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Abstract

Objective: To investigate the correlation between corneal biomechanical properties and topo-

graphic parameters using machine learning networks for automatic severity diagnosis and refer-

ence benchmark construction.

Methods: This was a retrospective study involving 31 eyes from 31 patients with keratonus. Two

clustering approaches were used (i.e., shape-based and feature-based). The shape-based method

used a keratoconus benchmark validated for indicating the severity of keratoconus. The feature-

based method extracted imperative features for clustering analysis.

Results: There were strong correlations between the symmetric modes and the keratoconus

severity and between the asymmetric modes and the location of the weak centroid. The Pearson

product-moment correlation coefficient (PPMC) between the symmetric mode and normality

was 0.92 and between the asymmetric mode and the weak centroid value was 0.75.

Conclusion: This study confirmed that there is a relationship between the keratoconus signs

obtained from topography and the corneal dynamic behaviour captured by the Corvis ST device.

Further studies are required to gather more patient data to establish a more extensive database

for validation.
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Introduction

Keratoconus is a corneal ectasia in which
the cornea becomes conical due to progres-
sive thinning and there is a gradual corneal
protrusion.1 Analysis of the corneal topog-
raphy is the most widely used method to
identify keratoconus.2 However, this
method relies on the subjective analysis of
topographic maps, which makes detecting
early-stage keratoconus, or keratoconus
without obvious symptoms, clinically diffi-
cult and different observers may introduce
bias into the diagnoses.2–6 Detecting biome-
chanical instability, which is an early
indicator of the disease, is also problematic.7

In the early stages of keratoconus, subtle
changes in the corneal microscopic structure
may already be evident, resulting in abnor-
mal mechanical stability that may occur
even before notable changes in corneal mor-
phology are detected.7 Therefore, a combi-
nation of clinical devices to measure
biomechanical properties and an objective
diagnostic approach is required.

The Corvis ST device is widely used in
the clinical evaluation of corneal biome-
chanics.8–11 It is a non-contact tonometer
that uses an ultrahigh-speed Scheimpflug
camera to monitor corneal behaviour
during an air-puff test. This allows visuali-
zation of a large set of biomechanical defor-
mation response parameters. However, the
Corvis ST does not currently provide an
automatic analysis of the corneal biome-
chanics. Two indices have been proposed
for this purpose: the Corvis Biomechanical
Index (CBI)12 and the Tomographic
Biomechanical Index (TBI).4 The CBI is
based on a logistic regression analysis that
uses Corvis ST response parameters to dis-
tinguish keratoconic from normal eyes. The
TBI combines corneal tomography (using a
Pentacam system) and biomechanical
parameters from the Corvis ST device to
assist in keratoconus detection.

Other methods based on Corvis-ST out-
puts for discriminating keratoconic from
normal eyes include an assessment of two
stiffness parameters based on the deforma-
tion profiles generated by Corvis ST;13 a
keratoconic cornea is softer than a normal
cornea, so corneal softness may be useful as
an identifier of keratoconus. Indeed, the
Corvis ST parameters of Max Inverse
Radius, deformation amplitude (DA)
Ratio, Pachy Slope, biomechanical cor-

rected IOP (bIOP) and stiffness have
achieved high accuracy in detecting kerato-
conus.14,15 Studies have shown that these
parameters exhibit excellent repeatability
(interclass correlation coefficient �0.90)
and discriminative ability in diagnosing
keratoconic eyes.16,17

To more fully utilize objective measure-
ments from Corvis ST, a previous study
examined the ability of modal analysis to
reflect keratoconus severity.18 However,
the attempt to extract a correlation between
the Legendre modal decomposition and the
keratoconus severity did not yield a satis-
factory result because the association was
too complex. To resolve this difficulty, we
propose utilizing machine learning to
extract the correlation using a shape-based
method and a feature-based method. Both
of these methods use the dynamic corneal
deformation response for their input;

the shape-based method establishes bench-
marks relating the corneal dynamic
responses to the keratoconus topographic
patterns; the feature-based clustering
system divides the patient data into various
keratoconus severities for diagnostic refer-
ence. We suggest that these approaches
enable a superior automatic unbiased inter-
pretation of the Corvis ST data.

