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Abstract
Background: Histopathological image features offer a quantitative measurement of 
cellular morphology, and probably help for better diagnosis and prognosis in head and 
neck squamous cell carcinoma (HNSCC).
Methods: We first used histopathological image features and machine- learning al-
gorithms to predict molecular features of 212 HNSCC patients from The Cancer 
Genome Atlas (TCGA). Next, we divided TCGA- HNSCC cohort into training set 
(n = 149) and test set (n = 63), and obtained tissue microarrays as an external vali-
dation set (n = 126). We identified the gene expression profile correlated to image 
features by bioinformatics analysis.
Results: Histopathological image features combined with random forest may predict 
five somatic mutations, transcriptional subtypes, and methylation subtypes, with area 
under curve (AUC) ranging from 0.828 to 0.968. The prediction model based on 
image features could predict overall survival, with 5- year AUC of 0.831, 0.782, and 
0.751 in training, test, and validation sets. We next established an integrative prognos-
tic model of image features and gene expressions, which obtained better performance 
in training set (5- year AUC = 0.860) and test set (5- year AUC = 0.826). According 
to histopathological transcriptomics risk score (HTRS) generated by the model, high- 
risk and low- risk patients had different survival in training set (HR = 4.09, p < 0.001) 
and test set (HR=3.08, p = 0.019). Multivariate analysis suggested that HTRS was an 
independent predictor in training set (HR = 5.17, p < 0.001). The nomogram com-
bining HTRS and clinical factors had higher net benefit than conventional clinical 
evaluation.
Conclusions: Histopathological image features provided a promising approach to 
predict mutations, molecular subtypes, and prognosis of HNSCC. The integration 
of image features and gene expression data had potential for improving prognosis 
prediction in HNSCC.
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1 |  INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is a com-
mon heterogeneous cancer of head and neck region, which has 
over 500,000 new cases every year worldwide.1,2 Approximately 
40% of patients are diagnosed with early- stage cancer and usu-
ally receive either surgery or radiotherapy, while the majority of 
patients with locally advanced lesion need multimodality treat-
ments.2 These intensive therapies treatments often cause severe 
acute toxicity (e.g., mucositis and dysphagia), and late organ 
dysfunction, such as sensorineural deafness, dehisce difficulty, 
and xerostomia.3 Despite the advances in therapeutic techniques, 
the risk of recurrences or metastatic tumors remains high, lead-
ing to a poor prognosis with median survival of 10 months.4 In 
the last decade, immunotherapies and targeted therapies have 
been applied to improve survival for HNSCC patients.5 With 
the trend of precision medicine modality, it is crucial to identify 
novel biomarkers that contribute to risk stratification and treat-
ment strategy selection for cancer patients.

The principal risk factors of HNSCC contain exposure to 
tobacco and alcohol, and human papillomavirus (HPV) infec-
tion.6 The HPV status can also guide the de- intensification of 
therapy in oropharyngeal SCC, because HPV- positive patients 
showed better therapeutic response and prognosis while lower 
risk of relapse and secondary tumors.7,8 Except HPV status, 
other molecular characteristics of HNSCC have not been con-
firmed. However, many studies about genome sequencing pro-
filing have provided insight into the molecular mechanism and 
features of HNSCC. Mutations and pathways regarding the 
cell cycle and survival (TP53, CDKN2A, PIK3CA), Wnt sig-
naling (FAT1, AJUBA), squamous differentiation (NOTCH1, 
ZNF750), and chromatin remodeling (NSD1, MLL2) have 
been identified.9,10 In addition, The Cancer Genome Atlas 
(TCGA) Network reported several gene expression classes 
(atypical, mesenchymal, basal, and classical) and methylation 
subtypes (normal- like, hypomethylated, hypermethylated, and 
CpG island hypermethylated) of HNSCC.9 These molecular 
properties have potential in creating opportunities to explore 
novel biomarkers for diagnosis and prognosis, and assist indi-
vidualized therapy for patients.11 However, no routine genetic 
tests probably due to expensive cost affect the clinical applica-
tion and spreading of these genetic and molecular advances. 
Therefore, there is a need for effective tools to classify the mo-
lecular features of HNSCC.

