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Abstract: Some engineered nanomaterials incite toxicological effects, but the underlying molecular
processes are understudied. The varied physicochemical properties cause different initial molecular
interactions, complicating toxicological predictions. Gene expression data allow us to study the re-
sponses of genes and biological processes. Overrepresentation analysis identifies enriched biological
processes using the experimental data but prompts broad results instead of detailed toxicological
processes. We demonstrate a targeted filtering approach to compare public gene expression data
for low and high exposure on three cell lines to titanium dioxide nanobelts. Our workflow finds
cell and concentration-specific changes in affected pathways linked to four Gene Ontology terms
(apoptosis, inflammation, DNA damage, and oxidative stress) to select pathways with a clear toxicity
focus. We saw more differentially expressed genes at higher exposure, but our analysis identifies
clear differences between the cell lines in affected processes. Colorectal adenocarcinoma cells showed
resilience to both concentrations. Small airway epithelial cells displayed a cytotoxic response to
the high concentration, but not as strongly as monocytic-like cells. The pathway-gene networks
highlighted the gene overlap between altered toxicity-related pathways. The automated workflow is
flexible and can focus on other biological processes by selecting other GO terms.

Keywords: nanomaterials; titanium dioxide; nanobelts; overrepresentation analysis; Gene Ontology;
THP1; SAE; Caco-2/HT29-MTX

1. Introduction

Engineered nanomaterials have become important in our daily life as they are utilized
in the fields of food, packaging, cosmetics, drug and vaccine delivery, and many others [1].
For example, silver and carbon nanotubes are used in a variety of cleansers because of
their antimicrobial properties, and silicon dioxide is used as a food additive as it decreases
viscosity and regulates acidity [2]. Nevertheless, some nanomaterials, such as asbestos
fibers and silica dust, show how small particles can cause adverse outcomes for those
exposed to them [3–6].

The detailed biological processes related to the toxicity of many engineered nanomate-
rials are not yet all fully understood [7,8]. Due to the varied physicochemical properties of
nanomaterials and often even of the particles within the nanomaterial itself, it is difficult to
predict the biological effects leading to toxicity. Biological response and toxicity depend on
the size of the nanoparticle, size of the agglomerate, surface impurities, and degradabil-
ity [9]. Furthermore, other factors that have an effect on biological response and toxicity
include the method of exposure, the entry route into the human body, and the distribution
in the body [2]. The shape of a nanoparticle also has an influence on the nanoparticle’s
effects, where for example nanobelts, nanostructures in the form of belts, have been shown
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to be more pro-inflammatory compared to spheres [10]. Studies have found that there are
various biological effects and toxicities of engineered nanomaterials under different circum-
stances and with varying engineered nanomaterials [1,11–14]. These changes in biological
effects are ascribed to the differences in chemical and physical properties of nanomaterials.
However, when studying the properties, biological effect relations are complicated because
of the difficulty in creating identical nanomaterials from different batches and/or sources
due to the varying physicochemical properties of nanomaterials [15]. Nevertheless, manual
curation of transcriptomics datasets regarding nanomaterials is performed to enhance their
degree of fairness to aid nanomaterial safety assessment [16].

Furthermore, a relatively well-studied and widely used nanomaterial is titanium diox-
ide (TiO2). Due to its general properties, such as its photocatalytic activity and white color,
it is used in various applications such as (photo)catalysis, antibacterial agents, and con-
sumer products. Whereas TiO2 particles have been shown not to be able to penetrate
through the skin, entry into the body can occur via inhalation or ingestion where it then
has to pass through the gastrointestinal tract [17,18].

Regarding the adverse outcomes, the toxic effects of TiO2 are known to occur in
order, like most toxicity related biological processes. TiO2 is known to induce reactive
oxygen species production, which involves lipid peroxidation and will eventually lead to
cell damage and DNA damage [19,20]. Furthermore, the increase in oxidative stress can
contribute to the promotion of apoptosis of the affected cells [21,22]. Consequently, TiO2
nanoparticles have been shown to induce inflammation [23,24] among other things via the
aforementioned oxidative stress in mammalian cells [19,25]. It has been shown that TiO2
nanoparticle exposure can lead to impaired immune homeostasis including increases in
TNF-α, IFN-γ, IL-2, IL-4, IL-6, IL-8, and IL-10 secretion [26–28].