To the best of our knowledge, no previ-
ous keratoconus detection method has
considered dynamic response as a time
sequence and provided means to extract
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the corneal biomechanical properties.

Therefore, the purpose of this present

study was to combine Corvis ST data with

machine learning networks for automatic

severity diagnosis and reference benchmark

construction.

Methods

Patients

This retrospective study was performed

from February 2013 to February 2014 and

included data from 31 eyes of 31 patients

with keratonus eyes who attended National

Taiwan University Hospital during

the study period. For all subjects,

topographic and biomechanical data were

measured using the Tomey TMS-4 Corneal

Topographer System and Corvis ST system,

respectively. The severity of keratoconus was

quantified using the Keratoconus Index

(KCI) and Keratoconus Severity Index

(KSI) from the topography report (data

not shown).19,20

The reporting of this study conforms

to STROBE guidelines.21 The study

was approved by the Research Ethics

Committee C National Taiwan University

Hospital, 7, Chung-Shan South Road,

Taipei, Taiwan 100, R.O.C (NTUH-REC

No.: 201607049RINA), and all participants

provided written informed consent.

Data pre-processing: Legendre

decomposition

Image processing was used to determine the

anterior corneal contour (white lines in

Figure 1) from the Corvis ST images,

which was represented as a function FðxÞ,
where x was measured from the centre of

the cornea across the anatomic sagittal

plane. Each eye had 140 contours recorded.

The various Fi xð Þ functions for the

i acquired images were then used for corne-
al dynamic analysis.

The contours described by the Fn xð Þ
functions were expanded using Legendre
polynomials into Legendre modal shapes
with corresponding modal parameters A0l:

Fn xð Þ ¼
X1
‘¼0

A0‘P
0
‘ ðcoshÞ (1)

Figure 1. Sequential images of corneal deforma-
tion induced by an air puff were obtained from the
Corvis ST device. The images show the deforma-
tion of the sagittal corneal plane subject to an air
puff. The white lines show the contours extracted
by image processing. (Unit: 10�2mm, the direction
of the air puff: þY-axis; X-axis: the direction per-
pendicular to the air puff and the normal of the eye,
Y-axis: the direction parallel to the air puff and the
normal of the eye).
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Integrating both sides with some suitable
arrangement yielded
Z p

0

Fn xð ÞP0
l coshð Þsinhdh

¼
Z p

0

X1
‘¼0

A0‘P
0
‘ ðcoshÞP0

l0 ðcoshÞsinhdh

(2)

¼ A0l
2

2lþ 1
(3)

The modal parameter, A0‘, in (2) varied
with time, with each value for the lth mode
of the Legendre polynomials described by

A0‘ ¼ 2‘þ 1

2

Z p

0

Fn xð ÞP0
‘ coshð Þsinhdh;

l 2 N (4)

The modal shapes of the six primary
modes were characterized by P0

‘ ðcoshÞ,
with l ¼ 0–5.

Mode 0 [i.e., P0 coshð Þ] represented cor-
neal vibration in the radial direction, with a
positive value indicating contracting inward
and a negative value indicating expanding
outward. Mode 1 [i.e., P1 coshð Þ] repre-
sented corneal lateral movement, with pos-
itive and negative values representing
movement toward the left and right, respec-
tively. Modes 2, 3, 4, and 5 formed two,
three, four, and five nodal points on the
cornea, respectively.

Because the variation in corneal vibra-
tions resulted in differences between
modal parameters A0l, the corneal vibra-
tions could be evaluated by comparing
these variations.

