23 P130182 AURKB Down Chr17 − 8110917 8110655 −3.59
A 23 P254733 MLF1IP Down Chr4 − 185616396 185616337 −3.49
A 23 P133956 KIFC1 Down Chr6 + 33374428 33374621 −3.48
A 24 P214231 STIL Down Chr1 − 47716850 47716791 −3.45
A 23 P131330 LRRTM1 Down Chr2 − 80529291 80529232 −3.45
A 32 P96719 HIST1H2AL Down Chr6 − 27833502 27833561 −3.27
A 23 P363174 GTSE1 Down Chr22 + 46725391 46725450 −3.23
A 23 P118246 GINS2 Down Chr16 − 85711713 85711654 −3.20
A 24 P322354 SKA1 Down Chr18 + 47919899 47919958 −3.14
A 23 P118815 BIRC5 Down Chr17 + 76220720 76220779 −3.08
A 24 P413884 CENPA Down Chr2 + 27016914 27016973 −3.06
A 24 P314571 SPC24 Down Chr19 − 11257053 11256994 −3.05
A 23 P99292 RAD51AP1 Down Chr12 + 4668182 4668241 −3.01
A 23 P80032 E2F1 Down Chr20 − 32264048 32263989 −3.01

(E2F1), and baculoviral IAP repeat containing 5 (BIRC5),
perfectly correlated to microarray results. The qRT-PCR
analysis revealed that the expression level of RP11-517C16.2-
001, FR271872, LOC283352, and RP11-401E9.3 in BoNTA (5U
48 h) treated groups was upregulated to 33.479-, 39.519-,
19.713-, 26.362-, and 29.293-fold separately (Figure 2), and
the expression level of FGFR3P and XXbac-BPG16N22.5
was downregulated to 2.139- and 2.554-fold, respectively
(Figure 2).

For the mRNAs, in comparison with the control group,
the expression level of COL19A1, NOS2, C13orf15, FOS,
SPINT1, and PLAC8 was upregulated to 10.331-, 31.374-,

7.534-, 12.573-, 24.758-, and 19.885-fold in BoNTA (5U 24 h)
treated groups, respectively (Figure 3), and the expression
level of FCN2, BIRC5, and E2F1 was downregulated to 1.890-,
0.923-, 0.709-fold separately (Figure 3).

3.3. GO and Pathway Analysis of Deferentially Expressed
RNAs. Theupregulated genes were involved in 898 biological
processes, 171 cellular components, and 236 molecular func-
tions separately. The response to cell-cell signaling (−log10
(p value) = 3.7114) was the most significant term among the
biological process category. The extracellular region (−log10
(p value) = 2.8128) was the most represented GO term in
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Figure 2:The differential expression level of long noncoding RNAs (lncRNAs) between control and BoNTA (5U/106 cells 48 h) treated groups
was validated by qRT-PCR. Six lncRNAs (RP11-517C16.2-001, FR271872, LOC283352, RP11-401E9.3, FGFR3P, and XXbac-BPG16N22.5) were
studied using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal control.The heights of the columns in the chart represent
the fold changes. Data are the mean ± SEM (𝑛 = 6). 𝑝 < 0.05 was considered to indicate a statistically significant difference compared with
control HDFs. ∗𝑝 < 0.05 and ∗∗𝑝 < 0.01.
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the cellular component category. Heparin binding (−log10 (p
value) = 3.3714) was the most highly represented term within
themolecular component category.The downregulated genes
were involved in 880 biological processes, 179 cellular com-
ponents, and 240 molecular functions, respectively. The
most significant term was the response to mitotic cell cycle
(−log10 (p value) = 31.3859) among the biological process
category. The most represented GO term was the condensed
chromosome kinetochore (−log10 (p value) = 13.0822) in
the cellular component category. Heparin binding (−log10 (p
value) = 6.2714) was themost highly represented termwith in
themolecular component category.The top ten of the number
of deferentially expressed genes and the significance analyzed
by GO term are demonstrated in Figure 4.

KEGG (Kyoto Encyclopedia of Genes and Genomes)
was used to analyze the pathway enrichment. The pathway
analysis showed that changed genes participated in the DNA
replication, cell cycle, P53 signaling pathway, pathway in
cancer, andmelanoma.The upregulated genes participated in
157 pathways while downregulated genes participated in 169
pathways. The top ten pathways among them are shown in
Figure 5.

