
RESEARCH ARTICLE

Robust stratification of breast cancer

subtypes using differential patterns of

transcript isoform expression

Thomas P. Stricker1,2, Christopher D. Brown1,3, Chaitanya Bandlamudi1,

Megan McNerney1,4, Ralf Kittler1,5, Vanessa Montoya1,6, April Peterson1,7,

Robert Grossman1,8, Kevin P. White1,8,9,10*

1 Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, United States of America,

2 Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville,

TN, United States of America, 3 Department of Genetics, University of Pennsylvania, Philadelphia, PA,

United States of America, 4 Department of Pathology, University of Chicago, Chicago, IL, United States of

America, 5 McDermott Center for Human Growth and Development, University of Texas Southwestern,

Dallas, TX, United States of America, 6 Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie

Children’s Hospital of Chicago Research Center, Chicago, IL, United States of America, 7 Laboratory of

Genetics, University of Wisconsin, Madison, WI, United States of America, 8 Department of Medicine,

University of Chicago, Chicago, IL, United States of America, 9 Department of Human Genetics, University of

Chicago, Chicago, IL, United States of America, 10 Tempus Labs, Inc. Chicago, IL 60654, United States of

America

* kpwhite@uchicago.edu

Abstract

Breast cancer, the second leading cause of cancer death of women worldwide, is a heteroge-

nous disease with multiple different subtypes. These subtypes carry important implications

for prognosis and therapy. Interestingly, it is known that these different subtypes not only

have different biological behaviors, but also have distinct gene expression profiles. However,

it has not been rigorously explored whether particular transcriptional isoforms are also differ-

entially expressed among breast cancer subtypes, or whether transcript isoforms from the

same sets of genes can be used to differentiate subtypes. To address these questions, we

analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing

data for eleven Estrogen Receptor positive (ER+) subtype and fourteen triple negative (TN)

subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes

with higher fidelity than standard mRNA expression profiles. We found that alternate pro-

moter usage, alternative splicing, and alternate 3’UTR usage are differentially regulated in

breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of

68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes.

Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the

ability of isoform usage to distinguish breast cancer subtypes. Also using our expression

data, we identified several RNA processing factors that were differentially expressed bet-

ween tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAG

OH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7

cells altered isoform expression. These results indicate that global dysregulation of splicing in
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breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific

differentially expressed RNA processing factors.

Author summary

Breast cancer, the second leading cause of cancer death of women worldwide, is a heteroge-

nous disease. Different subtypes of breast cancer display very different expression programs,

and these expression programs are associated with different patient outcomes and with dif-

ferent treatment protocols. However, little is known about what drives these subtype differ-

ences. By sequencing RNA in a discovery cohort of breast cancer patients, we demonstrate

that different subtypes of breast cancer can be distinguished by simply using differential

transcript isoform expression. We confirmed our findings using two additional patient

cohorts. We also demonstrate that differential expression of RNA processing factors bet-

ween subtypes can affect differences in isoform usage. Using RNAi we knock down differ-

entially expressed RNA processing factors including YBX1, YBX2, MAGOH, MAGOHB,

and PCBP2, and show that this knock-down results in differential isoform expression of the

genes identified in our disease subtype panel. Taken together, our results indicate that global

dysregulation of splicing occurs in a subtype-specific and reproducible manner in breast

cancer, and is driven by specific differentially expressed RNA processing factors.

Introduction

Breast cancer is the most common carcinoma in women world-wide and is the second leading

cause of cancer death in American women [1]. The vast majority of these tumors are adenocar-

cinomas that develop from the mammary epithelium. Pathologists categorize breast tumors

based on expression of the estrogen and progesterone receptors (ER, PR, respectively) and

amplification of ERBB2 (Her2Neu) [2]. These pathologic categories determine therapy and

suggest prognosis; tumors that are positive for ER frequently respond to drugs that antagonize

ER, while tumors with ERBB2 amplification respond to transtuzumab [3–5]. Tumors that lack

expression of ER, PR, and lack amplification of ERBB2 are known as triple negative tumors;

these tumors represent a major clinical challenge, as they lack targeted therapies and are

treated with standard chemotherapy [6,7]. Although many triple negative breast cancers are

initially responsive to chemotherapy, they have a worse 4-year distant disease free and overall

survival due to an increased relapse rate amongst those with residual disease and account for a

disproportionate number of breast cancer related deaths [6,7]. This clinical heterogeneity is

reflected in molecular expression profiles, as expression profiling has established five catego-

ries of ductal breast carcinomas that carry different prognoses and have different survivals: 1)

Luminal A, 2) Luminal B, 3) Her2(+), 4) normal and 5) basal-like (triple negative) subtypes

[8]. These molecular expression profiles largely, but not completely, overlap with the estrogen,

progesterone, and ERBB2 status of tumors [8].