The histopathological examination plays an important role 
in diagnosis, staging and prognosis of cancer patients. With 
the advent of computer- aided images analysis systems, a large 
amount of histopathological image feature was extracted from 

digital whole- slide images, which reflected various char-
acteristics of microscopic morphology of tumor cells and 
microenvironment.12 Previous researches have showed that 
histopathological image features had great promise in out-
come prediction,12– 14 grading and classification of tumors.15,16 
Furthermore, digital pathology can also serve as a bridge to 
connect morphological features and omics profiles (genomics, 
transcriptomics, and proteomics) for better tumor characteriza-
tion and understanding of underlying biological processes.17 
Significant correlation between gene mutation, expression, and 
histopathological image features have been observed in glio-
blastoma,16 lung cancer,18 and liver cancer.19 In addition, the 
histopathology- omics fusion has been previously attempted in 
several cancers, and achieved a more accurate stratification of 
prognosis in patients.18– 21 Therefore, analyzing the relationship 
and integration between histopathological and genomic features 
is an important topic in tumor biology and survival prediction.

Here we focused on the histopathological image analysis 
and its association with genomics and transcriptomics profiles, 
which have not been well explored in HNSCC samples before. 
We first demonstrated the power of histopathological image 
features in classifying common somatic mutations, transcrip-
tional subtypes, and methylation subtypes of HNSCC. Then 
we identified the prognostic image features, and assessed the 
potential correlation between image features, and gene ex-
pression patterns by bioinformatics analysis. Subsequently, 
the integration of histopathological features and transcriptom-
ics data was performed to improve the accuracy of prognosis 
evaluation for patients with HNSCC.

2 |  MATERIALS AND METHODS

2.1 | Data source

The overall framework was summarized in Figure 1. The de-
tails of each section were described in following parts. The 212 
HNSCC patients with clinical characteristics, somatic mutation, 
and mRNA sequencing data were acquired from The Cancer 
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/). The 
TCGA cohort was initially diagnosed from 1993 to 2013, and 
completed follow- up from 2010 to 2014. We also downloaded 
the matched H&E- stained histopathological images (20× or 
40× magnification) from The Cancer Imaging Archive (TCIA) 
(http://www.cance rimag ingar chive.net/). In addition, tissue mi-
croarrays (TMAs) of 126 HNSCC patients were obtained from 
Shanghai Outdo Biotech Company (Shanghai, China) and used 
for external validation. TMA- HNSCC patients were diagnosed 
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from January 2010 to September 2011, and followed up until 
March 2017 or death. The ethical approval of TMA cohort was 
obtained from the National Human Genetic Resources Sharing 
Service Platform (2005DKA21300), and all patients signed the 
informed consent. TCGA and TCIA databases were publicly 
available for research, thus ethical approval was not required.

2.2 | Histopathological image features

The size of whole- slide image made it difficult to recognize fea-
tures, thus we first used the Openslide Python library 22 to crop 
395 whole- slide images into 342,086 sub- images. We divided 

the 40×images into sub- images of 1000 × 1000 pixels, and di-
vided the 20× images into sub- images of 500 × 500 pixels to get 
a same perspective. Then we re- sized the 500 × 500 pixel sub- 
images to 1000 × 1000 pixels for further analysis. According 
to previous studies,19,23 we excluded the sub- images with less 
information, which had more than 50% white background. To 
decrease the computational cost, 20 sub- images were randomly 
selected from the remaining images.14,19 An eligible sub- image 
contained about 500 cells, and each TMA sample contained 
about 1500 cells to extract the objective cellular attributes.

Image feature extraction was performed on CellProfiler (https://
cellp rofil er.org/).24 We first applied the “UnmixColors” module to 
separate the hematoxylin and eosin staining of images, then used 

F I G U R E  1  The workflow of data 
analysis and integration. First, we performed 
the histopathological image processing 
and feature extraction. Secondly, three 
classifiers were constructed by feature 
selection and 5- fold cross- validation, and 
applied to classify the somatic mutations, 
transcriptional, and methylation subtypes. 
Subsequently, we selected the prognostic 
image features, used bioinformatics analyses 
to identify correlated gene modules, and 
established an integrative prognostic model 
to improve prognosis prediction

https://cellprofiler.org/
https://cellprofiler.org/
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image processing modules to convert color images to grayscale and 
correct the illumination. The next step was to use object identification 
modules to identify the nuclei and cell bodies for feature measurement. 
As previous reported,13 we extracted 10 aspects of image features by 
built- in modules of CellProfiler, including Correlation, Image Area 
Occupied, Image Granularity, Image Intensity, Image Quality, Object 
Intensity, Object Neighbors, Object Radial Distribution, Object Size 
Shape, and Texture (Table S1). Unlike general pathological char-
acteristics such as atypia and mitotic activity, these image features 
cannot be examined by microscopy, but are able to characterize the 
microscopic size, shape, and distribution of pixel intensity. For ex-
ample, “Image Area Occupied” estimates the total area of an image, 
while “Object Size Shape” measures several cell- level features, such 
as perimeter, eccentricity, and Zernike shape features. “Granularity” 
refers to size measurement of image texture by using enlarged struc-
ture elements to match the texture. After selection, 593 image features 
were eligible for analyses, and the average values of 20 sub- images 
were calculated for each slide. When the patients had multiple slides, 
the average values of multiple slides were further calculated.