3.4. The Regulation of BoNTA on the Expression of FGFR3P
and COL19A1. We also performed qRT-PCR to validate
the altered lncRNA expression at different time-points and
different dosage of BoNTA treatment. We found that the
level of FGFR3P reached the lowest at 48 h but indicated an
upward trend at 72 h when treated by BoNTA at the dosage
of 5U/106 cells (Figure 6).The level of FGFR3P was gradually
increasing with the increasing dosage of BoNTA (at a range
from 2.5U/106 cells to 7.5U/106 cells). At the same time, the
level of COL19A1 in HDFs was gradually increasing with the
extension of time treated by BoNTA at the dosage of 5U/106
cells (Figure 6), and its level showed a trend of increasing
when the dosage of BoNTA ranges from 2.5U/106 cells to
7.5U/106 cells (Figure 6).

4. Discussion

Recently, lncRNAs have come into the extent of probing
into human biological functions and diseases [13–17]. Until
now, only a few lncRNAs had been reported about HDFs,
and studies on the expression of lncRNAs in BoNTA treated
HDFs were still lacking. In this study, we identified some
differentially expressed lncRNAs and mRNAs between the
BoNTA treated group and control group by analyzing gene
expression profiles. The number of changed lncRNAs was
greater than that of mRNAs. Although currently the precise
roles of the changed lncRNAs in BoNTA treated HDFs
are not clear, lncRNAs have been regarded as vital reg-
ulators of gene expression and have various biofunctions.
There are a large number of evidences demonstrating that
lncRNAs can regulate gene expression by forming RNA-
protein, RNA-RNA, DNA-RNA, and protein-DNA inter-
actions [18]. Although no direct relationship was found
between the altered lncRNA and mRNA expressions, we
are convinced that the clear changes of lncRNAs (RP11-
517C16.2-001, FR271872, LOC283352, RP11-401E9.3, FGFR3P,

and XXbac-BPG16N22.5) in HDFs are in response to BoNTA
and are related to the changes of protein-coding RNAs. We
suspected that the decrease of NOS2 indicated the regulation
of cell proliferation process [19, 20]. The increase of FOS
induced by BoNTA showed the regulation of proliferation,
which is also involved in the cellular senescence process of
HDFs [21–24]. BIRC5 has been reported to participate in
modulation of diverse cellular processes such as proliferation,
adhesion, apoptosis, migration and invasion during growth,
development, repair, maintenance, and regression of a wide
variety of mesenchymal tissues [25–28]. The downregulated
BIRC5 induced by BoNTA indicated the decrease of apop-
tosis in HDFs. PLAC8 has been proved to regulate cell cycle
and participate in the regulation of apoptosis and cell division
[29–31].

GO database was applied to analyze the function of the
differentially expressed genes. The results were divided into
three sections: biological process (BP), cellular component
(CC), andmolecular function (MF). Besides the top ten of the
number of differentially expressed genes and the significance
analyzed by GO term demonstrated in Figure 4, the analysis
showed that the differentially expressed genes were also
involved in a variety of other biological functions, such as
negative regulation of autophagy (GO: 0010507), positive
regulation of collagen biosynthetic process (GO: 0032967),
regulation of G1/S transition of mitotic cell cycle (GO:
2000045), and positive regulation of fibroblast proliferation
(GO: 0048147). The analysis indicated that the lncRNAs can
affect the function of HDFs by regulating the expression
profiles of genes related to HDFs. KEGG analysis can provide
some suggestive information about the potential relativity
of the changed gene expression with the alterations of the
pathways.The result of our study indicates several significant
pathways related to a variety of functions, such as cell prolifer-
ation, cell cycle, apoptosis, and DNA replication. It had been
reported that BoNTA can regulate the process of cell cycle
and DNA replication by other researchers. For example, G.
Karsenty et al. reported in their study that BoNTA obviously
reduced LNCaP cell proliferation and increased apoptosis in
a dose-dependent manner [32]. Park et al. found that BoNTA
upregulates the expression of cell cycle related genes such as
RhoA, Rac1, and Cdc42 in a dose-dependent manner [33].
Our prediction results accord with the functional analysis of
BoNTA obtained from other investigations.