Studies establishing the molecular subtypes of breast cancer demonstrated the global dysre-

gulation of the breast cancer transcriptome. However, microarrays do not accurately capture

variation in isoform usage. Dysregulation of differential splicing of the transcriptome has

emerged as an important phenomenon in tumorigenesis [9,10][11][12]. Indeed, several genes

critical to breast cancer, such as TP53, BRCA1, PTEN, and CD44, have been shown to have

cancer-specific splice isoforms [13–15]. Furthermore, alternative splicing of CD44 and several
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other genes in breast cancer cell lines contributes to the epithelial-to-mesenchymal switch and

may promote metastasis [14,15][16].

RNA sequencing allows for efficient and accurate assessment of isoform usage [17,18]. To

determine whether alternative splicing differs between breast cancer subtypes, we used whole

transcriptome sequencing to identify differentially expressed genes and differentially expressed

transcript isoforms, from eleven ER+ and fourteenTN breast cancers. We confirm that gene

expression variation distinguishes these breast cancer subtypes. Interestingly, differential iso-

form expression alone was sufficient to distinguish ER+ and TN breast cancer subtypes, indi-

cating that promoter usage, splicing, and 3’UTR usage may be differentially regulated in breast

cancer subtypes. We replicated these findings in more than 600 cases from two additional

cohorts and using an independent technology for assaying RNA isoform expression. Finally,

we identified differentially expressed RNA processing factors that are responsible for subtype-

specific splicing, and we demonstrated that RNAi knockdown of these factors affects subtype-

specific isoform expression levels in an ER+ breast cancer cell line.

Results

Isoform usage differentiates breast cancer subtypes

RNA-sequencing allows accurate assessment of transcript abundance, identification and quanti-

fication of isoform usage and efficient discovery of fusion-genes [17,18]. To elucidate differ-

ences in these processes between ER+ and TN subtypes, we sequenced the transcriptomes of 11

ER+ and 14 TN from frozen specimens obtained from the University of Chicago pathology

core, using paired-end Illumina sequencing (S1 Table). We aligned reads to the human refer-

ence genome using a splice-junction aware aligner (Tophat) [19,20] (S2 Table). Expression lev-

els were estimated for 32,041 RefSeq transcripts, corresponding to 22,996 non-overlapping gene

models (S3 Table), expressed in at least two tumors. ER+ and TN breast cancers are known to

differ in their expression profiles [8]. Quantitative analysis of fragments per kilobase per million

mapped reads (FPKM) revealed 7,415 RefSeq transcripts that have subtype-specific expression

patterns (Wilcox Rank Sum test, false discovery rate< 0.05, S3 Table). In accordance with pre-

vious observations [8], tumor subtypes were clearly distinguishable on the basis of expression

level (Fig 1A). Subtype-specific gene expression levels were largely replicated between our RNA-

seq data and previously published microarray data sets from independent cohorts [21](S1 Fig).

As microarray based differential expression measurements may be confounded by isoform

specific microarray probes, we explored the replication rate between microarray data and

RNAseq data for single isoform and multi-isoform Refseq genes. As expected, we observed a

higher replication rate for single isoform genes as opposed to multi-isoform genes (Fig 1B).

We next explored the function of differentially expressed genes in our dataset, using pathway

analysis and Gene Set Enrichment Analysis (GSEA) [22,23]. Reassuringly, the top gene sets

identified by GSEA in both TN and ER+ tumors are those that distinguish breast cancer sub-

types in previous studies (S2 Fig). Indeed, the gene sets identified by GSEA were dominated by

breast cancer expression sets. This analysis also highlighted several interesting differences in

the biology between ER positive and triple negative breast carcinomas. For example, gene sets

involved in the biogenesis of peroxisomes were enriched in ER+ breast cancer (S4 Table).

Interestingly, it has been shown that the pentose phosphate shunt, which depends on peroxi-

somes, is particularly active in ER+ breast cancer cell lines and its activity is dependent upon

estrogen signaling [24]. Conversely, GSEA identified several cytokine and immune related

gene sets that are upregulated in triple negative breast cancers; these pathways likely reflect the

prominent immune infiltrates common within triple negative tumors and that are apparent by

morphology (S4 Table).