2.3 | Classification of somatic mutations and 
molecular subtypes

In this part, we aimed to estimate the ability of histopathological 
image features in classifying mutations and subtypes of HNSCC. 
Five common somatic mutations (TP53, CDKN2A, NOTCH1, 
NSD1, and PIK3CA), transcriptional subtypes (atypical, basal, 
classical, and mesenchymal) and methylation subtypes (normal- 
like, hypomethylated, hypermethylated, and CpG island hyper-
methylated) were involved. Due to the small number of samples 
with molecular feature information, a fivefold cross- validation 
was conducted to obtain a stable model. Patients were randomly 
divided into 5 parts, 4/5 of which were regarded as the training 
set and 1/5 as the validation set. We calculated the average area 
under curve (AUC) of receiver operating characteristic curve 
(ROC) across five iterations in validation set. In each iteration, 
we first used the least absolute shrinkage and selection opera-
tor (LASSO)- logistic regression for features reduction and se-
lection.25 Next, three machine- learning algorithms, the logistic 
regression (LR),26 random forest (RF)27 and support vector ma-
chine (SVM) 28 were trained to predict these variables (mutations 
and subtypes) using selected image features. The RF with 1000 
decision trees was performed by R package “randomForest”.

2.4 | Features selection and 
enrichment analysis

Using createDataPartition function of R package “caret”, the 
TCGA patients were randomly separated into training set 
and test set (7:3 ratio) based on the mortality. In training set, 
we utilized the LASSO- Cox regression and SVM- recursive 

feature elimination (SVM- RFE) algorithm29 to select features 
subset with higher prediction accuracy for overall survival 
(OS), and avoid overfitting when the number of features was 
large. The overlapping features in the results were further in-
cluded in subsequent analyses. Gene set enrichment analysis 
(GSEA) was applied to find enriched Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways in high- value group 
or low- value group of image features.30 The p < 0.05 and false 
discovery rate (FDR) q<0.25 was statistically significant.31

2.5 | Gene co- expression network analysis

To better investigate the underlying biological mechanisms 
of histopathological image features, we performed weighted 
gene co- expression network analysis (WGCNA) to find gene 
expression modules of training set.32 Briefly, we first used 
Pearson correlation analysis to estimate the relation between 
each gene pair. The adjacency matrix was calculated by 
weighted correlation between genes. We decreased the simi-
larity of co- expression to a power of β=8 (scale free R2=0.95) 
to ensure a scale- free network. Then the topological overlap 
matrix (TOM) was transformed from adjacency matrix to 
reduce false correlation, which was utilized in hierarchical 
clustering analysis to identify gene modules. Modules were 
defined as clusters of highly absolute or positively correlated 
genes with high topological overlap. The module eigengene 
(ME) was the first principal component, which was the rep-
resentative of module to explain the maximum variation of 
expression level. We estimated the correlation between MEs 
and image features to identify the key module. Finally, we 
conducted Gene Ontology (GO) enrichment analysis of key 
module via Metascape (http://metas cape.org).

2.6 | Construction of integrative 
prognostic model

Based on selected histopathological image features, we used 
RF algorithm and fivefold cross- validation to build a prediction 
model for OS in training set, and further estimated it robust-
ness in test set and external validation set. The analyses were 
performed using R package “randomForestSRC.” Then we de-
fined the risk score assessed by this model as histopathological 
risk score (HRS). Patients were regarded as high- risk and low- 
risk groups by median HRS. Survival outcomes were showed 
in Kaplan– Meier survival curve and compared by log- rank test. 
The hazard ratio (HR) and 95% confidence interval (CI) were 
calculated by Cox regression analysis.

According to the key module that most related to image 
features in WGCNA, we combined image features and ex-
pressed genes of module to establish an integrative prognostic 
model by RF algorithm. Similarly, the risk score calculated 

http://metascape.org
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by this model was histopathological transcriptomics risk 
score (HTRS). Predictive performance of model was esti-
mated in training and test sets. Furthermore, we conducted 
multivariate Cox analysis in training set to explore whether 
HTRS was independent of other prognostic factors, and for-
mulated a nomogram. The calibration curves were applied 
to evaluate the goodness- of- fit between nomogram- predicted 
OS and observed OS. Finally, the decision curve analysis was 
performed to compare the net benefits of models.33 Statistical 
analyses were conducted with R version 3.6.1.

