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Abstract: Many studies have provided evidence suggesting that caspases not only contribute to
the neurodegeneration associated with Alzheimer’s disease (AD) but also play essential roles in
promoting the underlying pathology of this disease. Studies regarding the caspase inhibition draw
researchers’ attention through time due to its therapeutic value in the treatment of AD. In this
work, we apply the “Movable Type” (MT) free energy method, a Monte Carlo sampling method
extrapolating the binding free energy by simulating the partition functions for both free-state
and bound-state protein and ligand configurations, to the caspase-inhibitor binding affinity study.
Two test benchmarks are introduced to examine the robustness and sensitivity of the MT method
concerning the caspase inhibition complexing. The first benchmark employs a large-scale test set
including more than a hundred active inhibitors binding to caspase-3. The second benchmark
includes several smaller test sets studying the relative binding free energy differences for minor
structural changes at the caspase-inhibitor interaction interfaces. Calculation results show that the
RMS errors for all test sets are below 1.5 kcal/mol compared to the experimental binding affinity
values, demonstrating good performance in simulating the caspase-inhibitor complexing. For better
understanding the protein-ligand interaction mechanism, we then take a closer look at the global
minimum binding modes and free-state ligand conformations to study two pairs of caspase-inhibitor
complexes with (1) different caspase targets binding to the same inhibitor, and (2) different polypeptide
inhibitors targeting the same caspase target. By comparing the contact maps at the binding site of
different complexes, we revealed how small structural changes affect the caspase-inhibitor interaction
energies. Overall, this work provides a new free energy approach for studying the caspase inhibition,
with structural insight revealed for both free-state and bound-state molecular configurations.

Keywords: caspase inhibition; protein-ligand binding free energy; Monte Carlo sampling; docking
and scoring; molecular conformational sampling

1. Introduction

Alzheimer disease (AD) is a neurodegenerative disorder characterized by the neuronal and
synaptic loss as well as the accumulation of β-amyloid plaques and neurofibrillary tangles (NFTs)
within selective brain regions. Yet its cause, time course or mechanisms are still not well understood [1–4].
Scientists have proven that the programmed cell death pathway, also known as apoptosis, plays a
significant role in the pathogenesis of age-related neurodegenerative diseases, particularly in AD [2,5–7].
Caspases, a family of serine-aspartyl proteases, are involved in the initiation and execution of apoptosis.
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They are known to exist in our cells as inactive precursors which kill the cell once activated and lead to
the proteolytic cleavage of several neuronal proteins including tau, APP, presenilin (PS1, PS2), actin,
fodrin, etc. Therefore, caspases are believed to be critically related to the pathogenesis of AD [4,8–11].
Many research results have been published to elucidate the correlation between AD pathogenesis and
caspases family members, mostly caspases-2, 3, 6, 7, 8 and 9 [2,12–19]. These studies suggest that
preventing caspase activation may be a promising therapeutic for the treatment of AD. The activation
or the activity of the caspases can be regulated in two ways: (1) specific molecules such as Bcl-2, FLIP or
IAPs can be used to control the processing and activation of a caspase; (2) a number of molecules that
directly interact with a caspase can be used to inhibit the proteases that have already been activated.
These molecules are called caspase inhibitors [20–24]. Various caspase inhibitors, including small
molecules, peptidomimetic and peptide compounds, have been designed to study the relationship
between caspases and other factors involved in apoptosis.