Breast cancer subtype-specific splicing program
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We also performed DAVID analysis of differentially expressed genes, and this approach demon-

strated enrichment for regulatory processes that affect both gene and protein expression levels and

function, such as phosphoproteins, 3’-UTR mediated translational regulation and gene expression

(Fig 1C). The most significant biological process enriched in our differentially expressed gene set

was alternative splicing (Fig 1C). Identification of alternative splicing was particularly intriguing

given the ability of transcriptome sequencing to systematically quantify isoform expression levels

[17,18]. Indeed, differentially spliced isoforms are emerging as an important factor in carcinogene-

sis [9,10,25]. Interestingly, differential isoform usage alone was sufficient to distinguish ER+ and

TN subtypes (Fig 1D). To further explore this finding, we analyzed the expression of 5,408 Refseq

gene models with more than one isoform. 694 of these genes exhibit subtype-specific isoform exp-

ression levels (subtype by isoform interaction using an ANOVA F-test, false discovery rate< 0.05;

Fig 1. Breast Cancer Isoform Abundance differentiates breast cancer subtypes. A) First two principal components derived from RefSeq gene RNAseq

FPKM expression levels. As expected, expression levels can differentiate breast cancer subtypes. B). Replication rate between microarray and RNAseq for

subtype-specific, differentially expressed genes comparing single isoform and multi-isoform genes. The replication rate is higher for single isoform rather

than multi isoform genes. C) Top 10 enriched pathways from DAVID analysis on differentially expressed genes between subtypes (plotting–log10 p value).

Genes with multiple isoforms are highly enriched. D) First two principal components derived from RefSeq gene RNAseq FPKM expression levels for multi-

isoform genes only. Differential expression of isoforms alone is sufficient to segregate breast cancer subtypes E) Left panel, by sample FPKM expression

levels for ECHDC1, PPP2R5D, and CASP2. Each color represents a specific isoform. Right Panel, Isoform gene models, colors corresponding to expression

plots. Thick bars = exons, thin bars = introns. Vertical gold bars = ESR1 binding site from ChIPseq data.

doi:10.1371/journal.pgen.1006589.g001
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Fig 1E, S3 Table). This result indicates that alternative promoter usage, alternative splicing, and

alternative 3’UTR usage are differentially regulated between the subtypes and may contribute to

the differing biology of ER+ and TN breast cancer subtypes.

Fig 1E shows several examples of differential isoform expression between ER+ and TN

tumors. ECHDC1, an enzyme involved in mitochondrial fatty acid metabolism and located in

a region implicated in breast cancer by GWAS [26], showed differential splicing between ER

+ and TN subtypes (Fig 1E; ANOVA F-test, FDR = 7.95e-08). PPP2R5D is a regulatory subunit

of protein phosphatase 2A, which is implicated in the negative control of cell growth and divi-

sion [27]. There are three isoforms of PPP2R5D that encode different proteins, and we found

that one of the short isoforms is predominantly expressed in TN tumors (Fig 1E; ANOVA F-

test, FDR = 8.067e-07). Caspase 2, which mediates the execution phase of apoptosis, is known

to express 2 isoforms that encode different proteins; the shorter isoform is believed to protect

from apoptosis, while the longer isoform promotes apoptosis [28,29]. We found the short, pro-

tective isoform of CASP2 to be predominantly expressed in TN tumors (Fig 1E; ANOVA F-

test, FDR = 2.34e-05), suggesting a potential mechanism that TN tumors could use to prevent

apoptosis. Interestingly, GSEA of differentially expressed isoforms demonstrated enrichment

for genes involved in apoptosis, and thus differential splicing may contribute more broadly

than CASP2 to differences in regulation of apoptosis between breast cancer subtypes (S3 Fig).

Replication of isoform usage discrimination of breast cancer subtypes

To replicate subtype-specific isoform usage, we used data generated by The Cancer Genome

Atlas (TCGA).

We downloaded and aligned 594 breast cancer RNAseq data sets from TCGA, following

the same data processing pipeline used for our internal dataset [30]. As in our discovery

cohort, principal component analysis demonstrated that ER+ and triple negative tumors could

be differentiated by isoform usage alone (Fig 2A). Expression of single isoform only genes was

also able to differentiate ER+ and TN breast cancer subtypes, consistent with previous observa-

tions that gene expression differs strongly between breast cancer subtypes (S4 Fig). Thus, not

only can breast cancer subtypes be differentiated by differential expression of different genes,

they can also be differentiated by isoform usage alone. In our discovery dataset, we identified

694 multi-isoform genes with subtype-specific differential isoform expression. Analysis of

these same 694 multi-isoform genes in the TCGA dataset demonstrates that the vast majority

replicate significant subtype-specific isoform expression (Fig 2B).

