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ABSTRACT

Neuroblastoma is a pediatric cancer arising from sympathetic nervous system. 
Remarkable heterogeneity in outcomes is one of its widely known features. One 
of the traits strongly associated with the unfavorable subtype is the amplification 
of oncogene MYCN. Here, we performed cross-platform biomarker detection 
by comparing gene expression and pathway activation patterns from the two 
literature reports and from our experimental dataset, combining profiles for the 
761 neuroblastoma patients with known MYCN amplification status. We identified 
109 / 25 gene expression / pathway activation biomarkers strongly linked with the 
MYCN amplification. The marker genes/pathways are involved in the processes of 
purine nucleotide biosynthesis, ATP-binding, tetrahydrofolate metabolism, building 
mitochondrial matrix, biosynthesis of amino acids, tRNA aminoacylation and NADP-
linked oxidation-reduction processes, as well as in the tyrosine phosphatase activity, 
p53 signaling, cell cycle progression and the G1/S and G2/M checkpoints. To connect 
molecular functions of the genes involved in MYCN-amplified phenotype, we built a 
new molecular pathway using known intracellular protein interaction networks. The 
activation of this pathway was highly selective in discriminating MYCN-amplified 
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neuroblastomas in all three datasets. Our data also suggest that the phosphoinositide 
3-kinase (PI3K) inhibitors may provide new opportunities for the treatment of the 
MYCN-amplified neuroblastoma subtype.

INTRODUCTION

Neuroblastoma arises from sympathetic nervous 
system embryonal crest cells localized in sympathetic 
ganglia and adrenal medulla. Approximately 60% of the 
cases occur in infants less than 2 years old. Neuroblastoma 
constitutes ~ 6% of all pediatric cancers [1], and causes 
~10% of tumor-associated deaths [2]. Most primary tumor 
sites are within the abdomen, including adrenal medulla 
and abdominal paraspinal ganglia, while metastases 
occur in many locations within the body including pelvis, 
liver, lymph nodes, bone marrow, brain and orbits [3]. 
The individuals with more differentiated tumor cells 
have generally better long-time survival prognosis. In 
contrast, crest-like tumors show less optimistic outcomes. 
Infants with localized neoplasms have shown the best 
survival rate and are capable of spontaneous regression 
[4] (these notable cases are frequently classified as 
‘4S’ stage) while older children have higher chances 
of severe complications and metastases [4]. Striking 
heterogeneity of the neuroblastoma is connected with 
impaired neural crest maturation, which involves 
complex epigenetic reprogramming and alteration of 
transcriptional factor repertoire [5]. Despite recent 
survival rate improvements [6, 7], treatment of high-risk 
and late-stage neuroblastoma cases is still challenging 
due to the heterogeneity of the disease [8] and existence 
of treatment-resistant subgroups associated with high 
lethality [9]. Numerous clinical features such as age, 
chromosomal abnormalities, histopathological features, 
tumor ploidy and MYCN-amplification are used to assess 
the risk group and prognosis. In many lower-stage or low-
risk cases, only surgery is deemed sufficient. However, 
in high-risk cases intense chemo- and radio therapies 
followed by surgery are used [10], strongly contributing 
to treatment-related morbidity [11]. MYCN-amplified 
cases are generally stratified into high-risk subgroup and 
are treated with multimodal cancer therapy including 
chemotherapy, surgery, radiotherapy, cis-retinoic acid 
and immunotherapy. Recently, ~60% four-year event-
free survival rate has been reported for such patients [5]. 
Hence, novel target treatment strategies are required to 
reduce toxicity and improve effectiveness of unfavorable 
subtype and late-stage NBL therapy.

The MYCN amplification arises in 20% of all 
neuroblastoma cases [12] and in ~50% of the cases 
associated with poor prognosis and survival [13]. The 
MYCN gene is a member of the MYC family of proto-
oncogenic transcription factors. It encodes a protein with 
a basic helix-loop-helix (bHLH) domain. To execute its 
molecular function, N-Myc protein must dimerize with 
another bHLH protein in order to bind DNA. Normally, 

N-Myc protein is expressed in the fetal brain and 
regulates its development [14]. The attempts to classify 
molecular data linked with the MYCN amplification and/or 
overexpression have been reported previously, including 
building molecular networks for few involved proteins 
[15, 16]. In addition, specific gene expression signatures 
were proposed to stratify MYCN-amplified neuroblastoma 
patients with respect to poor or optimistic prognosis [17]. 
However, so far, no integrative large-scale analysis has 
been published for the gene expression features specific 
for the MYCN amplification in neuroblastoma.