3 |  RESULTS

3.1 | Classification ability of image features 
on tumor mutations and subtypes

This study included 212 patients from TCGA cohort and 
126 patients from TMA cohort (Table  1). There were sig-
nificant differences in age, tumor site, and TNM stage be-
tween the two cohorts. TCGA- HNSCC patients had older 
average age of onset, and higher rates of oral tumors and 

Characteristic

TCGA- HNSCC

p 
valuea 

TMA- 
HNSCC

p 
valueb 

Training set 
(%)

Test set 
(%)

Validation 
set (%)

Sample size 149 63 – 126 – 

Age: mean±SD 62.1 ± 12.8 61.9 ± 9.3 0.921 48.0 ± 11.0 <0.001

Gender

Male 105 (70.5) 46 (73.0) 98 (77.8)

Female 44 (29.5) 17 (27.0) 0.708 28 (22.2) 0.186

Tumor Site

Larynx 38 (25.5) 18 (28.5) 16 (12.7)

Oral cavity 93 (62.4) 38 (60.3) 23 (18.3)

Pharynx 18 (12.1) 7 (11.1) 0.894 87 (69.0) <0.001

TNM stage

- 8 (5.4) 3 (4.8) 15 (11.9)

Ⅱ 26 (17.4) 9 (14.3) 54 (42.9)

Ⅲ 24 (16.1) 9 (14.3) 37 (29.4)

Ⅳ 91 (61.0) 42 (66.7) 0.893 20 (15.9) <0.001

Tumor grade

G1 16 (10.7) 5 (7.9) NA

G2 99 (66.4) 43 (68.3)

G3 34 (22.8) 15 (23.8) 0.822 - 

Transcriptional subtype

Basal 45 (30.2) 15 (23.8) NA

Mesenchymal 36 (24.2) 16 (25.4)

Atypical 32 (21.5) 13 (20.6)

Classical 21 (14.1) 11 (17.5)

NA 15 (10.1) 8 (12.7) 0.803 - 

Methylation subtype

Normal- like 39 (26.1) 17 (27.0) NA

Hypo- methylated 13 (8.7) 11 (17.5)

Hyper- methylated 56 (37.6) 19 (30.2)

CpG island
hyper- methylated

26 (17.4) 8 (12.7)

NA 15 (10.1) 8 (12.7) 0.228 - 
ap value for comparison between training set and test set;
bp value for comparison between TCGA and TMA cohorts.

T A B L E  1  Clinical and molecular 
characteristics of patients
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advanced stage (p < 0.001). The TP53, CDKN2A, NOTCH1, 
NSD1, and PIK3CA were most common somatic mutations 
in HNSCC.9– 11 The transcriptional subtypes of HNSCC were 
classified based on gene expression profile, and related to 
different gene alterations.9 Furthermore, the methylation 
subtypes were strongly associated with mutations and tran-
scriptional subtypes.9 Therefore, subtype classification may 
be an important step toward the biological processes research 
for HNSCC.

To represent the clinical value of histopathologi-
cal image features in HNSCC, we combined image fea-
tures with three machine- learning approaches (LR, RF, 
and SVM) to classify these mutations and subtypes in 
TCGA- HNSCC patients (Table  2). Compared to LR 
and SVM, the RF achieved higher accuracy for predict-
ing TP53 (AUC  =  0.930), CDKN2A (AUC  =  0.913), 
NOTCH1 (AUC = 0.903), NSD1 (AUC = 0.828), PIK3CA 
(AUC  =  0.871), basal (AUC  =  0.954), mesenchy-
mal (AUC  =  0.930), atypical (AUC  =  0.905), classical 
(AUC = 0.864), normal- like (AUC = 0.942), hypomethyl-
ated (AUC = 0.881), hypermethylated (AUC = 0.968), and 
CpG island hypermethylated (AUC  =  0.911). These re-
sults indicated that histopathological image features could 
classify these somatic mutations and molecular subtypes 
through the random forest algorithm.