To further validate our results, we designed isoform-specific Nanostring probes for 212 iso-

form pairs that showed differential subtype expression in the original 25 samples (Fig 3A). To

assess technical validation of our isoform measurements, the expression log ratio of each iso-

form pair was calculated for each platform; concordant isoforms are represented in the upper

right and lower left quadrants (example in Fig 3B, S5 Fig). Each of our samples showed

between 80–85% concordance between Nanostring and RNAseq data, indicating that subtype-

specific differential isoform usage was largely reproducible. Furthermore, many of the discor-

dant probes were discordant across the majority of the samples, suggesting that the observed

non-concordance between RNAseq and Nanostring was typically due to a small subset of iso-

forms that were consistently, inaccurately measured on a particular platform.

To determine if the ability of differential isoform expression to segregate ER+ and TN sub-

type was biologically reproducible, we measured isoform expression via Nanostring in an inde-

pendent set of 68 breast cancer specimens obtained from FFPE blocks from the University of

Chicago pathology core (44 ER+ and 24 TN). To assess the ability of our isoform expression

signature to distinguish ER+ and TN breast cancer subtypes in this independent cohort, we

Breast cancer subtype-specific splicing program
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Fig 2. Breast Cancer Isoform Abundance Differentiates Breast Cancer Subtypes in TCGA data. A) First

two principal components derived from RefSeq gene RNAseq FPKM expression levels for multi-isoform

genes only. TCGA samples are segregated by breast cancer subtype. B) P value plot for subtype-specific

isoform expression in the TCGA data for 694 multi-isoform genes that were differentially expressed in the

discovery cohort. 80% of these genes also show subtype-specific isoform expression in the TCGA cohort.

doi:10.1371/journal.pgen.1006589.g002

Breast cancer subtype-specific splicing program
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used the Nanostring data from the discovery cohort to build a logistic regression-based sub-

type classifier and applied that classifier to the replication cohort. Subtype prediction based on

isoform expression was consistent using this replication cohort and an independent method

for RNA measurement (Fig 3C, AUC = 0.72), further demonstrating that ER+ and TN breast

cancer subtypes can be differentiated based on isoform expression alone.

Fig 3. Nanostring expression isoform expression levels replicate ability to discriminate breast cancer

subtypes in additional cohort. A) Schematic of isoform specific nanostring probes. B) In the discovery

cohort, RNAseq isoform expression ratios versus nanostring isoform expression ratios, demonstrating

significant concordance between the two platforms C) Receiver-operator curve for logistic model trained on

nanostring isoform expression levels in the discovery cohort and applied to a validation cohort of 64 breast

cancer cases. (AUC = .76)

doi:10.1371/journal.pgen.1006589.g003

Breast cancer subtype-specific splicing program

PLOS Genetics | DOI:10.1371/journal.pgen.1006589 March 6, 2017 7 / 19



Splicing, alternative promoter usage and alternative 3’UTR usage

contributes to differences between breast cancer subtypes

In the analysis above, we identified 694 multi-isoform genes that showed subtype-specific dif-

ferential expression. To understand the mechanisms that generate subtype-specific isoform

usage, we quantified subtype-specific expression for all possible pairs of isoforms of the 694

genes. Differentially expressed isoform pairs (ANOVA F-test, FDR < 0.05) were then com-

pared to determine whether they differed in 5’UTR, exons, and/or 3’UTR. 967 isoform pairs

were found to be differentially expressed. The majority of differentially expressed pairs were

alternatively spliced (63.5%), but differential promoter usage (24.3%) and differential 3’UTR

usage (12.2%) were also common (Fig 4A). These fractions were not significantly different

than the distribution of isoform pairs in RefSeq, indicating that no single mechanism predomi-

nates in differentiation of ER+ and TN breast cancer subtypes. Considering the largest category,

alternatively spliced isoforms, the difference between isoforms can be defined as exon skipping

events, intron retention events, alternative donor events, or alternative acceptor events (Fig 4B).

To determine the fraction of each event, we counted all such events for all pairwise, differentially

expressed isoforms. Exon skipping events represented the majority, accounting for 61.4% of

alternate splicing events, while intron retention, alternative acceptor and alternative donor

accounted for 11.4%, 19.6%, and 7.6%, respectively (Fig 4C). We then determined if exon splic-

ing or intron retention predominated in one of the breast cancer subtypes, or if such events

were equally distributed between subtypes. For each differentially expressed pair we determined

whether the isoform with the skipped exon or retained intron was more highly expressed in TN

or ER+ tumors. There was no significant difference between ER+ and TN subtypes in number

of expressed isoforms with retained introns or skipped exons, indicating that the differences in

splicing between subtypes is due to selection of target genes for splicing, rather than general pre-

dominance of a particular general splicing mechanism in one subtype (Fig 4D).