To study the detailed mechanisms of the cellular response, bioinformatics and systems
biology approaches, including pathway and network analysis, have been used to assess the
effects on toxicity-related processes upon exposure to TiO2-nanobelts, i.e., reactive oxygen
species formation and oxidative stress, apoptotic cell death, inflammation, and DNA
damage [29,30]. Pathway enrichment analysis helps to put high-throughput omics data
such as transcriptomics into a biological context [31] and the visual diagrams from pathway
databases such as WikiPathways [32] and Reactome [33] provide a way to visualize the
effects on cellular processes. However, navigating all the affected pathways and the roles of
the genes in these pathways can be nontrivial: genes can participate in multiple pathways,
and pathways tend to overlap with each other. Moreover, we want to be able to focus on
detailed, molecular pathways related to a specific biological process, such as apoptosis,
inflammation, DNA damage, and oxidative stress. Overrepresentation, with respect to
these processes alone, makes it possible to focus on a subset of genes, but it does not have
the link to the pathways. Instead, we selected pathways based on their gene overlap with
specific GO-terms covering toxicity-related biological processes and subsequently used
the overrepresentation of differentially expressed genes to select relevant pathways out of
this subset. We further studied these results in detail using network analysis approaches to
investigate pathway overlap and crosstalk.

In this study we re-examined a publicly available dataset generated by Tilton et al. [34]
(accession number: GSE42069) [35] to study the detailed molecular mechanisms of TiO2-
nanobelt toxicity. We analyzed gene expression data from three different cellular models
exposed to either one of two concentrations of TiO2-nanobelts for 24 h. The cell lines
used were human primary small airway epithelial (SAE) cells, human monocytic cells
(THP1), and human epithelial colorectal adenocarcinoma cells co-cultured with HT29-MTX
goblet cells (Caco-2/HT29-MTX). These cellular models represent three common areas
of exposure in the human body, i.e., small airway epithelium, colon epithelium, and the
innate immune system that will typically respond to particles that have entered the body.
We aim to provide an overview of the dose-dependent and cell-type-specific response by
focusing on toxicity-related processes. Apart from a significant increase in the activity
of toxicity-related processes after exposure with a higher dosage, differences in intensity
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and affected processes might occur between the cell lines. Using this work as an example,
we will discuss the toxicological effects of TiO2-nanobelts on the three cellular models and
the importance and benefits of analysis workflows in the nanomaterial research field.

2. Results and Discussion
2.1. Differential Gene Expression

The differential gene expression analysis for the three cell lines after exposure to two
different TiO2-nanobelt concentrations shows that a high concentration of TiO2-nanobelts
(Figure 1, right column) causes stronger gene expression changes in all three cellular models
than at a low concentration (Figure 1, left column). While the Caco-2/HT29-MTX and SAE
cells also show an increased response to the high TiO2-nanobelt concentration, the THP1
cells respond much more strongly to the high concentration in terms of differentially
expressed genes passing our criteria. Dose-dependent increases in response have been
shown for many nanomaterials [36,37].

Figure 1. Gene expression volcano plots for different cellular models and TiO2-nanobelt concentrations. On the x-axis log2

(fold change) is depicted whereas on the y-axis the -log10 (p-value) is depicted. The dotted lines represent cut-off values for
significantly changed genes (log2 fold change > 0.26 or < −0.26, p-value < 0.05). A brown color depicts that a gene meets
both cut-off criteria, a blue color relates to meeting only the p-value cut-off, an orange color relates to meeting only the log2

fold change cut-off, and a gray color indicates that a gene does not meet any of the criteria.
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2.2. Pathway Analysis

Using the differentially expressed genes from the different cellular models, an over-
representation analysis was performed to identify altered pathways after TiO2-nanobelt
exposure. The number of significantly overrepresented pathways (p-value < 0.05) is shown
in Table 1 in the column “Significant”. Concordant to the increase in differentially expressed
genes matching our criteria shown in Figure 1, the number of resulting pathways increases
with an increase in the concentration of TiO2-nanobelts. While there was a smaller in-
crease in differentially expressed genes, we found a similar increase in resulting pathways
for the SAE cell line. There was also an increase in the number of genes found for the
Caco-2/HT29-MTX co-culture; however, it did not directly translate to an increase in over-
represented pathways. Although overrepresentation analysis provides a great overview of
all processes that are affected, it takes time to go manually over the many overrepresented
pathways. Therefore, an automated method to select desired pathways, i.e., toxicity-related
pathways, provides a new approach to interpreting the data.