Structure-based drug design using high-performance computers have long played important roles
in the de novo drug/biomolecule discovery studies. The long-pursued essential of structure-based drug
design is the estimation of the free energy change associated with the binding process of a ligand to a
biochemical system, for which the calculation speed and accuracy are both crucial [25–27]. A number
of free energy estimation methods have been developed, including end-point methods, pathway-based
free energy calculations, and pathway-independent free energy methods. The end-point methods for
free energy estimation (e.g., docking, molecular mechanics combined with the Poisson−Boltzmann
or generalized Born and surface area continuum solvation (MMPBSA or MMGBSA)) are relatively
fast, but the single static structure which they usually rely on often leads to the neglect of the
receptor flexibility and thus compromise the calculation accuracy [28–31]. The pathway-based free
energy methods, which can be broadly categorized into alchemical and potential of mean force
approaches, are usually computationally expensive due to the extensive sampling required to estimate
the binding free energies [32–34]. The alchemical approaches use the thermodynamic cycle built
with nonphysical intermediate states to compute the free energy differences between the end states.
The two most commonly used alchemical free energy methods are Free energy perturbation (FEP) [35]
and thermodynamic integration (TI) [36]. The potential of mean force (PMF) approach [37–39],
with umbrella sampling coupled with the WHAM (weighted histogram analysis method) analysis,
is one of the most widely adopted PMF approaches [40]. Other than the high computational cost
caused by the intensive sampling, the pathway free energy methods are also limited by simulation
time scales. Constitutionally, the underlying force field has a powerful hold on the accuracy of
all free energy estimation methods, leaving improvements in all these methods an active area of
research [41–43]. On the other hand, the pathway-independent free energy methods, e.g., Monte Carlo
free energy sampling methods, use Markov model for the molecular configurational-state sampling.
Such methods could potentially gain significant speed benefits from parallel computing according to
their stochastic sampling protocols, which also avoids the difficulty of crossing the energy barriers
during simulations in the pathway-based methods. However, to generate a converged energy ensemble
takes no less computational effort compared to the pathway-based methods. Capturing the significant
configurational states are crucial for the pathway-independent free energy methods, which require
thorough and careful sampling against the energy landscape.

In this research, we used the Movable Type (MT) free energy method, a novel Monte Carlo free
energy algorithm developed by our group to evaluate the binding affinity between a variety of caspase
inhibitors and their caspase targets [44]. By comparing the binding free energies and the predicted
significant binding modes calculated by our simulation model to those obtained from experiments,
we could validate the accuracy of our model against this particular protein target family, and provide
potential theoretical support for the future development of the therapeutic intervention for AD.
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2. Results and Discussion

The goals of this research are (1) to examine the accuracy of Movable Type free energy method
in calculating the binding free energy between different caspase targets and various inhibitors,
and (2) to apply the MT method to the structural analysis of the caspase-inhibitor binding mechanism.
The results could provide theoretical support to proceed further study the feasibility of applying the
Movable Type Free Energy Method to design caspase ligand inhibitors, which are closely related to
Alzheimer’s disease.

Two different test benchmarks were introduced in this work. First, a relatively large test set
was studied to obtain a general picture of the MT method’s performance to differentiate the binding
affinities of a large variety of ligand structures binding to the caspase-3 protein target (the caspase target
having the most significant number of ligands with known binding affinities). Then we performed
a series of relative binding free energy reproduction studies to carefully examine the MT binding
affinity prediction regarding (1) ligands of different structural categories bound to specific targets,
and (2) ligands from the same structural category bound to different caspase targets, for more detailed
computational study of the caspase-ligand bindings.

2.1. Large-Scale Validation Benchmark

The first benchmark includes structures and IC50 data (which can be converted to binding
free energy via approximation) of 113 small molecular ligands bound to the caspase-3 target that
are proven to have binding affinities, published on DUD-E data website (http://dude.docking.org/).
The DUD-E website provides several hundred structures of small molecules that actively bind to
caspase-3. After screening, redundancy structures, as well as structures with high molecular weights
(MW) (>1000 Da) or high degrees of freedom (>1000 rotatable bonds) were abandoned, with the rest
113 active ligands forming the test set used in our validation. Ligand structures were prepared by
adding the missing hydrogen atoms, Missing residues at the caspase-3 target protein were added and
locally optimized before the calculation. The active compounds’ IC50 data collected from the DUD-E
website were transferred to pIC50 values and further approximated to the binding free energies by
assigning the unit of energy:

∆Gbinding = RT ln Kd ≈ RT ln IC50 = −RT ×
e

10
× pIC50 (1)

where R is the gas constant and T is temperature in Kelvin, which is set to 298.15 K in this work; e is
the base of the natural logarithm.