3.2 | Prognostic image features and enriched 
gene pathways

The TCGA- HNSCC cohort was divided into training set 
(n = 149) and test set (n = 63), which had no significant 
difference in patient's characteristics (Table 1). The prog-
nostic value of 593 histopathological image features was 
estimated by LASSO and SVM- RFE algorithms to iden-
tify which features were related to OS of training set. 
LASSO (L1 regularization) can shrink the regression co-
efficients of irrelevant features to zero, and thus select a 
small subset of features with non- zero coefficients. The 
positive LASSO coefficient indicated that the higher fea-
ture was associated with poor prognosis, while the nega-
tive coefficient was in reverse. SVM- RFE algorithm can 
rank each feature according to the weight magnitude and 
remove the lowest ranked feature, then use the remaining 
features for the next iteration, and finally determine the 
optimal number of features. We calculated the mean rank-
ings of features depending on fivefold cross- validation. 
The results of LASSO showed 11 survival associated 
features, and SVM- RFE selected 20 features with the 
highest rankings, which both contained three image fea-
tures, including Mean_Cells_AreaShape_Zernike_8_0, 
Median_Cells_Intensity_MassDisplacement, and StDev_
Cells_Granularity_12 (Figure 2). The LASSO coefficients 
meant that higher Mean_Cells_AreaShape_Zernike_8_0 
was associated with better survival, while the other two 
were unfavorable prognostic factors. The SVM- RFE rank-
ings revealed that Mean_Cells_AreaShape_Zernike_8_0 
was more relevant to OS than the other two features 
(Figure 2).

Afterward, in the training set, we performed GSEA to 
assess the differences in enriched KEGG pathways between 
low- value and high- value groups (Figure 3). Most of enriched 
pathways were common dysregulated pathways in cancer, 
such as the vascular endothelial growth factor (VEGF), oxi-
dative phosphorylation, proteasome, and spliceosome. Some 
others were related to immunity such as the B- cell recep-
tor (BCR), T- cell receptor (TCR), and Toll- like receptor. 
Moreover, we found that majority of the tumor development 
related pathways were enriched in the poor prognosis group, 
while most of the immune related pathways were enriched in 
the favorable prognosis group.

3.3 | Gene modules correlated with 
prognostic image features

The WGCNA was utilized to reveal co- expression networks 
and identify gene modules highly related to image features 
in the training set. The top 25% genes (4939 genes) with the 
largest variance were included. Seven distinct co- expression 

T A B L E  2  Area under ROC curve of machine- learning methods in 
predicting mutations and subtypes

Characteristic
Logistic 
regression

Random
forest

Support 
vector 
machine

Somatic mutation

TP53 0.715 0.930 0.885

CDKN2A 0.689 0.913 0.816

NOTCH1 0.697 0.903 0.825

NSD1 0.723 0.828 0.815

PIK3CA 0.726 0.871 0.827

Transcriptional subtype

Basal 0.726 0.954 0.845

Mesenchymal 0.783 0.930 0.864

Atypical 0.723 0.905 0.862

Classical 0.592 0.864 0.733

Methylation subtype

Normal- like 0.680 0.942 0.835

Hypo- methylated 0.781 0.881 0.814

Hyper- methylated 0.740 0.968 0.859

CpG island hyper- 
methylated

0.732 0.911 0.844
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modules were identified through the hierarchical clustering 
dendrogram. Next, we applied the correlation analysis to 
assess the relationship between the seven MEs and image 
traits (Figure 4A). The blue module (256 genes) had strong-
est correlation with Mean_Cells_AreaShape_Zernike_8_0 
(|r|  =  0.45), Median_Cells_Intensity_MassDisplacement 
(|r|  =  0.34), and StDev_Cells_Granularity_12 (|r|  =  0.38). 
Therefore, the blue module was considered for subsequent 
analyses, which might provide more accurate indication for 
histopathological image features.

Then we performed the functional annotation in GO en-
richment analysis to explain the biological mechanisms re-
lated to blue module. The blue module genes were mainly 
enriched in categories of lymphocyte activation, adaptive 
immune response, leukocyte activation involved in immune 
response, and regulation of cytokine production (Figure 4B). 
It indicated that these genes were potentially associated with 
immune function, the tumor immunology has been a research 
focus in oncology and played an important role in occurrence 
and progression of tumors.

3.4 | Prognostic value of histopathological 
transcriptomics risk score

We first established the histopathological model by the above 
three image features in the training set, and further assessed the 
stability of model in the test set and external validation set. The 
AUC for 5- year OS was 0.831 in training set, 0.782 in test set, 
and 0.751 in external validation set (Figure 5A– C). Moreover, 
we obtained a histopathological risk score (HRS) from the 
model, and divided patients into high- risk and low- risk groups 
according to the median HRS. The log- rank tests and Cox anal-
yses indicated that high- HRS patients had a significantly higher 
risk of death in the training set (HR = 3.41, 95%CI: 2.09– 6.24, 
p < 0.001; Figure 5D), test set (HR = 2.69, 95%CI: 1.27– 6.38, 
p = 0.011; Figure 5E) and external validation set (HR = 2.59, 
95%CI: 1.04– 5.01, p = 0.039; Figure 5F).