Table 1. Table listing the number of significantly overrepresented pathways, altered toxicity path-
ways, and the number of altered toxicity pathways for each GO-term.

Significant Toxicity Apoptosis Inflammation DNA
Damage

Oxidative
Stress

Pathways 1076 101 66 15 28 2

Caco-2/HT29-MTX low 56 10 5 0 5 0
Caco-2/HT29-MTX high 58 10 10 1 0 0

SAE low 28 3 1 0 2 0
SAE high 50 15 6 1 8 0

THP1 low 38 10 9 4 0 0
THP1 high 201 39 31 9 3 1

2.3. Toxicity-Related Pathways

To gain more insight into the toxicity-related processes, the overrepresented pathways
were further categorized into pathways related to the apoptotic process, inflammatory
response, DNA damage response, and/or oxidative stress. Often this kind of clustering
of the pathways is performed manually. However, we implemented a gene-based ap-
proach. First, gene sets of four Gene Ontology (GO) terms were obtained, i.e., “apoptotic
process” (GO:0006915, 1269 genes), “inflammatory response” (GO:0006954, 569 genes),
“cellular response to DNA damage stimulus” (GO:0006974, 762 genes), and “response
to oxidative stress” (GO:0006979, 243 genes). Evidently, these processes are tightly con-
nected. Whereas some can be causative for others, they are expected to overlap. Additional
Figure A1 shows the gene overlap between the four GO gene sets in a Venn diagram. Next,
we calculated the gene overlap between the pathways from the WikiPathways pathway
collection with the annotated genes of the four GO-terms. The overlap was calculated by
dividing the number of toxicity-related genes present in the pathway by the total number
of genes present in the pathway. As a cut-off we used 50% indicating that at least half of
the pathway is directly linked to the GO-term of interest via their gene overlap.

To select the desired gene overlap cut-off, we compared four cut-offs with each other
and an overrepresentation analysis approach to see how many pathways these would
give. The cut-offs we used were 50%, 60%, 70%, and 80%. For the overrepresentation
analysis we looked for overrepresentation of the pathway genes in the gene lists of the
GO-terms. The results are shown in additional Table A1. The overrepresentation analysis
(p-value < 0.05) showed the most pathways to be linked to the four GO-terms; in this case
it showed 401, 250, 203, and 205 pathways overrepresented for the apoptotic process, in-
flammatory response, DNA damage, and oxidative stress GO-terms, respectively. The 80%
and 70% gene overlap resulted in almost similar amounts of pathways compared to each
other. They even resulted in 0 pathways for the inflammatory response GO-term. Moreover,
it stands out that for the gene overlap approach only one pathway meets at least 50% or
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higher gene overlap with the oxidative stress GO-term. Additionally, it is interesting to
see that an overrepresentation analysis prompts hundreds of pathways compared to just
dozens when looking at gene overlap. Comparing the results of the overrepresentation
analysis and various cut-offs, the at least 50% gene overlap cut-off was deemed best for
our approach.

After this filtering step we found that, out of the 1076 pathways in the human pathway
collection, 66 pathways are related to the apoptotic process, 15 are linked to inflammatory
response, 28 are linked to DNA damage, and 2 are linked to oxidative stress. It is noticeable
that there are only two oxidative stress pathways, i.e., Detoxification of Reactive Oxygen
Species (wikipathways:WP2824 [38]) and Oxidative Stress (wikipathways:WP408 [39]),
that have at least 50% of their genes overlapping with the genes annotated to the GO-term
“response to oxidative stress”. Based on this finding we can argue that most pathways in
the pathway database we have used describe different processes that result in oxidative
stress or where oxidative stress is part of/has an influence on the process itself. However,
these do not describe oxidative stress as a process. Nevertheless, these pathways are of
interest for our analysis.

2.4. Study Effect on Toxicity-Related Pathways

The number of altered toxicity-related pathways is shown in Table 1. The overrepre-
sentation analysis was performed using the differentially expressed genes (log2 fold change
lower than −0.26 or greater than 0.26 and p-value lower than 0.05).

The Caco-2/HT29-MTX co-culture shows for both concentrations 10 overrepresented
pathways. The SAE cells show 3 for the low concentration, which could be an indication of
a very small toxic response to the TiO2-nanobelt exposure, and 15 for the high concentration.
The THP1 cell line shows a clear toxic response activation for the high concentration with
39 overrepresented pathways, and 10 for the low concentration.