In this report, a multi-level multi-platform 
transcriptomic data analysis was performed in order 
to capture a set of molecular characteristics associated 
with MYCN amplification. We found 109 high quality 
(AUC>0.8) gene expression and 25 molecular pathway 
activation biomarkers of the MYCN amplification. 
We generated and validated a new molecular pathway 
crosslinking the identified gene expression biomarkers, 
termed “MYCN amplification pathway” including 41 
marker gene products and 23 additional members. 
Among the marker pathways, the phosphatidylinositol 3’ 
kinase (PI3K) family members were highly enriched. We 
propose that in the future the selective inhibitors of PI3K 
can be used to supplement the current therapies for the 
MYCN-amplified neuroblastomas.

RESULTS

Design of the study

Here, we performed a multi-level multi-platform 
transcriptomic data analysis in order to capture a set of 
molecular characteristics associated with the MYCN 
amplification. We compared the mRNA expression data 
obtained for the neuroblastoma samples with known status 
of MYCN amplification in the three different studies, 
using the three alternative microarray platforms. For the 
first two studies (TARGET, n = 243 [18] and MAQCII, 
n = 477 [19]), the expression data were taken from the 
open databases. The gene expression was profiled using 
the Affymetrix HumanExon ST and the Agilent Custom 
Neuroblastoma Chip microarray platforms, respectively. 
For each dataset, we identified the expression markers 
statistically significantly discriminating the MYCN 
amplified group of samples. The marker genes were 
then intersected and validated in an independent assay. 
Based on the marker genes coincided in both studies and 
using the OncoFinder molecular interactions network, 
we created a new molecular pathway specific to MYCN 
amplification. To validate this pathway, we collected 41 
unrelated primary neuroblastoma clinical samples with 
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known status of MYCN amplification and profiled gene 
expression using an alternative customized microarray 
platform (CustomArray, USA). We took the pathway 
activation strength (PAS) as the MYCN pathway biomarker 
calculated according to the OncoFinder method [20]. The 
quality of a MYCN pathway and of all other biomarkers 
was tested by calculating the “area-under-curve” (AUC) 
values [21]. The AUC value is the universal characteristics 
of robustness and it depends on the sensitivity and 
specificity of a biomarker. It correlates positively with 
the biomarker quality and may vary in an interval from 
0.5 till 1. The AUC threshold for discriminating good and 
poor biomarkers is typically 0.7 or 0.75. The items having 
greater AUC score are considered good-quality markers 
and vice-versa [22].

Literature data analysis – TARGET project gene 
expression data

We extracted gene expression data obtained during 
the TARGET research project for the 247 neuroblastoma 
tissue samples, among them 68 had and 175 did not have 
MYCN amplification, for four additional samples the 
amplification status was unknown [18]. The data included 
expression levels measured for 22985 known human 
genes using the Affymetrix HumanExon ST microarray 
platform. For further investigation, we took the 243 
samples with the established MYCN amplification status. 
We used two-level analysis at the gene expression and the 
pathway activation levels. Molecular pathways regulate all 
major biological processes in the cell [23–25]. Changes 

in their activity reflect various differential conditions 
including malignization of normal human tissues [26, 
27]. To measure pathway activities, we calculated the 
pathway activation strengths (PAS) values. Based on the 
gene expression profiles, it determines if the pathway 
is significantly up- or down-regulated compared to the 
reference, and provides a quantitative measure of this 
bias. Negative and positive overall PAS values correspond 
to an inhibited or activated state of a pathway [20]. To 
calculate the PAS values for the 338 intracellular signaling 
pathways, we used the OncoFinder protocol [20] because 
it enables significant reduction of noise for most of the 
experimental platforms [28].

We next performed hierarchical clustering analysis 
(Figure 1). The clustering based on the pathway activation 
strength (PAS) levels (Figure 1A) displayed a more dense 
distribution of the MYCN –amplified biosamples compared 
to the clustering based the total gene expression levels 
(Figure 1B). We next took for clustering only those genes 
included in the signaling pathways (Figure 1C), and in the 
latter case the clustering in general reflected the figure 
seen for the pathway level. At the levels of molecular 
pathway activation and expression of the pathway genes, 
the MYCN –amplified samples tended to co-clusterize 
together (Figure 1A and 1C), whereas for the clustering 
based on the whole set of genes, the MYCN –amplified 
samples did not form a compact group (Figure 1B).