Machine Learning

Shape-based clustering method

The corneal response was too complicated
for direct shape comparisons, and so this

study compared the ‘decomposed’ modes
to determine if a meaningful benchmark
for diagnosing keratoconus could be
extracted. The variation of the A0l modal
parameters extracted from waveform func-
tion FðxÞ formed the image sequence
obtained using the Corvis ST device. The
shape-based method then decomposed
each waveform into Legendre modes,
recorded changes in the model parameters,
and then composed time sequence data for
analysis. The modal parameter sequences
can be classified using k-means clustering,
as shown in Figure. 2.

The objective function for clustering
minimizes the sum of squared errors
between a cluster centre and its neighbours.
The amplitude and offset of the variation
waveform are meaningful in diagnosing
keratoconus, and so, unlike most other
time series, no pre-scaling or a priori tran-
sition invariance analysis was performed.22

As represented in (5), the distance between
each member of the cluster and the centroid
was measured as the Euclidean distance.
The k-means clustering algorithm con-
verged, and stopped when the sum of
squared errors, as represented in (6), was
less than the threshold value of 10�6:

E ¼
XK
k¼1

X
x2Ck

d x;mkð Þ2 (5)

d x;mkð Þ ¼ jjx;mkjj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 �mk1ð Þ2 þ � � � þ xn �mknð Þ2

q

(6)

where Ck was the kth cluster, mk was
the cluster centroid Ck, and d x;mkð Þ was
the distance between an instance x and cen-
troid mk.

The number of clusters was a crucial
parameter to be determined. We used the
silhouette score to determine the number of
clusters separately for each Legendre mode.
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Feature-based clustering method

In contrast to the shape-based method,

which compares waveforms in the time

domain, the feature-based method clusters

the data based on a set of extracted statistical

features.23,24 This approach reduces the

dimensionality of the original time series

without losing any essential information

from the data. Instead of examining varia-

tions of the modal parameters, the feature-

engineering process uses statistical analysis

to extract a set of features with clustering

analysis then applied to cluster the data into

groups that share common characteristics.

Feature engineering. We used the tsfresh

Python package25 to extract meaningful

features from the test data. The tsfresh

package provides an automated process

for feature extraction and feature selection,

and results in a data frame comprising

approximately 4000 extracted features.

The resultant feature parameters include

maximum (max), minimum (min), and

median values, and also the number of

peaks extracted from the time series.
A feature scaling process such as stan-

dardization and min-max scaling then

transforms the features into standard

ranges. This standardization process

ensures that the data have zero mean and

unit variance, while min-max scaling sets all

values into the range 0;1½ �. The standardiza-
tion and normalization processes transform

the data, which initially have different

scales, into comparable units:

x ið Þ
std ¼

x ið Þ � lx
rx

(7)

where lx and rx are the mean and standard

deviation of a specific characteristic, respec-

tively. Also,

xðiÞnorm ¼ xðiÞ � xmin

xmax � xmin
(8)

Figure 2. The Legendre modes and the workflow of the shape-based clustering method. (X-axis on time
series data: time (Unit: s), Y-axis on time series data: amplitude of each mode).
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where xmin and xmax are the minimum and

maximum values of the specific characteris-

tic, respectively.

Dimensionality reduction. There are two main

categories of dimensionality reduction: fea-

ture selection and feature extraction. The
feature selection process directly selects a

subset of relevant features from the original

data set, while the feature extraction pro-

cess projects the original data set onto a
smaller feature space. Both methods

remove redundant and irrelevant features

without losing much information. Feature

extraction was found to be necessary in this

study for extracting better representations
of complex data.