IC50 is strongly related to the inhibitor’s binding affinity, and also affected by other factors as
the substrate’s and receptor’s concentrations. The inhibitor’s binding affinities can be approximated
as pIC50 values when the substrate’s concentration is very small. On one hand, IC50 data are more
easily accessible compared to Ki or Kd data from the public databases [45], being popular for the
large-scaling binding affinity prediction evaluations provided by many widely used databases like
BindingDB [45,46], DUD-E [47] and ChEMBL [48], etc. On the other hand, not all experimental IC50
values are comparable to the binding affinity data if without small enough substrate concentrations [49],
plus that different experimental IC50 values have been found regarding the same protein-ligand
complex system [50], indicating reliability issues for using the public databases in the calculation
evaluations. Despite the aforementioned issues, IC50 data are still broadly used in the virtual screening
and binding affinity simulation studies [51–53], partly because of the limited accessible Ki or Kd

data, and also because the substrate’s or receptor’s concentration-related terms can be cancelled out
(Equation (2)) when comparing the relative binding affinities of those protein-ligand complex systems
with the same mechanism of inhibition e.g., virtual screening study targeting the same receptor’s
binding site (Equation (3)).

Ki,1

Ki,2
=

IC50,1

IC50,2
(2)

http://dude.docking.org/
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∆∆G1,2 = ∆G1 − ∆G2 = (−RT ln Ki,1) − (−RT ln Ki,2) = (−RT ln IC50,1) − (−RT ln IC50,2) (3)

The MT protocol was utilized to perform the virtual screening. The calculation results were shown
in Figure 1 together with the experimental RTlnIC50 data generated using Equation (1). As active
compounds, all the ligands in this test set are relatively tight binders, with the binding affinity
distributed between −8 to −14 kcal/mol and mostly ranged between −8 to −12 kcal/mol. Statistics of
this calculation approach showed an RMSE as 0.746 kcal/mol, the r2 coefficient as 0.552 and Kendall’s
tau correlation as 0.506, revealing a good prediction accuracy and ranking capability of the MT method
against the large-scaling caspase-3 target-ligand virtual screening test set (Figure 1). Introducing
the first test benchmark revealed a general picture of the binding affinity prediction using the MT
method against a large number of active small molecules, with diverse structural features, bound to the
caspase-3 target. Further explorations including relative binding affinity difference study referencing
minor structural changes and structural based protein-ligand interaction interface analysis were also
carried out to examine the reliability of the MT protocol against the caspase-ligand binding prediction.
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Figure 1. Scattered plot comparing binding free energy calculated by Movable Type Method to
experimental data for the DUD-E CASP3 test set (Table S1).

2.2. Test Benchmark Studying the Binding ∆∆G Regarding the Structural Changes at the Binding Interface

In the second test benchmark, we employed a series of smaller test sets with high quality
protein-ligand crystal structures, and carefully categorized ligands according to their structural
similarities, so that we can further explore the binding affinity prediction accuracy by using the MT
method, its sensitivity against local structural changes at the protein-ligand interaction interfaces,
and even more, the potency of applying this method to the inverse docking study related to the
caspase inhibitors.

In this test benchmark, protein-ligand complex crystal structures were selected from the Protein
Data Bank (PDB) and categorized into three test sets according to the ligand structural features. The first
test set aimed to study the relative binding free energy changes of different ligands bound to the same
protein target. Given the same target and same binding site residue environment, it was important to
explore the capability of the MT method to differentiate the binding affinity against minor to major
changes concerning the ligand structures. Caspase-3, as one of the most important AD related target,
was selected as the protein target in this test benchmark as well for the relative binding affinity study.

16 caspase-3 inhibitors were selected from the Protein Data Bank and categorized into two
sub-groups based on their structural characteristics: inhibitors with no amino acid structures while
having MWs less than 500 Da were selected to the small molecule inhibitors sub-group; inhibitors
containing polypeptide backbones with natural or unnatural amino acids were classified to the
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peptidomimetic inhibitors sub-group. The results of applying the MT method to calculate the binding
free energy were listed in Tables 1 and 2 below:

Table 1. Comparison of the binding free energy calculated by Moveable Type to that obtained from
experiment for the caspase-3—small molecule inhibitor test set.

PDB ID Ligand Ligand Mass
(Da)

Experimental ∆G
(kcal/mol)

Calculated ∆G
(kcal/mol)

3h0e
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Table 2. Comparison of the binding free energy calculated by Moveable Type to that obtained from
experiment for the caspase-3—peptidomimetic molecule inhibitor test set.