Importantly, while molecular pathways describe a process on a detailed level, their
boundaries are often not clearly defined. Pathways are not independent, and they interact
with each other through shared genes or sub-pathways. Figure 2 shows the gene overlap
between the altered toxicity-related pathways in pathway-gene networks and highlights
the differences in response between the cell lines. Pathways that cluster together indicate
that these pathways depict similar biological processes with a high gene overlap. In the
following sections, the biological pathways affected in the different cell lines will be
discussed in detail.

2.5. Caco-2/HT29-MTX Cells

While for both concentrations the Caco-2/HT29-MTX co-culture shows the same
number of overrepresented pathways, the pathways compared between the low and high
concentrations are not all the same. Of the ten pathways, three are found for both concentra-
tions, namely IL-5 Signaling pathway (wikipathways:WP127, [40]), IL-2 Signaling pathway
(wikipathways:WP49, [41]) and Endometrial Cancer (wikipathways:WP4155, [42]). In-
terestingly, for the low concentration the pathways related to DNA-damage and repair
show up in the results. For example, HDR Through Homologous Recombination (HRR)
or Single Strand Annealing (SSA) (wikipathways:WP3567, [43]), Nonhomologous End-
Joining (NHEJ) (wikipathways:WP3550, [44]), and DNA Double-Strand Break Response
(wikipathways:WP3543, [45]) are among these pathways. However, for the high concen-
tration it is interesting to see that the Apoptosis pathway (wikipathways:WP254, [46])
shows up, which could be an indication of Caco-2/HT29-MTX cells possibly undergoing
apoptotic processes upon exposure to TiO2-nanobelts. However, these results indicate that
the studied processes in Caco-2/HT29-MTX co-cultures are not extensively affected by the
administration of TiO2-nanobelts, for either the low or the high concentration. This finding
supports the conclusion based on the cell viability assay results in the original study, which
showed that there was no significant decrease in cell viability for the Caco-2/HT29-MTX
co-culture for both concentrations of TiO2-nanobelts [34].
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Caco-2/HT29-MTX
Low concentration High concentration

SAE

THP1

Gene

n = 10

n = 3

n = 10

n = 15

n = 39

n = 10

Apoptosis Inflammation DNA damage Oxidative stress

Figure 2. Pathway-gene networks of altered toxicity-related pathways. The color of the nodes
indicates to which GO-term the pathway is affiliated. Orange indicates apoptosis, blue indicates
inflammation, pink indicates DNA-damage, and red indicates oxidative stress. Gray nodes represent
genes. Number (n) represents the number of significantly overrepresented pathways that are depicted
in the networks.

2.6. SAE Cells

For the SAE cell line, the low concentration only prompted three overrepresented
pathways compared to 15 for the high concentration. Noticeable as well, only one of
those three pathways was found to be overrepresented also for the high concentration,
namely HDR through Homologous Recombination (HRR) or Single Strand Annealing
(SSA) (wikipathways:WP3567, [43]). This increase in pathways with a significantly in-
creased overrepresentation of affected genes is an indication that upon exposure to the high
concentration of TiO2-nanobelts, more biological processes related to toxicity are affected
compared to the low concentration.

Next, for the SAE cell line exposed with the low concentration, we found three overrep-
resented pathways. As for the high concentration we found 15 overrepresented pathways.
This increase in pathways with a significantly increased overrepresentation of affected
genes is an indication that more biological processes related to toxicity are affected com-
pared to the low concentration upon exposure to the high concentration of TiO2-nanobelts.
For the low concentration the pathways HDR through Homologous Recombination (HRR)
or Single Strand Annealing (SSA) (wikipathways:WP3567, [43]), IL-6 Signaling pathway
(wikipathways:WP364, [47]), and Regulation of TP53 Activity through Phosphorylation
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(wikipathways:WP3838, [48]) are overrepresented. The first pathway describes a process
of DNA double-strand break repair, where the second pathway describes the signaling
of the cytokine IL-6 and the last pathway describes the regulation of TP53. Except for
the first pathway, which is also found in the result for the high concentration, the over-
represented pathways describe more general regulatory pathways rather than detailed
process-describing pathways. However, for the high concentration we see multiple path-
ways related to DNA damage, such as the aforementioned HDR through Homologous
Recombination (HRR) or Single Strand Annealing (SSA) (wikipathways:WP3567, [43]),
DNA IR-damage and Cellular Response via ATR (wikipathways:WP4016, [49]), DNA IR-
Double Strand Breaks (DSBs) and Cellular Response via ATM (wikipathways:WP3959, [50]),
and DNA Mismatch Repair (wikipathways:WP531, [51]) among others. Moreover, the
results prompted apoptosis-related pathways such as Apoptosis Modulation and Sig-
naling (wikipathways:WP1772, [52]) and Apoptosis Modulation by HSP70 (wikipath-
ways:WP384, [53]). This is also an indication that the high concentration induced more
distinct biological processes related to toxicity compared to the low concentration for the
SAE cell line.