We next performed a statistical analysis to establish 
which gene expression profiles and molecular pathway 
activation strengths may serve as the good quality 
biomarkers for the discrimination of the MYCN –amplified 

Figure 1: Hierarchical clustering of the TARGET project gene expression data at the levels of pathway activation strength 
(A), expression of all available genes (B) and expression of the available genes involved in the OncoFinder molecular pathway 
database (C). Clinical and diagnostic features such as the tumor stage, MYCN amplification status, mutation frequency, hyperploidy, loss 
of chromosomal 11q and 1p arms are shown where available on the corresponding marker bars.
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neuroblastomas. With the threshold of AUC 0.8, we 
identified 175 individual gene expression markers 
(Supplementary Dataset 1) and 29 pathway activation 
markers (Supplementary Dataset 2).

Literature data analysis – MAQC II project gene 
expression data

In the neuroblastoma gene expression dataset linked 
with the MAQC II research project, the data for 478 tissue 
samples were present, among them 69 had and 408 did 
not have MYCN amplification, and for one sample the 
amplification status was unknown [19]. The data included 
expression profiles for 17360 genes measured using the 
Agilent Custom Neuroblastoma Chip microarray platform. 
For further investigation, we took the 477 samples with the 
established MYCN amplification status. We next performed 
hierarchical clustering analysis at the gene expression and 
pathway activation strength (PAS) levels (Figure 2). Here, the 
tight clustering was seen for the MYCN-amplified biosamples 
at all the levels: PAS (Figure 2A), total gene expression 
(Figure 2B), and expression of genes included in the 
signaling pathways (Figure 2C). With the threshold of AUC 
0.8, we identified 446 individual gene expression markers 
(Supplementary Dataset 1) and 90 pathway activation 
markers (Supplementary Dataset 2) of the MYCN-amplified 
fraction of biosamples.

Intersection of TARGET and MAQC II data

To identify biomarkers common for the two 
datasets, we intersected the high-quality gene expression 

and pathway activation markers identified at the previous 
steps (Figure 3). Figure 3A and 3B show gene expression 
and pathway activation markers, respectively. Among 
those, we found 109 gene expression (including MYCN 
gene itself; Supplementary Dataset 3) and 25 pathway 
biomarkers (Table 1). Both the double gene expression 
and pathway activation markers showed the appearance 
distinct from the random subset intersections distribution 
model for the genes and pathways with high statistical 
scores (p < 0.0001 and p < 0.001, respectively, Figure 4). 
This evidences that the double biomarkers intersected not 
randomly, but due to the true link with the MYCN gene 
amplification features.

The bioinformatic Gene Ontology (GO) enrichment 
analysis showed that the double marker genes formed 
six completely statistically significant functional clusters 
and many distinct significantly enriched GO terms 
(Supplementary Dataset 4), featuring purine nucleotide 
biosynthesis, tetrahydrofolate and one-carbon metabolism, 
building mitochondrial matrix, biosynthesis of amino 
acids, tRNA aminoacylation for protein translation, 
NAD(P)-linked oxidation-reduction processes, ATP 
binding, tyrosine phosphatase activity, p53 signaling, cell 
cycle progression, G1/S and G2/M checkpoints.

To generate a molecular pathway crosslinking 
the identified gene expression biomarkers, we used the 
OncoFinder pathway creator module. Based on the available 
knowledge on protein-protein interactions, it enables 
creating a network linking maximum number of featured 
gene products with a minimal number of intermediary 
products involved. We generated a new pathway termed 
“MYCN pathway” including 41 double marker gene 

Figure 2: Hierarchical clustering of the MAQC II project gene expression data at the levels of pathway activation strength 
(A), expression of all available genes (B) and expression of the available genes involved in the OncoFinder molecular 
pathway database (C). Clinical and diagnostic features such as the tumor stage, MYCN amplification status, mutation frequency, loss of 
chromosomal 1p arm, vital status of the patients, are shown where available on the corresponding marker bars.
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products and 23 intermediary members (Figure 5; gene 
products listed on Supplementary Dataset 5). Totally, we 
identified 25 double marker molecular pathways (Table 1). 
Of them, two pathways (8%) are clearly connected with the 
activity of C-MYC, a well-known oncogenic transcriptional 
factor closely related to N-MYC. Those pathways are: 
IL-10_Pathway_ Transcription_of_BCLXL_Cyclin-D1_
D2_D3_Pim1_c-Myc_and_P19(INK4D)_via_STAT3 and 
MAPK_Signaling_Pathway_Gene_Expression_Apoptosis_
Inflammation_Tumorigenesis_via_MYC_HSF1_STAT2. The  
first pathway deals with the IL10 influence on C-MYC 
expression, whereas the second, in turn, represents C-MYC 
influence on the expression of its responsive genes. The 
other marker pathways were linked with the activities of 
ATM kinase (3 pathways) and BRCA1-dependent DNA 
repair (2 pathways), with apoptosis and p53 signaling (4 
pathways), PPAR signaling (1 pathway), chemokine and 
GPCR signaling (2 pathways), branches of NGF pathway 
regulating cytoskeleton (2 pathways), one Ras signaling 
pathway regulating intercellular interactions, four cell 
survival pathways via cAMP, Estrogen, IL2 and Wnt 
signaling, and four cell growth-promoting pathways via 
cAMP, IP3 and growth hormone signaling (Table 1). Among 
those, nine pathways (36%), namely, ATM-, BRCA1- and 
p53/apoptosis signaling pathways exactly matched the 