In addition, we built an integrative prognostic model with 
three image features and gene expression data of blue module. 
The integrative model achieved higher AUCs for predicting 1- 
year, 3- year, and 5- year OS than the histopathological model 

F I G U R E  2  Selection of histopathological image features with significant prognostic value in the training set. (A) The least absolute shrinkage 
and selection operator (LASSO) identified 11 survival- associated features. Coefi, coefficient. (B) The support vector machine- recursive feature 
elimination (SVM- RFE) selected 20 prognostic features (listed by ranking). Three image features were significant in two selection methods
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in both training and test sets (Figure 6A,B). We called the risk 
score estimated by the integrative model as histopathological 
transcriptomics risk score (HTRS). The differences of sur-
vival outcomes between high- HTRS and low- HTRS groups 
were significant in the training set (HR = 4.09, 95%CI: 2.34– 
7.15, p < 0.001; Figure 6C) and test set (HR = 3.08, 95%CI: 
1.20– 7.89, p = 0.019; Figure 6D).

3.5 | Nomogram 
establishment and evaluation

We applied univariate Cox analysis to show the prognostic 
value of clinical and molecular features in patients of training 

set (Table 3). The age at initial diagnosis (p = 0.027), TNM 
stage (Ⅰ vs. Ⅳ, p = 0.011) and HTRS (p < 0.001) were sig-
nificantly associated with OS. The histological grade (G2) 
and transcriptional subtype (classical) might predict a worse 
prognosis, but the significance was weak. Furthermore, the 
prognostic features (p < 0.10) were enrolled in multivariate 
Cox analysis, which suggested that HTRS was an independ-
ent prognostic biomarker of OS (HR = 5.17, 95%CI: 2.82– 
9.41, p < 0.001).

Based on multivariate Cox analysis, we generated 
a nomogram by combining HTRS and other prognostic 
features to predict 3  year and 5  year OS for patients in 
training set (Figure 7A). The Harrell's concordance index 
(C- index) of nomogram was 0.768 (95%CI: 0.715– 0.820). 

F I G U R E  3  The enriched signaling pathways analyzed by gene set enrichment analysis in the training set. (A,B) Three representative pathways 
in groups with higher or lower Mean_Cells_AreaShape_Zernike_8_0. (C,D) Three representative pathways enriched in patients with high- value or 
low- value Median_Cells_Intensity_MassDisplacement. (E,F) Three representative pathways in high-  or low- StDev_Cells_Granularity_12 groups. 
ES, enrichment score; NES, normalized enrichment score; FDR, false discovery rate
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Moreover, the calibration curves reflected the good pre-
dictive performance of nomogram compared to an ideal 
model (Figure  7B). In the decision curves, the clinical 
model integrated age, stage, grade, and transcriptional 

subtypes. The HTRS showed a better net benefit than 
clinical model, and the nomogram achieved the highest 
net benefit across the most of threshold probability ranges 
(Figure 7C).

F I G U R E  4  Identification and enrichment analysis of correlated gene modules in the training set. (A) Relationships between module 
eigengenes and histopathological image features. The blue module was most significant. (B) Enrichment network of blue module genes by 
Metascape. A circle node represented a term, its size depended on the number of input genes, and node color reflected the cluster identity. The most 
significantly enriched term was used to describe each cluster (see legend on left)
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4 |  DISCUSSION

The “sub- visual” histopathological image features that hardly 
be visually discriminated by pathologists probably offer a more 
quantitative measurement of cellular morphology, and help for 
better modeling of diagnosis and prognosis.17 Recent studies 
showed substantial interest in investigating the relationship be-
tween histopathology and omics data, and incorporating them 
for improved prediction of cancer development and patients’ 
outcomes.18– 21 In this study, we first used various machine- 
learning classifiers to distinguish tumor mutations and subtypes 
by histopathological image features of HNSCC. Then we selected 
image features with significant prognostic value to form a histo-
pathological prognostic model, and further identified correlated 

gene co- expression module to establish an integrative prognostic 
model combining these two kinds of data. The results showed 
that the integrative model achieved outstanding performance of 
OS prediction. The histopathological transcriptomics risk score 
(HTRS) generated by this model was an independent prognostic 
factor. Additionally, the benefit of nomogram including HTRS 
significantly outperformed that of clinical model, which may fa-
cilitate the personalizing cancer management.