QRT-PCR was applied to verify the result of microar-
ray analysis. We learned from other studies that BoNTA
can regulate cell proliferation and collagen synthesis; the
mechanisms may play important roles in skin rejuvenation
effects of BoNTA [32–34]. The RNAs chosen for qRT-PCR
confirmation meet at least one of two following criteria:
1: the RNAs being at least 2-fold differently expressed in
BoNTA treated groups in comparison with the control group
according to the data analysis; 2: the RNAs that had been
proved in other studies to have a relationship with biological
functions such as cell proliferation and collagen synthesis.
The qRT-PCR confirmation results of six lncRNAs (RP11-
517C16.2-001, FR271872, LOC283352, RP11-401E9.3, FGFR3P,
and XXbac-BPG16N22.5) and mRNAs (NOS2, C13orf15,
FOS, FCN2, SPINT1, PLAC8, BIRC5, and COL19A1) were
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Figure 4: Continued.
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Figure 4: Bioinformatic analysis of the differentially expressed genes. The p value denotes the significance of GO terms enrichment in the
differentially expressed genes. The lower the p value, the more significant the GO term (p value ≤ 0.05 is recommended). We can choose the
target genes for further study based on the combination of the analysis provided by GO and the biologic significance.
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Figure 5: Pathway analysis of the differentially expressed genes. Fisher’s exact test was used to select the main pathway, and the significance
threshold was defined with p value. The lower the p value, the more significant the pathway (p value ≤ 0.05 is recommended). We can get
some information about the possibility between the differentially expressed genes and the change of cellular pathways.

consistent with the microarray data which confirmed the
reliability of our microarray analysis.

Next, we applied qRT-PCR to further investigate the
expression changes of COL19A1 and FGFR3P after BoNTA
treatment at different dosages and culture times. COL19A1,
as one member of the fibril-associated collagens with inter-
rupted triple helices (FACIT) group, is thought to act as a
cross-bridge between extracellular matrix molecules (ECM)
and is involved in the formation of the well-known striated
fibrils [35]. Bioinformatic analysis reveals that FGFR3Pwhich
is located on chromosome 6 is defined as the pseudogene

of Fibroblast Growth Factor Receptor 3 (FGFR3), noncoding
RNA. FGFR3 is one member of FGFR family and had been
reported to participate in the regulation of cell prolifera-
tion, apoptosis, migration, and angiogenesis in many cells
including HDFs [36–39]. Although pseudogenes have been
considered as the remnants of functional genes which have
no coding ability over a long period of time, evergrowing
number of studies have proved that some pseudogenes have
diverse functions, including serving as miRNA decoys, func-
tioning as antisense transcripts, encoding short peptides, and
producing siRNAs or proteins [40–43]. Our results showed
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Figure 6:The regulation of BoNTA on the expression of FGFR3P and COL19A1 in HDFs.The expressions of FGFR3P and COL19A1 in HDFs
different dosage of BoNTA were measured using qRT-PCR. The heights of the columns in the chart represent the fold changes. Data are the
mean ± SEM (𝑛 = 6). 𝑝 < 0.05 was considered to indicate a statistically significant difference compared with control HDFs. ∗𝑝 < 0.05 and
∗∗𝑝 < 0.01.

that downregulating effect of BoNTA on the expression of
FGFR3P was time-related. Meanwhile, the dosage of BoNTA
at a range from 2.5U/106 cells to 7.5U/106 cells increased the
expression of FGFR3P and COL19A1 in HDFs as well. We
speculated significant change of expression of these RNAs
in a time-dependent manner after BoNTA treatment which
may be of some clinical significance. Zhu et al. conducted
one clinical experiment and found that topical application of
BoNTA could enhance the rejuvenation effect of fractional
CO2 laser; they also found that best results of skin detection
were in the last observation point at 3 months after treatment
[34]. Zhu et al. also performed another clinical study and
found that intradermal BoNTA injection showed its best
rejuvenation results in the last observation point at 12 weeks
after treatment as well [44]. The results of the previous
clinical investigations showed that BoNTA had a persistent
promoting effect of collagen synthesis with the extending
of time. Taking these into consideration, we speculate that
BoNTA have the antiaging effect not only by relaxing in
muscle fiber, but also by promoting activity of HDFs directly.
The underlying mechanisms still need further studies.

In conclusion, for the first time, our current study
identified the changes of expression profiles of lncRNAs in
BoNTA treated HDFs and found that BoNTA dynamically

regulated the expression of COL19A1 and FGFR3P in HDFs,
indicating the potential role of several lncRNAs in BoNTA
treated HDFs. Therefore, further explorations are warranted
to discover the mechanisms behind the dynamic changes
BoNTA induced on COL19A1 and FGFR3P and the findings
obtained in this study should lay foundations for further
studies into the potential roles of these altered lncRNAs in
BoNTA treated HDFs.
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