PDB ID Ligand Ligand Mass
(Da)

Experimental ∆G
(kcal/mol)

Calculated ∆G
(kcal/mol)

1rhu 5,6,7 tricyclic peptidomimetic 638.69 −11.61 −10.88
1rhr Cinnamic acid methyl ester 651.14 −11.04 −10.79
1rhj Pryazinone 574.69 −10.96 −11.02

4jje ACE-1MH-ASP-B3L-HLX-1U8 (Unnatural
amino acid peptides) 838.94 −10.41 −10.90

2h5i Ac-DEVD-Cho 504.49 −12.11 −11.18
2h5j Ac-DMQD-Cho 535.57 −10.779 −11.06
4jr0 Ac-DEVD-CMK 552.96 −11.17 −11.26
3gjt Ac-IEPD (Diverse P4 Residues in Peptides) 498.13 −9.23 −9.44

The small molecule subgroup contains ligands with more spread-out binding affinities while
inhibitors in the peptidomimetic inhibitor subgroups are all tight binders. Binding affinity predictions
using the MT method were illustrated in Figure 2 to compare with the experimental data. Against the
small molecule subgroup, the MT method reproduced an RMSE as 1.242 kcal/mol, r2 correlation
coefficient as 0.501, and Kendall’s tau as 0.357. Regarding the peptidomimetic inhibitor subgroup,
the MT calculation results had an RMSE as 0.479 kcal/mol, r2 coefficient as 0.655, and Kendall’s tau as
0.444 compared to the experimental data. Calculation against the peptidomimetic inhibitor subgroup
were generally better than the small molecule subgroup. By merging the two subgroups, we also looked
at the MT calculation performance against the total caspase3-ligands test set. For all the 16 different
ligands bound to the caspase3 target, we generated an RMSE as 0.920 kcal/mol, r2 coefficient as 0.647,
and Kendall’s tau as 0.559.
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In the caspase-3-Inhibitor test set, the ligands’ MWs varied from 301.09 to 838.94 Da, with an
r2 correlation as 0.314 with the binding affinity distribution, compared to the MT calculation results
whose r2 coefficient as 0.647 regarding the experimental data. The MT method is not ligands’ MW
dependent, according to this validation. Regarding this test set, the absolute errors of all the MT
calculation results were lower than 2.5 kcal/mol for all the 16 complexes, 15 predictions had the absolute
errors lower than 2 kcal/mol; 13 predictions had the absolute errors lower than 1 kcal/mol. A generally
good binding affinity prediction against the caspase-3-Inhibitor test set were revealed by using the MT
free energy protocol.

Hereby we used one example, namely 1gfw, to illustrate the sampled significant ligand’s
conformations in the free state and the docked poses in bound state, and the calculated ensemble energies
in both free and bound state, to further demonstrate how the MT computational protocol worked.

1gfw contains a relatively small ligand with 5 heavy-heavy atom rotatable bonds. The MT-CS
conformational search program generated 134 distinguished conformers and calculated their
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conformational energies in the solution phase by employing the KMTSIM solvation model. The top
9 ligand conformers according to their energy ranking were shown in Figure 3, with their energy
distribution shown in Figure 4. The free-state ligand’s partition function, ZL was in-turn calculated
using Equation (6). ZL was a very big number as the sum of all the ligand’s conformational local
partition functions, which was shown as −RT log (ZL) in this work for better revealing its physical
meaning. The MT-CS calculation had −RT log (ZL) = −3.99 kcal/mol, representing the ensemble energy
of the free-state ligand’s conformations, an energy barrier that the binding process had to overcome.