Genomics characterization at the transcriptional level 
divided HNSCC into four molecular categories with dis-
tinct patterns of gene dysregulation and biologic basis.9,34,35 
Subtype 1 (basal) cancers were similar to basal subtype of 
lung SCC, which had high expression of COL17A1, TGFA, 
EGFR, and TP63.34 Subtype 2 (mesenchymal) showed 

F I G U R E  6  Prognostic model integrating histopathological image features with blue module genes. (A, B) The area under receiver operating 
characteristic curve (AUC) of the model for predicting overall survival in training and test sets. (C, D) Kaplan- Meier survival curves of high- risk 
and low- risk groups in training and test sets
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over- expression of genes associated with the epithelial- to- 
mesenchymal transition and elevated mutation of innate 
immunity genes.9,34 Subtype 3 (atypical) tumors lacked 
EGFR amplification or 9p deletion, but displayed high pos-
itive rate of HPV and expression of CDKN2A, LIG1, and 

RPA2.9,35 Finally, subtype 4 (classical) was characterized 
by heaviest smoking history and over- expressed oxidative 
stress genes related to tobacco exposure (e.g., NFE2L2 
and KEAP1).9,34 Differences of survival results were also 
found, basal subtype patients had significantly shorter 

T A B L E  3  Univariate and multivariate Cox analyses in the training set

Variable Category

Univariate analysis Multivariate analysis

HR (95%CI) p value HR (95%CI) p value

Age Continuous 1.03 (1.00– 1.04) 0.027 1.03 (1.01– 1.05) 0.006

Gender Female vs. Male 0.89 (0.54– 1.44) 0.625 – – 

Tumor site Oral cavity vs. Larynx 1.13 (0.67– 1.90) 0.660 – – 

Oral cavity vs. Pharynx 1.19 (0.56– 2.55) 0.649 – – 

TNM stage Ⅰ vs. Ⅱ 2.12 (0.75– 6.01) 0.158 2.05 (0.72– 5.82) 0.178

Ⅰ vs. Ⅲ 2.39 (0.85– 6.75) 0.099 2.30 (0.82– 6.59) 0.116

Ⅰ vs. Ⅳ 3.60 (1.33– 9.72) 0.011 2.38 (1.15– 5.13) 0.026

Tumor grade G1 vs. G2 1.79 (0.93– 3.44) 0.082 2.23 (0.99– 5.00) 0.052

G1 vs. G3 1.34 (0.65– 2.77) 0.434 1.69 (0.71– 4.06) 0.239

Transcriptional subtype Classical vs. Atypical 0.55 (0.29– 1.02) 0.058 1.05 (0.54– 2.01) 0.896

Classical vs. Basal 0.61 (0.34– 1.08) 0.087 1.07 (0.58– 1.98) 0.832

Classical vs. Mesenchymal 0.67 (0.38– 1.18) 0.162 1.30 (0.72– 2.36) 0.391

HTRS Low- risk vs. High- risk 4.09 (2.34– 7.15) <0.001 5.17 (2.82– 9.41) <0.001

Abbreviations: CI, confidence interval; HR, hazard ratio; HTRS, histopathological transcriptomics risk score.

F I G U R E  7  Nomogram construction and evaluation in the training set. (A) Nomogram for predicting the 3- year and 5- year overall survival 
(OS). (B) Calibration curves indicated the agreement between nomogram predicted and observed OS. (C) Decision curve analyses. The gray 
horizontal line represented net benefit of no intervention, while gray oblique line represented net benefit of intervening all patients. Compared 
with all- treat scheme, non- treat scheme, and clinical model, the nomogram and histopathological transcriptomics risk score (HTRS) had higher net 
benefit across the range of >10% in threshold probability
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recurrence- free survival (RFS).35 Another study suggested 
no association between RFS and transcriptional subtypes, 
while for HPV− patients, atypical cancers showed a higher 
risk of recurrence.34 The study found the worst OS outcome 
in classical subtype of laryngeal SCC, and higher risk of 
lymph node metastasis in mesenchymal subtype of oral 
SCC.36 In our study, the classical subtype revealed a trend 
of poorer OS, however, the p values were not enough sta-
tistically significant. The difference of results was probably 
due to the heterogeneity of tumor site and sample size in 
these studies. Therefore, the correlation between clinical 
outcomes and transcriptional subtypes still needs further 
validation in larger cohorts.

Aberrant DNA hypermethylation was considered to be 
involved in carcinogenesis and progression, such as sup-
pressing the transcription of tumor suppressor genes and 
causing chromosomal instability.37 The hypomethylated 
subtype of HNSCC was associated with NSD1 mutation, 
wild type NOTCH1, atypical, and classical subtypes.9 
Conversely, hypermethylation and CpG island hypermeth-
ylation were more common in oral site tumors, basal, and 
mesenchymal subtypes.9 Although these gene expression 
and methylation signatures are not ready for clinical use, 
they provide new perspectives of HNSCC and has potential 
in final clinical application.38 In the present study, the his-
topathological image features showed a good capability to 
classify these subtypes and mutations. Compared with the 
previous study using CT radiomics features and LASSO to 
predict transcriptional subtypes and mutations,39 we com-
bined LASSO with RF or SVM algorithms to build a more 
effective prediction model based on histopathological im-
ages. Therefore, histopathological image features analysis 
might serve as a convenient and low- cost alternative strategy 
to predict the molecular subtypes and common mutations in 
HNSCC patients.