marker activities previously identified at the individual gene 
level using the GO analysis (Supplementary Dataset 4).

We next compared the gene contents of the 25 
double marker pathways and found that some genes were 
highly enriched among them (Table 2). For example, 
twelve phosphoinositide 3-kinase (PI3K) family members 
simultaneously appeared in 9/25 (36%) of the marker 
pathways. The TP53 gene participated in seven featured 
pathways, whereas four guanine nucleotide-binding 
protein genes, four MAPK-family members, ATM and 
AKT1 genes each took part in five marker pathways.

Experimental validation of MYCN biomarkers

To validate the identified MYCN-specific gene expression 
pathway, we collected 41 unrelated neuroblastoma clinical 
samples, including 5 MYC–amplified and 36 wild type tissue 
blocks. The samples were formalin-fixed, paraffin embedded 
tissue blocks corresponding to surgically resected neuroblastoma 
tissues. The mean age of the patients was 24 months 
(Supplementary Dataset 6). To normalize gene expression 
profiles, we took seven adrenal biopsy samples isolated from 
the adult donors. Alternatively, we used another set of normal 
tissues isolated from the biosamples of neural crest tissue from 
four embryonal donors. From all the tissue samples, we extracted 

Figure 3: Intersection of the gene expression (A) and the pathway activation (B) markers of the MYCN amplification identified 
independently in the MAQC, TARGET projects and in this study.
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total RNA and generated gene expression libraries for microarray 
hybridization. We used customized electrochemical microchip 
platform manufactured by CustomArray (USA) enabling direct 
oligonucleotide synthesis on the array [29]. We produced the 
arrays with 6020 oligonucleotide probes corresponding to 3706 
human genes involved in 378 intracellular signaling pathways, 
as described previously [30]. Following library preparations 
and hybridizations, the microarray hybridization signals were 
quantile normalized, and the gene expression data were deposited 

in Gene Expression Omnibus (GEO) database with the accession 
number GSE96631. Neuroblastoma transcriptional profiles were 
analyzed in three ways by comparing with (i) the normal adrenal, 
(ii) normal neural crest tissue samples, and (iii) with the mean gene 
expression levels calculated for all the neuroblastoma samples. 
Similar to the TARGET and MAQC II datasets, the MYCN-
amplified biosamples clustered together on the dendrograms for 
both the healthy adrenal (Figure 5A) and embryonal neural crest 
(Figure 5B) controls.

Table 1: Double pathway activation strength markers identified using literature data with the corresponding 
ROC-AUC values

Pathway name AUC, TARGET AUC, MAQC

ATM_Pathway_Apoptosis_and_Senescence 0.819 0.896

ATM_Pathway_Repair_and_Recombination 0.808 0.854

ATM_Pathway_S-phase_progression 0.836 0.851

BRCA1_Pathway_Base_Excission_Repair 0.83 0.923

BRCA1_Pathway_Cell_Cycle_Arrest_DNA_Repair_Genes_p21_WAF_
CIP1_14-3-3_GADD45

0.832 0.927

cAMP_Pathway_Cell_Growth 0.803 0.832

cAMP_Pathway_Cell_Survival 0.839 0.912

cAMP_Pathway_Metabolic_Energy 0.803 0.815

Cellular_Apoptosis_Pathway_Depolarization 0.892 0.855

Cellular_Apoptosis_Pathway_Gene_Expression_BAX_BID_BAK_Ras_
Noxa_PUMA_APAF1_Survivin_BCL2_via_TP53

0.862 0.888

Chemokine_Pathway 0.805 0.896

Estrogen_Pathway_Anti-Apoptosis 0.863 0.832

GPCR_Pathway_Gene_Expression_via_JUN_NFKB2_ELK1_SRF_FOS_
CREB3

0.812 0.856

Growth_Hormone_Signaling_Pathway_Gene_Expression_via_SRF_ELK1_
STAT5B_CEBPD_STAT1_STAT3