The heatmap docking method generated 115 unique docked poses for this protein-ligand complex.
The best docked ligand pose had a structural RMSD as 2.08 Å compared to the ligand’s crystal structure.
We showed the top 9 docked complex poses in Figure 5, and the protein-ligand binding interaction
energies in Figure 6. ZPL was calculated using Equation (7) summing all the complexes’ configurational
local partition functions. −RT log (ZPL) = −14.33 kcal/mol was generated as the ensemble energy of
the complex considering all the 115 binding conformations in the solution phase. So that we derived
the final binding free energy using Equation (8). The ∆Gbinding was then calculated as −14.33 kcal/mol
− (−3.99 kcal/mol) = −10.34 kcal/mol.
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Given the success of the first test set, we were encouraged to expand our study on other caspase
targets. Polypeptide inhibitors were found with better selectivity and more effective compared to the
small molecular inhibitors against the caspase targets, which gradually drew researchers’ attention
through time. In this work, we studied the polypeptide inhibitors with similar structures binding to
different caspase targets, to explore the performance of the MT method reproducing the small relative
binding affinity differences among the test cases.

We collected the crystal structures and binding affinity data of 15 different caspase-polypeptide
inhibitor complexes from the Protein Data Bank. The MT protocol was applied to reproduce the
binding affinities and significant binding modes reproductions. The calculation results agreed quite
well with the experimental data and generated a RMSE as 0.733 kcal/mol, an r2 coefficient as 0.752,
and a Kendall’s tau as 0.651 (Table 3). In the first and second test benchmarks, we focused on different
ligands binding to the same caspase target. Within this test set, we particularly examined the cases
with the same inhibitor binding to different caspase targets.

Table 3. Binding free energy calculation results by using the MT protocol against the caspase-polypeptide
complexing test set.

PDB ID Caspase Target Peptide Ligand Experimental ∆G
(kcal/mol)

Calculated ∆G
(kcal/mol)

2h5j caspase-3 Ac-DMQD-Cho −10.78 −11.06
2ql5 caspase-7 Ac-DMQD-Cho −11.04 −12.72
2ql9 caspase-7 Ac-DQMD-Cho −12.30 −12.51
2qlf caspase-7 Ac-DNLD-Cho −12.06 −12.26
2qlb caspase-7 Ac-EMSD-Cho −8.03 −8.46
2ql7 caspase-7 Ac-IEPD-Cho −8.53 −8.16
1f1j caspase-7 Ac-DEVD-Cho −11.99 −10.74
2h5i caspase-3 Ac-DEVD-Cho −12.11 −11.18
4jr0 caspase-3 Ac-DEVD-CMK −11.17 −11.26
3r7b caspase-2 Ac-DVAD-Cho −8.38 −8.42
3r5j caspase-2 Ac-ADVAD-Cho −9.48 −9.72
3r6g caspase-2 Ac-VDVAD-Cho −10.36 −10.68
3gjt caspase-3 Ac-IEPD −9.23 −9.44
1f9e caspase-8 Phq-DEVD −11.86 −10.49
4jje caspase-3 Ac-1MH-ASP-B3L-HLX-1U8 −10.41 −10.90

Hereby we looked at two pairs of complex structures as representative examples, to examine how
the small structural differences at the binding interfaces affecting the binding affinities between the
caspase targets and polypeptide inhibitors.

First, we compared the calculation results between 2h5i and 1f1j, two complexes with the
same peptide ligand, Ac-DEVD-Cho, targeting different caspase receptors, caspase-3, and caspase-7.
The global minimum binding modes for both of the complexes provided us a clear view of their
protein-ligand interaction maps. By using the MT protocol, the global minimum binding mode for the
caspase-3-Ac-DEVD-Cho complex had a structural RMSD as 1.17 Å, and the global minimum binding
mode for the caspase-7-Ac-DEVD-Cho complex had a structural RMSD as 1.44 Å, both compared to
their corresponding crystal structures.