Feature extraction can be performed

either linearly or nonlinearly. This study

used both techniques to compare their
effectiveness and determine the best process

for later diagnosis. Linear techniques use a

linear combination of the original variables

to reduce the feature dimension.
A variable matrix in p-dimensional sub-

space can be extracted,26 whose axes effec-

tively represent the original data. For an

observational matrix X with n samples and

p features, X can be approximated by calcu-
lating the product of matrices H and W:

Xn�p�Hn�kWk�p; k<p (9)

X is the observation matrix with rows

representing the samples and columns

representing various features; H is the pro-
jected feature matrix (the new representa-

tion of the observation matrix) of the k

transformed principal components; W is a

linear transformation matrix containing the

weightings of the k principal components.
The linear subspaces are inadequate for

data sets containing nonlinear structures,

and so a nonlinear dimensionality reduction

method also needs to be considered.
Famous nonlinear methods include locally

linear embedding, Laplacian eigenmaps,
t-distributed stochastic neighbour embed-
ding, and isometric mapping (Isomap).27,28

This study compared the effectiveness
of two linear methods (i.e., principal-
components analysis [PCA] and non-
negative matrix factorization [NMF])29,30

and the Isomap nonlinear method.

(I) Linear dimension reduction

The PCA and NMF linear dimension
reduction methods have different con-
straints imposed on the weightings (W)
and the transformed features (H). PCA
reduces the data dimension by retaining
only principal components with the largest
variances.31 W andHmatrices in PCA must
be orthogonal but can have arbitrary signs.
PCA requires the vector components to be
orthogonal, while NMF factorizes non-
negative data set X into two non-negative
matricesW0 andH0, which are then easier to
interpret than are the matrices with arbi-
trary signs.32

(II) Nonlinear dimension reduction

Isomap is the nonlinear generalization of
classical multidimensional scaling used to
find a lower-dimensional embedding by
preserving a pairwise distance matrix in
the original space.33 This approach captures
the geodesic manifold distances between all
pairs of data points: neighbouring points
are approximated by finding their shortest
paths. A sequence of short distances
between neighbouring data points are then
summed for faraway points.31 This means
that intrinsic nonlinear geometry is better
represented than when using the Euclidean
distance in linear dimensionality reduction.

Cluster analysis. Cluster analysis divides the
observed data set into natural groupings
of data sharing common characteristics. In
the feature-based method, cluster analysis
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with hierarchical clustering is performed

using an agglomerative (bottom-up) algo-

rithm that merges the most-similar objects

by considering the cluster distance until all

objects are within the cluster. The cluster

distance is calculated using the Ward link-

age method, and the variance within each

cluster merged with the Euclidean distance

metric is minimized.34,35

One advantage of hierarchical clustering

is that it represents the similarity between

data graphically in a dendrogram, which

allows users to then determine the number

of clusters (k) by cutting the dendrogram at

a suitable level.
The Ward linkage for NMF is defined as

d Ci;Cjð Þ ¼
X

a2Ci[Cj

ka� lk (10)

This present study applied both the aver-

age silhouette score and the Calinski–

Harabasz (CH) index to determine the

optimal number of clusters.36,37 The silhou-

ette score measures how far the clusters are

from each other. The silhouette coefficient

of each instance is determined as

s ið Þ ¼ b ið Þ � a ið Þ

max a ið Þ; b ið Þ
� � ; if jCij > 1

s ið Þ 2 �1;1ð Þ (11)

where a is the mean distance between

instances within the same cluster and b is

the distance between an instance and the

nearest foreign cluster.
The CH index is defined as the ratio

between the within-cluster dispersion and

the between-cluster dispersion:

c ið Þ ¼ tr Bkð Þ
trðWkÞ

n� k

k� 1
(12)

where Bk and Wk are the between- and

within-cluster sums of squares for the

k clusters. The estimated number of clusters
is the k value that maximizes the CH index.

Three cluster analyses using different
dimensionality reduction methods were per-
formed using the clinical data points pro-
vided from the 31 eyes measured using the
Corvis ST device.