0.805 0.868

IL-10_Pathway_IL-10_Responsive_Genes_Transcription_of_BCLXL_
Cyclin-D1_D2_D3_Pim1_c-Myc_and_P19(INK4D)_via_STAT3

0.806 0.832

IL-2_Pathway_Apoptosis_Inhibition 0.805 0.869

IP3_Pathway 0.818 0.931

MAPK_Signaling_Pathway_Gene_Expression_Apoptosis_Inflammation_
Tumorigenesis_via_MYC_HSF1_STAT2

0.85 0.859

Mitochondrial_Apoptosis_Pathway_Depolarization 0.806 0.895

NGF_Pathway_Actin_Polymerization_Neurite_Outgrowth_and_
Differentiation

0.834 0.955

NGF_Pathway_Neurite_Outgrowth_and_Differentiation 0.865 0.948

p53_Signaling_Pathway_Inhibition_of_IGF1R_mTOR_Pathways 0.884 0.919

PPAR_Pathway 0.802 0.83

Ras_Pathway_Cell-Cell_Junctions 0.81 0.835

WNT_Pathway_Cell_Survival 0.823 0.92
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Figure 4:  Distributions of cardinalities of random gene samplings from the MAQC and TARGET datasets. The 
cardinalities were obtained by randomly subsetting genes (green) and patways (red) based on the TARGET and the MAQC data with the 
cardinalities matching that of the obtained marker subsets, and then intersecting them totally 10000 times. Cardinality of the intersection 
is shown on the horizontal axis. Arrows denote the true marker subset cardinalities, which lie outside of empirical distributions suggesting 
that these double discriminating genes / pathways are not merely a random noise.

Figure 5: Hierarchical clustering of the CustomArray experimental data at the level of pathway activation strength, normalized 
on the normal adrenal gland (A) and embryonic neural crest (B) controls. The diagnostic features such as MYCN amplification 
status, loss of chromosomal 1p and 11p arms, are shown on the corresponding marker bars.
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To assess quality of the MYCN amplification pathway 
in discriminating the experimental MYCN -amplified and 
wild type neuroblastoma samples, we calculated this pathway 
activation strength (PAS) according to the OncoFinder 
method [20]. We next modeled the use of the PAS scores 
as the biomarkers of MYCN amplification. For the (i-iii) 
normalizations, theMYCN amplification pathway showed a 
good performance with the AUC scores of 0.778, 0.767 and 
0.711, respectively (Table 3).

The major Gene Ontology terms statistically 
significantly linked with the MYCN amplification pathway 
were: G2/M checkpoint regulation and DNA damage 
response, p53 signaling pathway, cell cycle progression, 
maintaining dopaminergic/adrenergic/serotoninergic/gluta-
matergic synapses, phospholipid signaling, gene signatures 
associated with prostate, pancreatic, thyroid, renal, bladder, 
non-small cell lung cancers, acute myeloid and chronic 

myeloid leukemia, melanoma, glioma, central carbon 
metabolism in cancer, regulation of PI3K signaling, MAPK 
signaling, Ras signaling, tyrosine phosphatase activity, and 
many other molecular processes (Supplementary Dataset 7).

Taken together, this suggests that the established 
MYCN amplification pathway may be used as a good-
quality biomarker for the discrimination between the 
MYCN-amplified and wild-type neuroblastomas. When 
normalized on the normal tissues (i-ii), the expression 
features of the MYCN amplification pathway nodes were 
usually regulated in the same direction in both the MYCN-
amplified and wild-type neuroblastomas (Figure 6A and 
6B). However, they showed bigger difference when 
normalized on the mean neuroblastoma expression level 
(iii), Figure 6C and 6D. This suggests that the MYCN 
amplification in neuroblastoma is linked with the up- 
or down regulation of many genes. The extent of their 

Table 2: Gene enrichment statistics for the double marker molecular pathways

Gene name Occurrence

PIK3C2A, PIK3C2B, PIK3C2G, PIK3C3, PIK3CA, PIK3CB, PIK3CD, PIK3R1, 
PIK3R2, PIK3R3, PIK3R4, PIK3R5

9

TP53 7

GNAS 6

AKT1 5

ATM 5

GNA11, GNA12, GNA13, GNA14, GNA15, GNAQ, GNG2, GNG3, GNG4 5

MAPK1, MAPK3, MAPK8, MAPK9, MAPK10, MAPK12 5

ADCY1, ADCY2, ADCY3 4

CHEK2 4

GNAL, GNAO1, GNAT1, GNAZ, GNB1, GNB2, GNB3, GNB4, GNB5, GNG5, 
GNG7, GNG8, GNG10, GNG11, GNG12, GNG13, GNGT1, GNGT2

4

HRAS 4

MAP3K1, MAPK11, MAPK13, MAPK14 4

PLCG1, PLCG2 4

PRKACA, PRKACB, PRKACG 4

STAT3, STAT5A, STAT5B 4

Table 3: Validation of the MYCN amplification pathway on the experimental and literature datasets