We next examined the role that differential 5’UTR and 3’UTR usage played in differentiat-

ing ER+ and TN subtypes. Alternate UTR usage could result in either change of coding

sequence or of only non-coding sequence. For each pair of differentially expressed isoforms

that differed in UTR sequence, we determined whether the resulting differences also resulted

in coding sequence differences. 50% of all 5’UTR differences resulted in coding sequence

Fig 4. Differential isoform usage between breast cancer subtypes includes alternative splicing, alternative promoter usage, and alternative 3’UTR

usage. A) Fraction of differentially expressed isoforms that differ in exon usage, 3’UTR usage, or 5’UTR usage, pairwise comparison. No one mechanism

dominates. B) Schematic outlining different types of splicing, including exon skipping, intron inclusion, and alternative donor/acceptor sites. C) Pairwise

comparison of exon splicing events shows fraction of each type occurring within differentially expressed isoforms. D) Plot of the number of exon skipping and

intron retention events in each subtype. There is no significant difference between subtypes.

doi:10.1371/journal.pgen.1006589.g004
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differences between isoforms, while the vast majority of 3’UTR differences were accompanied

by changes in coding sequence (S6 Fig)

Differential expression of RNA processing factors between breast

cancer subtypes contributes to isoform usage differences

We hypothesized that differential expression of RNA processing factors generates these differ-

ences in isoform expression. Using a list of human RNA processing factors derived from Uni-

prot (S5 Table), we found that 57 of 194 RNA processing factors were differentially expressed

between the subtypes, and thus splicing factors were enriched in differentially expressed genes

(Fisher test p.value = 8.38e-5). Given that ER expression contributes to, and to some extent

defines, the differences between ER+ and TN breast cancer subtypes, we further hypothesized

that splicing factors directly or indirectly regulated by estrogen receptor were likely to contrib-

ute to subtype-specific differential splicing. Thus, to test this hypothesis and to identify deter-

minants of differential splicing between ER+ and TN breast cancer subtypes, we selected

several RNA processing factors that were differentially expressed between breast cancer sub-

types (S7 Fig, S6 Table), were induced by estrogen in an estrogen time course in MCF7 cells

[31], and/or have previously been identified as potential direct targets of ER based on the pres-

ence of ER binding sites in genome-wide chromatin immunoprecipitation experiments[31].

Because we wished to use ER+ MCF7 cells to carry out functional validation of candidate RNA

processing factors, we also required that the factors we selected to be expressed at detectable

levels in MCF7 cells. The resulting set of RNA processing factors included MAGOH, MAG

OHB, YBX1, YBX2, THOC1, and PCBP2. MAGOH and MAGOHB are closely related mem-

bers of the same family and both are known to function in the exon junction complex. MAG

OH was strongly differentially expressed between tumor ER+ and TN subtypes, while MAG

OHB was regulated by estrogen in MCF7 cells. MAGOH, MAGOHB, YBX1, PCBP2, and to a

lesser extent THOC1, showed strong subtype-specific expression in the TCGA dataset (S8 Fig,

S6 Table), while YBX2 showed strong estrogen regulation in the MCF7 time course. Each of

these factors was knocked down via siRNA in MCF7 cells, and gene expression was assayed via

RNAseq to determine what effect knockdown had on isoform usage (S9 Fig). For each knock-

down, differentially expressed isoforms were defined by comparison to control, and then the

overlap of these differentially expressed isoforms was compared to differentially expressed iso-

forms in the RNAseq tumor expression data. This overlap was significant for all 6 RNA pro-

cessing factors (Fig 5A, S10 Fig, p-values in Table 1). Indeed, of the 694 multi-isoform genes

that showed subtype-specific expression in our discovery cohort, 495 showed isoform specific

changes in expression with knockdown of at least one of the chosen processing factors (Fig

5A). Interestingly, the overlap of differentially expressed isoforms upon knockdown of each of

the six RNA processing factors was also highly significant, suggesting a unified splicing pro-

gram mediated by these factors differentiating ER+ and TN breast cancer subtypes (Fig 5B,

Table 1). Indeed, pairwise comparison of gene expression levels between splicing factor knock-

downs showed a high degree of correlation for all pairs of RNA processing factors (Fig 5B and

5C, Table 1). Importantly, the direction of change of isoform expression was largely concor-

dant between the knock-down and the expected direction of change from the breast cancer

sequencing data (Fig 5C). We next asked whether the isoforms that are differentially expressed

differ in exons, UTRs, or both. Fig 5 panel D demonstrates that differential exon utilization

accounts for the vast majority of differentially expressed isoforms following knockdown of all

6 factors. This result is consistent with knockdown of these factors affecting splicing.