Results

This study collected data from the Corvis
ST outputs and extracted anterior cornea
contours for analysis from the 31 keratoco-

nus eyes. Applying Legendre polynomial
decomposition to the sequential contour
data yielded the first six modes for the
subsequent machine-learning analysis.
These time-dependent modal parameters
were used as input for clustering to
investigate the relationship between the

characteristics of keratoconus and their cor-
responding modal parameter profiles in the
air-puff test.

Shape-based clustering

The shape-based method directly clusters
the data using the Legendre mode parame-
ters. Modal parameter waveforms of the
symmetric modes, denoted as M0, M2,
and M4, were directly used as input for
clustering without any pre-treatment
because the amplitude was a crucial param-
eter for the symmetric modes. By contrast,

the variation in the modal parameters was
more meaningful than the amplitudes for
asymmetric modes M1, M3, and M5.
Thus, a Time Series Scaler Mean Variance
was used to reduce the waveforms to signals
with zero mean and unit variance.38,39 The
silhouette score for 2–14 clusters was calcu-

lated to determine the optimal number of
clusters for each mode separately.

Correlation between symmetric modes and

severity. The biomechanical interpretation
of keratoconus is that it reflects reduced

Tai et al. 7



corneal stiffness, a property that represents

the ability of the cornea to withstand exter-

nal forces. This mainly affects the symmet-

rical modes in the response, and so only

these modes were considered in this section.

As shown in Figure 3, 80% of the data were

randomly selected to construct the bench-

mark. The M0 and M2 modes resulted in

two groups: the severe group with higher

amplitudes and the mild group with lower

amplitudes. The M4 mode resulted in four

groups: the severe groups included cases

with high amplitudes as well as those with

apparent depressions in the middle, while the

other cases belonged to the mild groups.

The above comparisons were made based

on the mean of the KCI and KSI severity

indices [i.e., ðKCI þ KSIÞ=2] from the topog-

raphy report.
The validation process used the remain-

ing 20% of the data with the corresponding

silhouette score to determine how close the

test data were to the benchmark groups.

A similarity index was defined as

Smild ¼ b� a

max a; bf g (13)

where a is the Euclidean distance between

data of interest and the mild group, b is the

Euclidean distance between the data of

interest and the severe group, and Smild

>0 indicates that the data of interest exhibit

characteristics of the mild group. Ten iter-

ations in total were performed.
To examine whether the dynamic

response could effectively reflect the severi-

ty of corneal ectasia, we assessed the

Pearson product-moment correlation

(PPMC) between the similarity index (with

the mild group) and the reciprocal of the

mean of the KCI and KSI severity indices

[i.e., 2=ðKCI þ KPIÞ�, to reflect normality.

Symmetric mode index, Isymmetric, was

defined as below. Figure 4 shows that the

symmetric modes were correlated strongly

with the KCI and KSI severity indices

from the topography report. The coeffi-

cients for the modal parameters in (14)

were derived from many experimental

trials to best represent the contributions of

various modes.

ISymmetric ¼ 0:36�M0 þ 0:56�M2

þ0:43�M4 (14)

Correlation between asymmetric modes and weak

region. This study further examined if

dynamic analysis can also provide geomet-

ric information on corneal topography. It is

reasonable to assume that the weakest

Figure 3. Topography report for a selected keratoconus case. KCI: Keratoconus Index, KSI: Keratoconus
Severity Index.
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region of the cornea will contribute the

most to the topographic changes and will
also affect the dynamics of the asymmetric
modes. Establishing the correlation requires
a geometric description of the weak region
of the cornea. This study extracted the cen-
troid of the location of the weak region
from the topography map (i.e., red and

orange parts of keratoconus from the topo-
graphic data in Figure 5). Because the
cornea is circular, it was easy to describe a
geometric location by the distance from the
centroid to the centre of the cornea (d ) and
the angle of the centroid (/). The scalar
centroid function was defined as

Icentroid ¼ f d;/ð Þ ¼ d� 1

j/� 60�j (15)

where / ¼ tan�1 y
x. A weak region with a

centroid closer to / ¼ 60� and farther
from the corneal center resulted in a larger
value. Figure 5 shows the extraction of the

weak region based on a topography report.
Again, 80% of Legendre data were ran-

domly selected to construct benchmarks for
comparison by using k-means clustering.