2.7. THP1 Cells

For the THP1 cell line, there are only 10 significantly overrepresented pathways for
the low concentration of TiO2-nanobelts. However, among these pathways, the path-
ways TNF Signaling (wikipathways:WP3380, [54]), Apoptosis (wikipathways:WP254, [46]),
Apoptotic Execution Phase (wikipathways:WP1784, [55]), TNF alpha Signaling Pathway
(wikipathways:WP231, [56]), and TNF-related Weak Inducer of Apoptosis (TWEAK) Signal-
ing pathway (wikipathways:WP2036, [57]) are present. This indicates that upon exposure
to the low concentration of TiO2-nanobelts the THP1 cell line activates immune- and
inflammation-related processes. This result can be explained as a general cell activity
response since THP1 is a macrophage-like cell line. However, it can also be explained due
to the effect of TiO2-nanobelts on the THP1 cell line in this case. TiO2-nanobelts are likely
to induce toxic processes, even at a low concentration, which results in an inflammatory
response of the THP1 cells. Similar inflammatory responses, like activation of Nf-κB and
production of TNF-α, were seen in these cells upon exposure to other nanoparticles such as
ZnO NM-110, SiO2 NM-200, and Ag NM-300 [58].

Compared to the low concentration, the high concentration yields more pathways
with significant overrepresentation i.e., 39 versus 10. Except for the pathway Apoptotic
Execution Phase (wikipathways:WP1784, [55]) all other 9 pathways which showed up
for the low concentration were found for the high concentration as well. In addition to
these pathways, pathways such as Oxidative Stress (wikipathways:WP408, [39]), Nanopar-
ticle Triggered Regulated Necrosis (wikipathways:WP2513, [59]), and Mismatch Repair
(wikipathways:WP3381, [60]) and more were among the significant pathways. These results
indicate that the THP1 cell line upon exposure to the high concentration of TiO2-nanobelts
results in toxicity-related processes such as inflammation, DNA damage, and oxidative
stress. The higher number of pathways that show up in the result together with the biologi-
cal processes they depict indicate that the high concentration induces greater effects than
the low concentration. This was also seen in the original paper where the low concentration
induced a significant decrease in cell viability, while the high concentration induced an
even greater decrease [34]. Furthermore, it has also been shown that nanoparticles can
activate similar processes, such as inflammatory processes and DNA damage, as seen upon
exposure to the high concentration [58,61].

The THP1 cell line is the cellular model that has the most inflammation-related
pathways in the results: four for the low concentration and nine for the high concen-
tration. All four of the low concentrations show up in the results of the high concentration
as well. These pathways are Photodynamic-therapy-induced NF-kB Survival Signaling
(wikipathways:WP3617, [62]), Interleukin-10 Signaling (wikipathways:WP4063, [63]), Fib-
rin Complement Receptor 3 Signaling Pathway (wikipathways:WP4136, [64]), and Platelet-
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mediated Interactions With Vascular and Circulating Cells (wikipathways:WP4462, [65]).
Nanoparticle-induced genotoxicity can arise and a distinction between primary and sec-
ondary genotoxicity can be made. Inflammation drives secondary toxicity as suggested by
Emma Åkerlund et al., who showed that conditioned media from differentiated THP1 cells
induced DNA-damage in HBEC after 3 h exposure [66]. While there are inflammatory-
related pathways in the results for the THP1 cell line, only the high concentration has
three DNA-damage-related pathways in the results. The presence of DNA-damage-related
pathways and inflammatory-related pathways could indicate secondary genotoxicity for
the THP1 cells upon exposure to the high concentration. However, more research is needed
to address this exact mechanism.

2.8. Comparison Between Cell Lines

The focused analysis of alterations in toxicity-related processes showed differences
between the three cell lines and the concentrations studied. It has been reported before that
the molecular response depends on the cell type and concentration [67].