We next asked whether splicing targets of these factors were also known ER and PR targets,

using previously published ChIP binding data[31]. Interestingly, targets of THOC1 and YBX1

Breast cancer subtype-specific splicing program
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show enrichment for ER and PR binding sites, while targets of MAGOH and MAGOHB show

enrichment for ER binding sites (Table 1, S11 Fig, S12 Fig). Most significantly, for all the RNA

processing factors except THOC1, the direction of the effect on isoform expression is consis-

tent between the knockdown and expectation based on the isoform profiles of primary tumors

(Table 1). These results indicate that differential isoform usage between breast cancer ER+ and

TN subtypes is regulated by differential expression of several RNA processing factors, includ-

ing MAGOH, MAGOHB, YBX1, YBX2, and PCBP2. Thus, we have identified a splicing driven

signature that differentiates breast cancer subtypes and identified RNA processing factors that

contribute to subtype differences.

Discussion

A better understanding of the biological mechanisms that underlie gene expression differences

between ER+ and TN breast cancer subtypes promises to yield new insights into subtype-spe-

cific therapeutic targets. Here we have used paired-end, whole transcriptome sequencing to

identify a set of isoforms that distinguish ER+ and TN tumors. Recently published studies

have strongly implicated alternative splicing as an emerging factor in tumorigenesis [9,10]

Fig 5. Knockdown of RNA processing factors differentially expressed between subtypes alters expression of subtype-specific isoforms. A) Venn

diagram showing the overlap for isoforms affected by splicing and isoforms differentially expressed between subtypes in our discovery cohort. In the case of

both MAGOH and YBX1, the overlap is significant. (Fisher’s Exact Test). B). Top panel: Plot FPKM of multi-isoform genes from MAGOH knockdown (x-axis)

and YBX1 knockdown (y-axis). Bottom panel: Plot FPKM of multi-isoform genes from MAGOH knockdown (x-axis) and MAGOHB knockdown (y-axis). In both

cases, there is a high degree of overlap in isoform expression levels. C) Isoforms were classified into concordant or discordant based on direction of changes

in the knock-down compared to expected direction of change from the breast cancer sequencing data. Many more isoforms were concordant than non-

concordant, and there was no difference in fraction of concordant genes whether they were up regulated by knockdown (dark grey) or down regulated by

knockdown (light gray) D) Pairwise differentially expressed isoforms (FDR <0.05) are mostly represented by isoforms that differ in exons, rather than TSS,

indicating that knockdown of these RNA processing factors is affecting splicing.

doi:10.1371/journal.pgen.1006589.g005
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[11,12]. A previous RNA sequencing study established that splicing is dysregulated in breast

cancer compared to normal controls, and that the genes that are differentially spliced between

normal and cancer vary based on subtype[32]. In our studies, we demonstrate that not only

does splicing differ between breast cancer subtypes, but also quantitative assessment of differ-

ential splicing alone was sufficient to distinguish ER+ from TN tumors.

Our finding that differential transcript isoform usage can differentiate breast cancer sub-

types is strongly reproducible. Using only ~200 isoforms, we demonstrate this finding in three

independent cohorts, University of Chicago Frozen, University of Chicago FFPE, and TCGA.

Thus, breast cancer subtypes could be distinguished based on the expression of different ver-

sions of the same genes. These results suggest that subtype-specific, differential regulation of

promoter usage, alternative splicing, and 3’UTR usage contributes to differences in gene

expression and thus differences in biological behavior between subtypes. We find that many

RNA processing factors are differentially expressed between ER+ and TN breast cancer sub-

types. Furthermore, we have identified several RNA processing factors, including YBX1,

Table 1. Isoform Overlaps between Knockdown and Tumor samples.