The M1 and M3 modes were both clustered
into two groups: one with fluctuations
mostly on one side was defined as the ‘devi-
ation group’ and the other with two-sided
fluctuations was defined as the ‘oscillation
group’. For the M5 mode, the one group
exhibiting only one-sided fluctuations was
defined as the ‘deviation group’, and the
other two were defined as the ‘oscillation
groups’.

The other 20% of data were used as the
validation set to discern the similarity
within constructed groups by calculating
the total Euclidean distance between the
data of interest and the benchmark con-
structed in the previous step. The silhouette
score was derived to determine how similar
the data of interest were to the deviation
group:

Sdeviation ¼ d� c

max c; df g (16)

where c is the Euclidean distance between
data of interest and the deviation group, d is
the Euclidean distance between data of
interest and the oscillation group,

Figure 4. Correlation between the similarity index for the symmetric modes Isymmetric and the reciprocal
severity (both with min-max scaling; product-moment correlation coefficient [PPMC] coefficient¼ 0.62
[(high degree]). X-axis: Corvis ST data points, Y-axis: correlation coefficient.
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and Sdeviation > 0 indicates that the data of

interest were highly similar to the deviation
group. In total, 10 iterations were performed.

We first checked the PPMC between

Sdeviation and Icentroid for the M1, M3, and
M5 modes, separately, and confirmed that
they were strongly correlated. To enable a
single index to be used, we proposed an

asymmetric index Iasym. Again, the coeffi-
cients for the modal parameters in (17)
resulted from many trial tests.

Iasym ¼ 0:49�M1 þ 0:48�M3

þ0:33�M5 (17)

The PPMC of Iasym was strongly corre-
lated with Icentroid (Figure 6).

Feature-based clustering

The feature-based method uses all of the
Legendre mode shape data for feature
extraction and selection. The feature-based
clustering uses three dimensionality reduc-

tion methods for feature extraction and
clustering: PCA, NMF, and Isomap.
Using the Tsfresh Python package resulted
in eight groups for both the symmetric and

asymmetric mode data. The average modal
parameter of each group was first derived
and then used to calculate the Euclidean
distance with the benchmark constructed
through the shape-based clustering with 31

Corvis ST data points. A benchmark with a

shorter Euclidean distance indicated higher

similarity.

Principal-components analysis (PCA) and non-

negative matrix factorization (NMF). PCA and

NMF clustered the data into eight groups.

The similarity with the mild group (Smild)
was derived using the symmetric modes,

and that with the deviation group
(Sdeviation) was derived using asymmetric

modes; zero was the reference point,

where the mild and deviation groups were
defined in (13) and (15), respectively.

The mean of the KCI and KSI severity
indices and the weak centroid value were

also obtained for each group based on the

topographic data, with 0.5 as a reference
point. There was a strong PPMC between

the similarity to the mild groups and nor-
mality, with a coefficient of 0.94 (Figure 7).

However, the similarity index for the devi-
ation groups and the weak centroid value of

keratoconus exhibited a weak correlation

(PPMC coefficient¼ –0.26).

Isomap. The Isomap analysis also clustered

the data into eight groups. Again, the sim-
ilarity between the mild and deviation

groups was examined for both the symmet-
ric and asymmetric modes, with zero as the

reference point. Mean KCI and KSI sever-
ity indices and the weak centroid value were

Figure 5. Geographical parameters extracted from a topography report to describe the weakest region.
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also obtained for each group based on the
topographic data, with 0.5 as a reference
point. Again, there was a strong PPMC
between the mild group in the symmetric
modes and normality (PPMC coef-
ficient¼ 0.92). In addition, there was a
strong correlation between the deviation
groups in the asymmetric modes and the
weak centroid value of keratoconus data
(PPMC coefficient¼ 0.76) (Figure 8).