Caco-2/HT29-MTX cells seem resilient to the exposure and show very little activation
of toxicity-related processes. While for this dataset a co-culture was used, the passage of
nanoparticles through the cellular barriers of Caco-2 cells has been shown to be limited,
which could result in reduced uptake and therefore less toxic response [68]. This could
partially explain the resilience we see in our results. Subsequently, this indicates a lower
importance of gastro-intestinal uptake in general but no direct conclusions could be made
based on the results and information we have. However, TiO2-nanobelts caused the biggest
toxicological response to THP1 cells, as they are more sensitive to exposure compared to
epithelial cell lines RLE-6TN and BEAS-2B [69]. Moreover, it has been reported that this
response is specific to the nanobelt form of TiO2 [69].

Interestingly, approximately 10% of the pathways in WikiPathways and Reactome
can be categorized as toxicity-related, in other words these pathways have at least 50%
gene overlap with the GO terms we selected. This highlights the fundamental cellular
processes involved but could also indicate a bias in the pathway collections towards these
well-studied processes. Nonetheless, these pathways are considered important pathways,
hence they are studied well.

To illustrate how the effects can be studied in more depth we visualized the log fold
change of all six conditions on the Oxidative Stress pathway (wikipathways:WP408 [39]),
the Apoptosis pathway (wikipathways:WP254 [46]), and the DNA Mismatch Repair path-
way (wikipathways:WP531 [51]). This shows that for most genes in these pathways gene
expression data are present (see additional Figures A2 and A3).

While the Oxidative Stress pathway shown in Figure 3 only shows up to be signif-
icantly overrepresented for the THP1 cell line for the high concentration, it is still an
interesting pathway to dive deeper into. The NFKB1 gene, which encodes for the NfκB-
p105 subunit, has the highest log fold change for the THP1 cell line, high concentration.
Additionally, the THP1 cell line, low concentration, shows a positive log fold change as
well, whereas the SAE cell line shows negative log fold changes and the Caco-2/HT29-MTX
co-culture shows noticeably lower positive log fold changes for both concentrations. Fur-
thermore, the SOD2 gene, which is involved in the conversion of superoxide and protects
against oxidative stress, shows a similar pattern [70]. These genes indicate that the THP1
cell line responds to oxidative stress by increasing the expression of protective genes.

Moreover, the Apoptosis pathway shows positive log fold changes of the CASP2 and
CASP7 genes, which are involved in apoptosis execution, for the SAE and THP1 cell lines
for both concentrations whereas the Caco-2/HT29-MTX co-culture shows no negative or
positive log fold change [71,72]. Furthermore, the pathway shows positive log fold changes
for the apoptosis-promoting interferon regulatory factors such as IRF4 and IRF5 [73–75],
which is a similar pattern as described for the CASP2 and CASP7 genes. This could be an
indication that apoptosis is stimulated in these cell lines. However, the original study by
Tilton et al. does not show a significant decrease in cell viability. The DNA Mismatch Repair
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pathway shows a positive log fold change for the LIG1 gene, which encodes for DNA ligase
1 for both the Caco-2/HT29-MTX and THP1 cells. This enzyme is involved in both DNA
replication and in this context more importantly repair [76]. The aforementioned genes
show positive log fold changes for the THP1 cell line throughout the pathway. The increase
in expression of these genes could be an indication that DNA mismatch repair is activated
due to exposure to TiO2-nanobelts.

Figure 3. Visualization of log fold change on the Oxidative Stress pathway (wikipathways:WP408)
for all six conditions. Cellular models are depicted from left to right as Caco-2/HT29-MTX, SAE, and
THP1. The top row depicts the low concentrations whereas the bottom row depicts the high concentra-
tions. Color gradient for differential gene expression after exposure goes from blue (downregulated)
via white (not changed) to red (upregulated).

2.9. The Advantage of Our Approach

Enrichment analysis for gene expression data is well-established and can easily be
automated to increase reproducibility [77]. The interpretation of the long list of altered,
often overlapping, pathways is still a challenge. To mitigate this challenge we proposed an
automated approach to filter the pathway enrichment result towards a specific biological fo-
cus, in this case toxicity. A more context-specific interpretation is facilitated using GO-term
gene sets of interest. The generated pathway-gene networks showcase the connectedness
of the processes and provide a more systemic view than looking at individual pathways.
The approach yields a fast and easy method with which to select pathways of interest for
more detailed scrutiny, as we have shown. While interpretation and comparison between
multiple datasets on a process level are still challenging, the automated analysis workflow
used supports the exploration of the data [78]. Our approach showed the biological re-
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sponse of the three cellular models on a biological process level, making use of pathways.
Using pathways to investigate the response not only highlights biological processes that
are affected, but also enables researchers to dive deeper into the pathways on a gene-level.
We showed this in our research, where we could easily discuss affected genes in relation to
biological processes based on the results we retrieved from our approach. Furthermore,
our approach is suitable for quickly retrieving results towards specific biological processes,
which will aid researchers in their future research. Moreover, our approach is suitable for
quick reanalysis each time new pathway knowledge is discovered, thus pathway databases
are updated.