Gene MAGOH MAGOHB PCBP2 THOC1 YBX1 YBX2

Subtype vs knock down subtype_and_KD 63 29 47 403 30 31

subtype_not_KD 606 609 611 551 611 611

KD_not_subtype 275 161 183 2133 130 143

not_KD_not_subtype 4243 4256 4254 4005 4260 4260

Odd ratio (95% CI) 1.6 (1.18–

2.15)

1.26 (0.81–

1.9)

1.79 (1.25–

2.51)

1.37 (1.03–

2.43)

1.61 (1.03–

2.43)

1.51 (0.98–

2.26)

Fisher Extact Test p-

Value

0.0018 0.2652 0.0012 9.20E-06 0.0291 0.0483

ER binding vs knock down ER_and_KD 153 72 65 1860 69 56

ER_not_KD 6695 6776 6783 4988 6779 6792

KD_not_ER 568 270 314 6835 216 194

not_KD_not_ER 29338 29636 29592 23071 29690 29712

Odd ratio 1.18 (0.98–

1.42)

1.17 (0.89–

1.52)

0.9 (0.68–

1.18)

1.26 (0.92–

1.71)

1.4 (1.05–

1.85)

1.26 (0.92–

1.71)

Fisher Extact Test p-

Value

0.07 0.26 0.51 7.69E-14 0.018 0.14

PR binding vs knock down PR_and_KD 68 34 32 688 29 21

PR_not_KD 2387 2421 2423 1767 2426 2434

KD_not_PR 653 308 347 8007 256 229

not_KD_not_PR 33646 33991 33952 26292 34043 34070

Odd ratio 1.47 (1.12–

1.89)

1.55 (1.05–

2.22)

1.29 (0.87–

1.86)

1.28 (1.16–

1.4)

1.59 (1.04–

2.34)

1.28 (0.78–

2.01)

Fisher Extact Test p-

Value

0.004 0.021 0.178 2.37E-07 0.023 0.253

Subtype expression vs

knock down

knockdownUp_tnDown 4186 5390 4111 3177 5321 4292

knockdownDown_tnDown 2192 1430 1572 2978 1738 1908

knockdownUp_tnUp 1515 1658 1232 1084 1642 1466

knockdownDown_tnUp 898 814 798 1003 913 802

Odd ratio 1.13 (1.03–

1.25)

1.85 (1.67–

2.05)

1.69 (1.52–

1.89)

0.99 (0.89–

1.09)

1.7 (1.54–

1.88)

1.23 (1.11–

1.23)

Fisher Extact Test p-

Value

0.013 2.20E-31 7.10E-22 0.8 3.06E-26 7.09E-05

Splicing factor subtype

expression

SF_expresion_TN-ER 0.862 0.225 -0.106 -0.155 1.32 0.687

doi:10.1371/journal.pgen.1006589.t001
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YBX2, MAGOH, MAGOHB, and PCBP2, that appear to contribute to subtype-specific splic-

ing. We have shown that, not only are these RNA processing factors differentially expressed

between subtypes, but also that when they are knocked down, splicing changes in the direction

predicted. In other words, knockdown of factors expressed in ER+ BRCA led to a more TN-

like splicing pattern, and vice versa. Thus, global dysregulation of splicing events is a funda-

mental component of the breast cancer transcriptome that occurs in a subtype-specific and

reproducible manner. Differential expression of splicing factors between ER+ and TN breast

cancer subtypes alters the transcriptome in predictable ways that likely contribute to differ-

ences in biology between breast cancer subtypes. Addition of splice usage to breast cancer tran-

scriptome studies may further refine our ability to distinguish breast cancer subtypes, as well

as perhaps identify fine details within subtypes. Of note, we also attempted to knock-down

these factors in a MBA-MD-468 and measure isoform usage, but the knock-down was lethal to

these cells.

Additionally, further study of the splicesome may lead to improved understanding of breast

cancer biology and suggest several ways in which altered splicing may affect phenotype in

breast cancer subtypes. For example, TN tumors collectively express a short, anti-apoptotic

isoform of caspase 2 that was not expressed in ER+ tumors[28,29]. Thus, TN tumors may use

splicing of caspase 2 in avoid apoptosis in a way that ER+ tumors do not. This finding could

have therapeutic implications; such splicing may make one of the subtypes more or less sus-

ceptible to therapies designed to promote apoptosis. Conversely, if this splicing event could

be blocked in TN tumors, it could induce apoptosis. Future work will focus on identification

of differentially spliced isoforms that explain differences in biological behaviors between

subtypes.

Thus, in this work, we have used RNA-seq to mine the transcriptome of two common inva-

sive breast cancer subtypes; ER+ and triple negative breast cancer. We demonstrate that, in

addition to transcript abundance, isoform abundance is sufficient to distinguish breast cancer

subtypes, and implicate differences in isoform usage as underlying some of the differences

seen in the biology of these two tumors. We have identified differentially expressed RNA pro-

cessing factors, and demonstrate that they are responsible for splicing of subtype-specific

isoforms.