Both caspase-3 and caspase-7 targets had clip-shaped binding sites with similar volumes occupied
by the polypeptide inhibitor, Ac-DEVD-Cho, according to the highlighted area in Figures 7 and 8.
Both binding sites used short amino acid chains to form a series of backbone-backbone hydrogen
bonds stabilizing the polypeptide inhibitor, i.e., S205, R207 and S209 at the caspase-3 binding site
formed 4 hydrogen bonds with the Asp, Val, Glu backbone residues and the acetyl capping group of
the polypeptide inhibitor respectively; S231, R233, and Q276 forms 4 hydrogen bonds with the Asp,
Val, Glu, and Asp backbone residues as well. W206 and Y204 from caspase-3 applied bulky aromatic
side-chain structures to limit the flexibility of the polypeptide inhibitor by holding its Valine side chain
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in between. Similarly, caspase-7 used the indole side chain of W232 and the phenol side chain of Y230
to drag the ligand’s valine side chain by forming a C-H/π interaction. Several other residues at the
protein’s clip-shaped binding site also stabilize the target-inhibitor complex by forming hydrogen
bonds with the side chain and capping groups of Ac-DEVD-Cho. At the caspase-3 binding site, W214,
S249, and N208 formed hydrogen bonds with the carboxyl side chain of the acetyl capped aspartic
acid residue; R207 formed a hydrogen bond with the carboxyl group from the glutamic acid side
chain; R64, Q161 and R207 formed hydrogen bonds with the aldehyde capped aspartic acid side chain;
and G122 formed a hydrogen bond with the aldehyde capping group on the ligand. On the other
hand, at the caspase-7 binding site, S234, W240 and Q276 formed hydrogen bonds with the carboxyl
side chain of the inhibitor’s acetyl capped aspartic acid residue; N88 formed a hydrogen bond with
the carboxyl group from the glutamic acid side chain; R87, Q184 and R233 formed hydrogen bonds
with the aldehyde capped aspartic acid side chain; and R87 also formed a hydrogen bond with the
aldehyde capping group on the ligand.

With quite similar interaction maps, the MT protocol generated very close protein-ligand interaction
energies of these two global-minimum binding modes. The caspase-3-Ac-DEVD-Cho binding mode
had −163.92 kcal/mol for the protein-ligand interface contact energy and the caspase-7-Ac-DEVD-Cho
binding mode had −159.73 kcal/mol as its own. It also led to quite similar binding affinity predictions,
with −11.18 kcal/mol for 2h5i and −10.74 kcal/mol for 1f1j.
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Figure 7. The global minimum docked pose (cyan) together with the crystal ligand conformation (pink)
for Ac-DEVD-Cho bound to caspase-3. The orange surface on the left shows the area of interaction
interface at the caspase-3 binding site. The green ribbon on the bottom right shows the locations of the
residues having close contact (within 3 Å) with the global minimum docked pose. All residues having
close contact with the global minimum Ac-DEVD-Cho pose are shown in the picture on the top right.
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glutamine residue from Ac-DQMD-Cho formed two more hydrogen bonds with the amide group on 
the R233 residue from the caspase-7 binding site. On the other hand, the side chain of the serine from 
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Figure 8. The global minimum docked pose (cyan) together with the crystal ligand conformation (pink)
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interface at the caspase-7 binding site. The green ribbon on the bottom right shows the locations of the
residues having close contact (within 3 Å) with the global minimum docked pose. All residues having
close contact with the global minimum Ac-DEVD-Cho pose are shown in the picture on the top right.

Another comparison study focused on the two complexes with the PDBID 2ql9 and 2qlb, using the
same target protein: caspase-7, binding to two different polypeptide inhibitors: Ac-DQMD-Cho and
Ac-ESMD-Cho. Similarly, in both cases, the caspase target provided a short amino acid chain to seize
the peptide inhibitor by a series of hydrogen bonds. S231, W232, R233 and S234 formed four hydrogen
bonds with both of the peptide inhibitors’ backbone structures respectively. Also, the caspase-7 receptor
prepared Y230, W232 and F282 with their aromatic side chains to stabilize the two inhibitors with the
C-H/π interactions. Meanwhile, by introducing the R87, Q184 residues to form hydrogen bonds with
the carboxyl groups from the glutamic acid, and the aldehyde capping groups respectively, and by
using the Q276 residue to form a hydrogen bond with the acetyl capping groups, the caspase-7 receptor
further locked both of the peptide inhibitors at the binding site (Figure 9).