Discussion

This study evaluated the correlation

between the Corvis ST corneal dynamic

response and the topographic patterns of

keratoconus. The Legendre polynomial

expansion was used to expand the response

waveforms into different modes with corre-

sponding modal parameters, which resulted

in six primary modes exhibiting significant

Figure 6. Correlation between the asymmetric modes and the weak centroid value [both with min–max
scaling; product-moment correlation coefficient (PPMC) coefficient¼ 0.53 (high degree). X-axis: Corvis ST
data points, Y-axis: correlation coefficient.

Figure 7. Correlation between symmetric modes and normality (product-moment correlation coefficient
[PPMC] coefficient¼ 0.94 [high degree]). PCA, principal-components analysis; NMF, non-negative matrix
factorization. Y-axis: correlation coefficient.

Tai et al. 11



time-varying characteristics. Shape-based

and feature-based machine-learning analy-

ses were then applied to these modes to

identify their relationships with the kerato-

conus features.
In the shape-based method, k-means

clustering was used to construct a bench-

mark for relating the corneal dynamic

responses to the keratoconus topographic

patterns. The analysis showed a strong pos-

itive correlation between severity and the

symmetric Legendre mode; a soft weak

region, which is an indication of severe ker-

atoconus, induced a large amplitude in sym-

metric modes due to low deformation

resistance. The keratoconus features were

also correlated with the asymmetric

modes. When the weak region was close

to the centre and far from 60�, the asym-

metric modes of the cornea became more

significant.
Based on the results of the feature-based

method, it can be concluded that clustering

with Isomap produced results that corre-

sponded closely to the benchmarks con-

structed with k-means clustering. The

results for groups 4, 5, and 6 in PCA and

groups 3 and 6 in Isomap indicated severe

groups that tended to exhibit large

deformation amplitudes in symmetric

modes. Both PCA and Isomap demonstrat-

ed a strong correlation between symmetric

modes and severity of keratoconus.
Discriminating the keratoconus features

from the response is difficult. The coeffi-

cient for the PPMC between the asymmetric

mode and the weak centroid value reached

only 0.76 in the Isomap analysis. It might

be possible to improve this by modifying

the definition of the weak region and the

centroid function. Most current techniques

rely on the subjective analysis of topo-

graphic maps, making the detection of

early-stage keratoconus without obvious

symptoms clinically difficult.
Our study had some limitations. Firstly,

the dynamic simulation used in this study

does not account for fluid-structure interac-

tion and the internal structure of the eyeball

because the objective was to investigate

trends. Therefore, to obtain a more realistic

simulation of non-contact tonometry, these

factors need to be taken into consideration.

Secondly, although the keratoconic bench-

mark achieves a high correlation with spe-

cific keratoconic characteristics the amount

and the quality of the data may affect the

clustering result. Therefore, more data are

Figure 8. Correlation between asymmetric modes and weak centroid (product-moment correlation
coefficient (PPMC) coefficient¼ 0.76 (high degree). Y-axis: correlation coefficient.
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required to establish more accurate model.
Finally, after establishing a more accurate
model, the system could be embedded into
the Corvis ST program to aid in the diag-
nosis of keratoconus.

In conclusion, this study confirmed that
there is a relationship between the kerato-
conus signs obtained from topography and
the corneal dynamic behaviour captured by
the Corvis ST device. Strong correlations
were evident between the keratoconus
severity and the symmetric modes and
between the keratoconus features (weak
region) and the asymmetric modes. In addi-
tion, the machine-learning clustering system
classified the keratoconus responses into dif-
ferent features, and a strong relationship was
found between the system and
the benchmarks that were constructed.
Further studies are required to gather more
patient data to establish a more extensive
database for validation. It is also essential
to develop the algorithm into an easy-to-
use automatic process for physicians.
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