Afterward, we focused on the prognostic role of his-
topathological image features. Different from previous 
studies,13,14,20 we combined LASSO and SVM to obtain a 
more precise estimation. The Zernike, Displacement, and 
Granularity features were most significant, which indicated 
that properties of cellular morphology, intensity, and texture 
were related to survival results. Yu et al.13 also identified 
the prognostic value of Zernike features in lung cancer, 
which was consistent with our observation. The histopatho-
logical model based on three image features retained it ro-
bustness of survival prediction in the training set and test 
set. However, the tissue composition and proportion of the 
TMA cohort were not exactly the same with the TCGA co-
hort, which could lead to a worse performance in the ex-
ternal validation set. Furthermore, in the training and test 
sets, the integrative model of image features and transcrip-
tomics data improved prediction accuracy than histopatho-
logical model and clinical factors. Our results suggested 

that the histopathology- transcriptomics fusion may provide 
additional prognostic ability for patients whose survival 
outcomes were not well predicted by conventional clinical 
predictors. The nomogram showed a paradigm of prognos-
tic strategy that incorporated the HTRS, transcriptional sub-
types, and clinical variables. High- risk patients may benefit 
from more aggressive treatments and strict follow- up, while 
low- risk patients should avoid excessive therapies.

For functional annotation, KEGG and GO enrichment 
analyses were performed to reveal the underlying bio-
logical processes. We found that they were enriched in 
immune function, such as BCR signaling pathway, TCR 
signaling pathway, lymphocyte activation, and adap-
tive immune response. The T cell- mediated immune re-
sponse has been widely researched in solid tumors, and 
applied in immunotherapies such as checkpoint inhib-
itors.40 The BCR signaling mainly influences the sur-
vival and growth of B- cell leukemia or lymphoma cells, 
while the tumor- infiltrating B cells were reported to pro-
mote tumor growth in SCC and pancreatic cancer.41,42 
Previous studies also showed the association between 
immune related pathways and morphological features of 
lymphocytes and tumor cells.43,44 Moreover, we noticed 
the enrichment of VEGF signaling pathway in Zernike 
shape and Granularity features. This pathway is a key 
regulator of vasculogenesis and angiogenesis, which is 
aberrant in most tumors and correlates with vascular 
density, cell proliferation, invasiveness, metastases, and 
prognosis.45 These results may contribute to understand 
the molecular mechanisms regarding the morphological 
features of tumor cells.

Several limitations of our study should be noticed. First, 
this study had small sample size, because patients with 
matched histopathological images and genetic data were lim-
ited in TCGA database. The HPV status and treatment in-
formation were not available in most patients, which may be 
confounding factors affecting prognosis. Second, we exter-
nally validated the histopathological prediction model in the 
TMA cohort. However, such external validation was not con-
ducted for the histopathological transcriptomics model due to 
the lack of transcriptomics data. Moreover, the representative 
tumor regions of TMA were analyzed in this study, while 
pathologists routinely utilized depth information of multiple 
slides and microscopic views. Therefore, the performance of 
prediction model in clinical application remains to be inves-
tigated. In this study, we randomly selected sub- images for 
analysis. Using more whole- slide images and more cells can 
further reduce potential bias and improve the rigorousness of 
research. The image features were calculated from the aver-
age value of sub- images in our study, and the future research 
could more strictly determine the feature values. Finally, 
although the correlation analysis showed related biological 
processes, the key regulators for cellular morphology are still 
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under exploration. Therefore, further large- scale or experi-
mental studies should be performed to confirm the clinical 
utility and molecular mechanisms of histopathological image 
features.

5 |  CONCLUSIONS

Our analyses suggested that histopathological image features 
were promising biomarkers for predicting genetic muta-
tions, molecular subtypes and overall survival in HNSCC. 
Additionally, the integration of image features and gene 
expression data had potential for improving prognosis pre-
diction. The proposed HTRS and nomogram provided prog-
nostic estimation, and may contribute to the risk stratification 
and personalized treatment of HNSCC patients. However, 
large- scale studies including more images and genetic data 
are still necessary to further verify the performance of our 
models.
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