Dataset AUC (MYCN pathway)

Custom Array / mean transcriptome 0.711

Custom Array / healthy adrenal glands 0.778

Custom Array / embryonal neural crest cells 0.767

TARGET / mean transcriptome 0.791

MAQC / mean transcriptome 0.861
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transcription levels can distinguish between the MYCN 
amplified and non-amplified neuroblastomas (Figure 6).

DISCUSSION

In this study, we tried to identify a sustainable gene 
expression pattern associated with the amplification of a 
protooncogene MYCN, and molecular processes associated 
therewith. We used two published high throughput gene 
expression datasets obtained using two alternative microarray 
platforms: Agilent Custom Human Neuroblastoma Chip and 
Affymetrix Human Exon ST array. To identify molecular 
profiles associated with the MYCN amplification, we analyzed 
both gene expression and molecular pathway activation 
features. We intersected the good-quality biomarkers 
(AUC>0.8) identified for these two datasets, and identified 
double biomarkers at the gene expression (n=109) and the 
pathway activation (n=25) levels. For the gene expression 
markers, we performed a search of the enriched Gene Ontology 
(GO) terms and found statistically significant enrichment in 
the processes of purine nucleotide biosynthesis, ATP-binding, 
tetrahydrofolate metabolism, building mitochondrial matrix, 
biosynthesis of amino acids, tRNA aminoacylation for protein 
translation, and NADP-linked oxidation-reduction processes. 

To combine the identified marker gene products to a single 
regulatory network, we created a new molecular pathway 
termed “MYCN amplification pathway” including 41/109 
double marker gene products and 23 intermediary members. We 
validated this pathway on the additional sampling of 5 MYCN-
amplified and 36 non-amplified neuroblastoma samples, 
experimentally profiled here using an alternative microarray 
platform (Table 3). Using three alternative experimental 
normalization methods, the MYCN amplification pathway 
was confirmed to be a high-quality biomarker of the MYCN 
amplification. We therefore suggest that this novel molecular 
pathway built using purely agnostic high-throughput analytic 
approaches may be recruited to analyze in depth the molecular 
consequences of MYCN amplifications in neuroblastoma in 
further investigations. Alternatively, it may be used to assess 
molecular phenotypes of the individual neuroblastomas.

At the same time, we found 25 intersected double 
marker pathways. Among them, 2 pathways were connected 
with the activity of C-MYC, known oncogenic transcriptional 
factor closely related to N-MYC. The other marker pathways 
were connected with the ATM kinase (3 pathways) and 
BRCA1-dependent DNA repair (2 pathways), with apoptosis 
and p53 signaling (4 pathways), PPAR signaling (1 pathway), 
chemokine and GPCR signaling (2 pathways), branches of 

Figure 6: Schematic representation of the MYCN amplification molecular pathway. The pathway activation features are 
shown for the averaged MYCN-amplified and non-amplified transcriptomes normalized on the normal adrenal gland controls and on the 
averaged neuroblastoma transcriptional profile. (A) MYCN-amplified, adrenal-normalized. (B) Non-amplified, adrenal-normalized. (C) 
MYCN-amplified, neuroblastoma-normalized. (D) Non-amplified, neuroblastoma-normalized. The pathway is shown as an interacting 
network, green arrows indicate stimulation, red arrows – inhibition. Color bars represent activations of the corresponding pathway nodes 
and correspond to the logarithms of the case-to-normal (CNR) expression rate for each node.
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NGF pathway regulating cytoskeleton (2 pathways), one 
Ras signaling pathway regulating intercellular interactions, 
four cell survival pathways via cAMP, estrogen, IL2 and 
Wnt signaling, and four cell growth-promoting pathways 
via cAMP, IP3 and growth hormone signaling (Table 1). 
Importantly, among them, nine pathways (36%), namely, 
ATM-, BRCA1- and p53/apoptosis-related signaling 
pathways matched the marker activities identified at the gene 
expression level using the Gene Ontology terms enrichment 
analysis in this study.