The main reason causing the interaction energy difference for the two inhibitors lay in that the
glutamine residue from Ac-DQMD-Cho formed two more hydrogen bonds with the amide group
on the R233 residue from the caspase-7 binding site. On the other hand, the side chain of the serine
from Ac-ESMD-Cho was too short to stretch out to form such hydrogen bonds. It resulted in the
~10 kcal/mol interaction energy difference between these two global minimum binding modes, with the
protein-ligand contact energy as −201.01 kcal/mol for 2ql9 and that as −190.78 kcal/mol for 2qlb. On the
other hand, the free-state ligand’s ensemble energy for Ac-DQMD-Cho was −12.217 kcal/mol and that
for Ac-ESMD-Cho was −9.18 kcal/mol. It showed that Ac-DQMD-Cho was slightly more favored
in the water-solvated free state than Ac-ESMD-Cho, also indicating that the more flexible structure
of Ac-DQMD-Cho restored larger configurational entropy compared to Ac-ESMD-Cho. However,
the slightly increased protein-ligand complexing barrier for Ac-DQMD-Cho did not stop it from
earning ~4 kcal/mol more preferred binding free energy compared to Ac-ESMD-Cho.
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in this work is the MT method validation and application regarding the caspase inhibition instead of 
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Figure 9. Illustrations of the caspase-7 binding site with Ac-DQMD-Cho (pictures on the left) and
Ac-ESMD-Cho (pictures on the right). The global minimum docked pose (cyan) are shown together
with the crystal ligand conformation (pink). Orange regions on both binding sites shows the difference
of the contacts areas. The green ribbons also indicate more residues from the caspase-7 binding site
having significant contact with Ac-DQMD-Cho compared to Ac-ESMD-Cho. Pictures on the bottom
show that the glutamine residue from Ac-DQMD-Cho forms extra hydrogen bonds to the R233 residue
at the caspase-7 binding site, while no hydrogen bond can be found at the same location for the
caspase-7-Ac-ESMD-Cho complex.

3. Materials and Methods

The MT method was first developed in our lab in 2013 [44]. Further refinement was later on
published in 2018 [54]. Since the detailed illustrations, thorough validations and calculation comparisons
with other top-notch methods can be found in our previous publications, and our focus in this work is
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the MT method validation and application regarding the caspase inhibition instead of a methodology
demonstration, only a brief introduction of this method was included in this paper.

The MT method simplifies the molecular energy state simulation and reduces the computational
complexity by separating the sampling of the molecular states into samplings of independent
atom pairwise contacts during molecular movements. In a molecular system, each atom possesses
independent degree of freedom for its movement, hence the free energy change of a molecule can be
simulated using the free energy changes of all the atoms in this molecular system. Given that all atoms
are allowed a small movement range, the MT method assumes that every pairwise work on atom A
from another atom i is independent from each other. Since every atom, including atom A and every
atom i, possesses its own moving degrees of freedom, all the atom A-i pairwise energy states can be
extrapolated using the EAi vector, where τ0

Ai represents the atom A-i relative coordinate from the input
structure, and ∆τ is their geometric deviation step unit with a sampling range (±n∆τ).

EAi =



EAi

(
τ0

Ai − n∆τ
)

...
EAi

(
τ0

Ai + ∆τ
)

EAi

(
τ0

Ai

)
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(
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)
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EAi

(
τ0

Ai − n∆τ
)


(4)

All energy states for atom A from the atom A-i relative coordinate change can be generated using
the reversible work on atom A from atom i during their movement. The atom pairwise reversible work
is calculated as the sum of the work on three orthogonal directions (x, y and z directions) with respect
to all the atom A-i pairwise energy changes. Equation (5) illustrated the calculation of the pairwise
reversible work regarding atom A along the x axis.

Ex
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(5)

where FAi represents the vector of forces regarding atom A-i with their pairwise distances ranged from
r1

Ai to rn
Ai; θAi is the collection of angles of inclination of all the i-A vector (Figure 10) regarding the x

axis. ∆r is the sampling step unit. FAi × cos(θAi)∆r generates all the atom A-i pairwise energy states.
Ex

A is the ensemble of work on atom A from all the surrounding atoms along the x axis.
In this work, we set the distance sampling range (r1

Ai to rn
Ai) as 1 Å, angle sampling range (θ1

Ai to θn
Ai)

as 30 degrees, and ∆r as 0.005 Å. The reversible work on atom A is calculated in all the three orthogonal
directions and summed as in Equation (6).