3. Conclusions

In this study we investigated the molecular response of three different cell lines to
exposure to TiO2-nanobelts. Using our process-level analysis based on pathway analysis in
combination with the use of gene sets and network visualization, our findings support the
results by S.C. Tilton et al. showing that the three cellular models, Caco-2/HT29-MTX, SAE,
and THP1, show different toxicity-related responses to the exposure of TiO2-nanobelts from
resilient Caco-2/HT29-MTX and SAE cells to strongly responding THP1 cells. The latter
is not unexpected since the observed effects align with the biological function of these
immune cells. Importantly, the approach allowed us not only to find changes in gene
expression, but also to find responding molecular pathways via the pathway analysis.
Additionally, it allowed us to filter the broad pathway enrichment results to a focused
view on the cytotoxic processes affected. The filtering steps we included in our workflow
allow a very targeted approach. This allows us to visualize and explore the interactions
between responding genes, based on underlying molecular processes in greater detail and
in a less time-consuming manner. The approach is suitable for quick reanalysis of datasets
each time pathway databases are updated with newly discovered pathway knowledge.
Moreover, this versatile approach captured in the R-script can easily be adapted to isolate
other processes by using other Gene Ontology terms diverting the focus to other biological
processes of interest.

4. Materials and Methods
4.1. Dataset

In this study, a published and publicly available transcriptomics dataset generated
by Tilton et al. [34] was used. The dataset is available from the Gene Expression Omnibus
(accession number: GSE42069) [35]. Quality control, data pre-processing, and statistical
analysis were performed using scripts from ArrayAnalysis.org [79].

The dataset consisted of 18 samples from three human-like cellular models, i.e., Caco-
2/HT29-MTX, SAE, and THP1, which were exposed to either medium (control), 10 µg/mL
or 100 µg/mL TiO2-nanobelts for 24 h in triplicate. To run the same analysis for the 1 h
time point the workflow in the 1 h repository can be used [80]. The number of samples,
cellular models, and number of replicates were the same for the 1 h time point compared
to the 24 h time point. Culture conditions were kept as identical as possible between the
three cell lines for both time points. Details can be found via the original publication by
Tilton et al. [34].

Volcano plots depicting differential gene expression were made using the Enhanced-
Volcano package (version 1.4.0) for R (version 3.6.1) [81,82]. Genes were considered dif-
ferentially expressed between treated and control when they had an absolute fold change
greater than 1.2 (log2 fold change lower than −0.26 or higher than 0.26) and a p-value lower
than 0.05.

4.2. Pathway Analysis

Overrepresentation analysis was performed using the enricher function of the clus-
terProfiler package (version 3.14.3) [77] for R to identify the molecular changes on a
pathway level. The human pathway collection containing 1076 pathways was obtained
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from WikiPathways (http://www.wikipathways.org (accessed on 28 August 2021), version
20201003, [32]). The Curated and Reactome collections from WikiPathways were included
in the analysis. Enrichment analysis was performed for differentially expressed genes
using the fold change and p-value cutoff as described in the previous section. Additionally,
default settings of the enricher function of the clusterProfiler package were used, except
p-value and q-value (false discovery rate) cutoff were set to 1 to include all results at this
stage. This allowed us to later select the desired results based on a p-value smaller than
0.05. Minimal gene set size was set to 10 and the maximum gene set size was set to 300.

4.3. Toxicity-Related Processes

Within the two human pathway collections used, toxicity-related pathways were
identified based on the gene overlap with the toxicity-related gene sets. The overlap was
calculated by dividing the number of toxicity-related genes present in the pathway by
total number of genes present in the pathway. The gene sets were retrieved from the
Gene Ontology (GO, version: release 2020-06) for the following four toxicity-related GO-
terms: “apoptotic process” (GO:0006915), “inflammatory response” (GO:0006954), “cellular
response to DNA damage stimulus” (GO:0006974), and “response to oxidative stress”
(GO:0006979) [83,84]. Associated genes were retrieved using the biomaRt package in R
(version 2.42.0, Ensembl Genes 100) [85,86]. Using the GO evidence codes, only genes
with experimental evidence or manually curated annotations were included to ensure
high confidence that the gene was involved in the specific process (IBA, IC, IDA, IEP, IGI,
IMP, IPI, TAS, http://geneontology.org/docs/guide-go-evidence-codes/ (accessed on 28
August 2021), see additional Table A2). Gene overlap between GO terms was visualized
using Venny version 2.1.0 [87].