Many of those pathways were previously published 
in relation with the severity of neuroblastoma, such as 
AKT signaling [31], cAMP- and IP3–dependent signal 
transduction mechanisms [32, 33], and also estrogen [34], 
growth hormone signaling regulating glucose uptake [35], 
MAPK [36], PPAR [37], NGF [38] and Ras [36] signaling.

Among the members of the twenty-five double marker 
pathways specifically regulated in the MYCN-amplified 
tumors, we found that some genes were highly enriched. 
For example, twelve phosphoinositide 3-kinase (PI3K) 
family members simultaneously occurred in 9/25 (36%) of 
the marker pathways. The TP53 gene occurred in the seven 
featured pathways, and four MAPK family members, ATM 
and AKT1 genes each took part in five marker pathways. 
This may suggest that the activity of phosphoinositide 
3-kinases may be central in translating the molecular effects 
of MYCN amplifications to cell cycle progression. Indeed, 
the PI3K proteins promote cell growth and survival by 
activating Akt signaling. In turn, Akt activation has been 
previously reported a strong prognostic indicator of decreased 
survival in neuroblastoma [39]. In addition, Akt activation 
correlates with more aggressive disease, including MYCN 
amplification, advanced stage and unfavorable histological 
features. The Akt activation in neuroblastoma proceeds 
in a PI3K-dependent manner, because the PI3K inhibitor 
LY294002 completely reversed the effects of the insulin-like 
growth factor–mediated activation of Akt and its protection 
of neuroblastoma cells from the apoptosis [39]. Another line 
of evidence suggests that the inhibition of PI3K/Akt signaling 
by an Akt-specific inhibitor perifosine improves progression-
free survival in the patients with high-risk neuroblastomas 
[40]. We propose, therefore, that the available PI3K 
inhibitors, such as the LY294002, Idelalisib and Quercetin, 
may be used to supplement the current therapies for the 
MYCN-amplified neuroblastomas. These data shed light 
on a variety of molecular processes orchestrated by the 
amplification of MYCN gene and may help developing better 
anti-cancer molecular therapies in the future.

MATERIALS AND METHODS

Biosamples

For this study, we used forty-one experimental 
formalin-fixed, paraffin-embedded (FFPE) neuroblastoma 
tissue samples obtained from 41 patients treated at the D. 

Rogachev Center of Pediatric Hematology, Oncology 
and Immunology (CPHOI), Moscow. 7 tissue samples 
for adrenal non-cancer controls were collected at the 
Department of Pathology at the Faculty of Medicine, 
Moscow State University, from autopsies taken from 3 
independent adult healthy donors killed in road accidents. 
The 4 embryonal normal neural crest biosamples were 
taken from the post-mortal prenatal unrelated human 
donors. For all the biosamples, informed written consents 
to participate in this study were collected from the 
patient’s representatives. The consent procedure and 
the design of the study were approved by the ethical 
committees of the CPHOI, of the First Oncology and 
Advisory Center, Moscow, and of the Engelhardt Institute 
of Molecular Biology. Both the tumors and normal tissues 
were evaluated by a pathologist to confirm the diagnosis 
and estimate the tumor cell numbers.

Synthesis of microarrays

B3 microarray synthesizer (CustomArray, USA) 
was used for forty nucleotides-long oligonucleotide 
probe synthesis on CustomArray ECD 4X2K/12K slides. 
Synthesis was performed according to the manufacturer’s 
recommendations. Three replicates of total 6020 unique 
oligonucleotide probes specific to 3706 human gene 
transcripts were placed on each chip. Chip design was 
performed using Layout Designer software (CustomArray, 
USA). For the custom microchip, we used original 
oligonucleotide probe sequences of the Illumina HT 12 
v4 platform.

Library preparation and hybridization

Complete Whole Transcriptome Amplification 
WTA2 Kit (Sigma) was used for reverse transcription 
and library amplification. Manufacturers protocol was 
modified by adding to amplification reaction dNTP mix 
containing biotinylated dUTP, resulting to final proportion 
dTTP/biotin-dUTP as 5/1. Microarray hybridization was 
performed according to the CustomArray ElectraSense™ 
Hybridization and Detection protocol. Hybridization mix 
contained 2.5 ug of labeled DNA library, 6X SSPE, 0.05% 
Tween-20, 20mM EDTA, 5x Denhardt solution, 100 ng/ul 
sonicated calf thymus gDNA, 0,05% SDS. Hybridization 
mix was incubated with chip overnight at 50ºC. 
Hybridization efficiency was detected electrochemically 
using CustomArray ElectraSense™ Detection Kit and 
ElectraSense™ 4X2K/12K Reader.