EA = Ex
A + Ey

A + Ez
A (6)
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The partition function (Z) for atom A can be generated as:

ZA = exp
(
−

1
RT

EA

)
(7)

For all atoms in the selected molecular system, the atomic ensemble energies are calculated
separately to ensure that the molecular local partition function can be numerically calculated for each
atomic movement in its given sampling range.

ZM = ZA ×ZB ×ZC × · · · (8)

By feeding the MT protocol with multiple molecular configurations, local molecular partition
functions ZM can be calculated using Equation (8) for estimation of the free energy. Regarding the
protein-ligand binding affinity study, conformations for both free and bound states are generated using
the Monte Carlo sampling protocols followed by local minimizations. The free state molecular system
includes unbound ligand and protein in the solution phase. ZL and ZP are their corresponding partition
functions which are necessary for the binding free energy calculation. On the other hand, the bound
state molecular system includes the protein ligand molecules in the complex form in the solution.
ZPL is the bound state partition function containing all the protein-ligand binding mode energy states.
In the present study we only performed the ligand conformational sampling and the protein-ligand
binding mode sampling by considering the flexibility of the ligand structures and the protein binding
site residues while keeping the rest of the protein geometry fixed. The protein conformational sampling
is skipped because (1) the massive degrees of freedom associated with inclusion of protein flexibility
will significantly increase the computational burden, while (2) having limited contributions to the
computational accuracies regarding relative binding affinities studies using identical or similar protein
target, due to that the ZPL values are very similar among all the test cases.

In-house programs developed in our group are introduced to perform such tasks. For the
free-state calculation, the MT-CS conformational search program [55] was introduced to generate
significant free-state molecular conformations with reference to the molecular flexibility. The MT-CS
conformational search program generated ligand conformers using a torsion library with pre-calculated
torsion energies using the GARF energy model [56], the solvation free energy was calculated using the
KMTISM model [57]. The MT protocol was then applied to each ligand conformer to estimate the local
partition function ZL. The ligand’s total partition function was then generated using all the MT-CS
sampled configurational ensemble energies in Equation (9).

ZL =

NL con f ormation∑
α

ZαL = Z1
L + Z2

L + · · ·+ ZN
L (9)
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The Heatmap docking program [44] was employed for the bound state configuration sampling
in this work. The bound-state protein-ligand complex ensemble energy is calculated using the same
protocol by summing all the local partition functions.

ZPL =

NPL con f ormation∑
α

ZαPL = Z1
PL + Z2

PL + · · ·+ ZN
PL (10)

The binding free energy change was then estimated by using the ratio of partition functions in
bound and free states. The whole calculation protocol is also illustrated in Figure 11.

∆Gbinding ≈ −RT log
(ZPL

ZL

)
(11)

In this work, we utilized the MT free energy protocol briefed above for the caspase-inhibitor
binding affinity study. All related codes and data can be obtained by contacting the authors for
validation and review purpose only.
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Both bound-state and free-state ensembles were generated using the programs indicated (Heatmap
docking and MT-CS). The final free energy change was then calculated using the ratio of partition
functions ZPL/ZL.
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4. Conclusions

We applied our newly developed Movable Type free energy protocol to the caspase-inhibitor
complexing study. Using a Monte Carlo sampling approach, the MT method generated the significant
binding modes and calculated the binding free energies using the ratio of the partition functions
referencing the bound state and free state protein-ligand systems. Both the large-scaling and carefully
set-up small test sets were introduced to provide a comprehensive study regarding the robustness and
sensitivity of the MT protocol against such complexing systems. Results revealed good agreements of
the calculation predictions with the experimental binding affinities and the global minimum binding
modes. Through detailed case studies, we further illustrated the MT protocol mechanism for the free
energy extrapolation using a Monte Carlo based sampling method. Moreover, we also took a close look
at the global minimum binding mode structures to study how minor changes in the interaction interfaces
affecting the binding affinities and how with different interaction interfaces achieved similar binding
affinities. Generally, this work provided us useful computational information for the binding affinity
prediction using the MT protocol. Future studies including computation-experiment combinatorial
research can be expected for the structural based caspase inhibitor design. We also plan to apply the
MT protocol to the caspase inhibitor-related inverse docking study.
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