4.4. Network Visualization

Altered pathways in the enrichment analysis were filtered for toxicity-related path-
ways and then visualized as pathway-gene networks to portray the overlap and crosstalk
between the pathways. To construct the networks, edge (source: pathway, target: gene)
and node (all unique source and target nodes) files were created of the altered pathways.
The networks were made using the igraph R package (version 1.2.4.1) [88].

4.5. Reproducible Analysis Workflow

The complete analysis is automated in R (version 3.6.3) and can easily be repeated
with a new transcriptomics dataset or different selection focus. The R scripts are available
on GitHub (https://github.com/laurent2207/TiO2-scripts (accessed on 28 August 2021))
and archived on Zenodo [78].
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Appendix A

Table A1. Table containing the number of pathways related to the four GO-terms. Based on either an
overrepresentation analysis (p-value < 0.05), 80% gene overlap, 70% gene overlap, 60% gene overlap,
or 50% gene overlap.

Number of Pathways Based on

ORA
(Adjust p Value < 0.05)

80%
Gene Overlap

70%
Gene Overlap

60%
Gene Overlap

50%
Gene Overlap

apoptotic process
(GO:0006915) 401 11 15 31 66

inflammatory response
(GO:0006954) 250 0 0 6 15

DNA damage
(GO:0006974) 203 15 20 23 28

oxidative stress
(GO:0006979) 205 1 1 1 1

Table A2. List of Gene Ontology (GO) evidence annotation codes that were used to remove genes
related to the four GO terms with these annotations (bottom part). Additionally, the annotation codes
that were present are shown (top part).

Abbreviation Full Name Category
IBA Inferred from Biological aspect of Ancestor Phylogenetically-inferred annotations
IC Inferred by Curator Curator statement evidence codes
IDA Inferred from Direct Assay Experimental evidence codes
IEP Inferred from Expression Pattern Experimental evidence codes
IGI Inferred from Genetic Interaction Experimental evidence codes
IMP Inferred from Mutant Phenotype Experimental evidence codes
IPI Inferred from Physical Interaction Experimental evidence codes
TAS Traceable Author Statement Author statement evidence codes

Removed annotations
ND No Biological Data Available Curator statement evidence codes
NAS Non-traceable Author Statement Author statement evidence codes
IEA Inferred from Electronic Annotation Electronic annotation evidence code
ISS Inferred from Sequence or structural Similarity Computational analysis evidence codes
ISO Inferred from Sequence Orthology Computational analysis evidence codes
ISA Inferred from Sequence Alignment Computational analysis evidence codes
ISM Inferred from Sequence Model Computational analysis evidence codes
IGC Inferred from Genomic Context Computational analysis evidence codes
RCA Inferred from Reviewed Computational Analysis Computational analysis evidence codes

https://doi.org/10.3109/17435390.2013.803624
https://doi.org/10.3109/17435390.2013.803624
https://orcid.org/0000-0003-2230-0840
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Figure A1. Venn diagram showing the number of overlapping genes between the four GO-terms
“apoptotic process”, “inflammation”, “cellular response to DNA damage stimulus”, “DNA damage
and Oxidative stress”.

Figure A2. Visualization of log2 fold change on the Apoptosis pathway (wikipathways:WP254) for all six conditions.
Cellular models are depicted from left to right as Caco-2/HT29-MTX, SAE, and THP1. The top row depicts the low
concentrations whereas the bottom row depicts the high concentrations. Color gradient for differential gene expression after
exposure goes from blue (downregulated) via white (not changed) to red (upregulated).
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Figure A3. Visualization of log fold change on the DNA Mismatch Repair pathway (wikipathways:WP531) for all six
conditions. Cellular models are depicted from left to right as Caco-2/HT29-MTX, SAE, and THP1. The top row depicts the
low concentrations whereas the bottom row depicts the high concentrations. Color gradient for differential gene expression
after exposure goes from blue (downregulated) via white (not changed) to red (upregulated).
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