Initial processing of microarray data

Probe signals were geometrically averaged, thus 
obtaining expression value for each specific type of the 
probe. Then quantile normalization [41] was performed 
using the ‘preprocessCore’ R package [42], and 3706 
genes corresponding to the experimental custom array 
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design were selected for further analysis. Gene expression 
data were deposited in Gene Expression Omnibus database 
with the accession number GSE96631.

Open access microarray data containing gene 
expression profiles for the high-risk neuroblastoma 
samples, and the available clinical information, were 
obtained from the TARGET (Therapeutically Applicable 
Research To Generate Effective Treatments) project 
website. The data on mutation rate and chromosomal 
abnormalities for 48 microarray-profiled TARGET 
patients were obtained from [18].

The MAQCII (ArrayExpress) gene expression 
data were extracted from the dataset tagged with the 
ID ‘E-MTAB-179’. The data preparation and quantile 
normalization were made by the authors according to their 
protocol (http://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-179/protocols/), and we performed no pre-
processing except for omitting probes with the negative 
expression values to counter the effect of inaccurate 
measurements of strongly underexpressed genes.

Functional annotation of gene expression

The SABiosciences signaling pathways knowledge 
base was used to determine structures of intracellular 
pathways, as described previously [43]. We applied 
the original OncoFinder algorithm [20] for functional 
annotation of the primary expression data and for 
calculating pathway activation strength (PAS) scores 
and cancer-to-normal ratios (CNRs). CNRn is the ratio 
of the expression levels of a gene n in the sample under 
investigation to the average expression in the control group 
of samples. In this study, the PAS scores were obtained 
according to [20]. PAS can take both positive and negative 
values meaning over- or underactivation relative to control 
tissue. Results for the 378 molecular pathways obtained 
for each sample are shown on Supplementary Dataset 8). 
The MAQC II and TARGET data were normalized on 
the average gene expression profiles for the respective 
neuroblastoma datasets. The experimental gene expression 
levels were normalized either on the normal adrenal or 
neural crest tissues, or on the average gene expression 
profile for the experimental neuroblastoma dataset.

Statistical analysis

Hierarchical clustering heatmaps and dendrograms 
with Euclidean distance and complete-linkage were 
generated using heatmap.2 function from “gplots” package 
[44]. Pathways which returned the same PAS scores for 
all the samples were removed from the analyses during 
calculations related to biomarker detection. The AUC 
(area under curve) values were calculated using ‘caTools’ 
R package [45] for each dataset to estimate how efficient 
each gene/pathway is in separating MYCN-amplified 
patients from the patients without amplification. The 

genes contained in OncoFinder signaling pathway 
knowledgebase were left in each dataset for consistency. 
Then genes/pathways exceeding the AUC threshold were 
filtered and intersected for the datasets comparison.

To test the significances of the intersection results (e.g. 
what is the likelihood to randomly obtain such number of 
markers in total intersection), a simulation was performed, 
randomly selecting gene / pathway subsets and intersecting 
them. The histograms for the resulting distributions for genes 
and pathways were drawn using ‘ggplot2’ package [46]. The 
resulting discrete distributions were approximated by normal 
distributions with parameters estimated from simulated data 
to test for the result’s significance.

Gene enrichment analysis

To perform the Gene Ontology (GO) database 
investigations for the gene sets associated with the discovered 
biomarkers, we performed enrichment analysis using DAVID 
functional annotation clustering software [47]. We used 
‘medium’ default clustering parameters. The gene symbols 
corresponding to the respective array platforms were 
transformed to Entrez gene using biomaRt package [48] and 
used as the background for the respective calculations for 
the selected gene sets. Terms that had 50% or more common 
members were iteratively merged to obtain final clusters.

Pathway reconstruction

A MYCN amplification pathway was reconstructed 
using the established pairwise molecular interactions 
signatures extracted from the Biocarta, KEGG, NCI, Quiagen 
and Reactome databases (https://cgap.nci.nih.gov/Pathways/
BioCarta_Pathways, http://www.genome.jp/kegg/pathway.
html, http://www.ndexbio.org/#/user/301a91c6-a37b-11e4-
bda0-000c29202374, https://www.qiagen.com/at/shop/genes-
and-pathways/pathway-central/?akamai-feo=off&f=po%3a2, 
http://www.reactome.org/pages/download-data/). We first 
used Dijkstra algorithm to detect shortest pairwise distances 
between the gene products on the graph constructed by 
merging all the databases, and then cut loosely-connected 
branches.
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