Methods

Sample procurement

Twenty-five frozen breast carcinoma samples (11 ER positive and 14 triple negative) were

obtained from the de-identified tissue bank in the Human Tissue Resource Center in the

Department of Pathology at the University of Chicago Medical Center. A de-identified pathol-

ogy report was supplied with each case, which contained grade, stage, lymph node status, age

+/- 5 years and self-reported race (S1 Table). Additionally, a frozen section from the block that

was used for RNA isolation was provided with each case. These sections were examined by a

pathologist to confirm the diagnosis and grade, as well as to ensure each block contained at

least 70% tumor. These slides were also used to select areas of high tumor concentration for

RNA isolation (see below). Slides were also cut for adjacent normal to confirm the absence of

tumor. Additionally, 68 de-identified FFPE samples, representing 44 ER+ and 24 ER- samples

were obtained from the diagnostic archives of the Department of Pathology at the University

of Chicago Medical Center. This study was approved by The University of Chicago Institu-

tional Review Board (protocol 16970B), and waiver of consent was granted as no identifying

personal health information was provided to researchers.

Breast cancer subtype-specific splicing program
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Library preparation and sequencing

cDNA libraries were prepared for Illumina sequencing with minor modifications to published

protocols(36, 37). Briefly, frozen section slides cut from each block were used to select areas

with high tumor cell concentration. These areas of the frozen block were then punched using a

sharpened 1mm tissue microarray punch. OCT was removed from the ends of this punch via a

scalpel, and the frozen core was ground to a fine powder under liquid nitrogen. Total RNA

and gDNA was then extracted from frozen tissue samples using Qiagen QiaShredder/RNeasy

and DNeasy Blood and Tissue kits. RNA quality was confirmed using an Agilent Bioanalyzer,

and no RNA with a RIN< 7.5 was used. Poly-adenylated RNA was purified with the micropo-

lyA purist kit (Ambion), ethanol precipitated, and resuspended in 10 uL RNAse free water.

First strand reverse transcription was primed with random nonomers, using SuperscriptII RT

(Invitrogen). Second strand synthesis was performed with RNAse H and DNA Polymerase I.

Double stranded cDNA was repaired and polished with T4 DNA polymerase, Klenow, and T4

polynucleotide kinase. Adenosine was added to 3’ ends with Klenow and paired end Illumina

adapters ligated with T4 DNA ligase. Ligation reactions were size selected for 400–500 bp frag-

ments after agarose gel electrophoresis and PCR amplified for 15 cycles using Illumina PCR

primers and Pfx polymerase. Paired end Illumina sequencing was performed according to the

manufacturer’s instructions. RNA from MCF7 knockdowns was isolated using Qiagen RNeasy

kits, and RNAseq libraries were built using ScriptSeq kits from Epicentre, following manufac-

turer’s protocols.

Read mapping

Illumina sequence files were converted to Sanger fastq format (ie., Q0-93 using ASCII 33–

126). Paired end reads were aligned to the human reference genome (build 36) using TopHat.

Tophat was run with an estimated mean and standard deviation insert size of 200 and 50

bases, respectively. Sequencing artifacts occasionally produced lanes with fewer than 20%

aligned reads. Raw data QC revealed that many such cases were caused by precipitous drops in

sequence quality at late run cycles. In such cases, reads were trimmed from the 3’ end such

that, on average across all reads in a lane, the Phred quality score based estimate of the proba-

bility of a sequencing error within the remaining read was less than 95%. TopHat alignments

were generated in SAM format(39) and further alignment manipulation was performed with

SAMTools, Picard (http://picard.sourceforge.net), and custom perl scripts. Read alignments

with mapping qualities less than 10 were removed. Alignments generated from more than one

sequencing lane were merged with Picard MergeSamFiles. We downloaded TCGA consortium

aligned RNA-seq bams for 657 samples from cgHub (https://cghub.ucsc.edu, TCGA’s Data

Coordinating Center) as a member of the TCGA working group. TCGA’s Breast RNA-seq

libraries are generated using the Illumina TrueSeq library preparation protocol and sequenced

on the Illumina HiSeq 2000 machines. A median of 76.4 million 2x50bp reads were generated

for each sample. Using in-house scripts, we generated raw fastq sequence files from the bams

for re-analysis.

We re-aligned all fastqs and generated gene/isoform quantification using the tophat and

cufflinks, respectively. To allow for proper comparisons, all parameters, software versions, ref-

erence genomes and gene models used for this analysis are consistent with the pipeline we

used to analyze the original 26 samples in this study. Briefly, we trimmed poor quality bases

(to Q15) at the 3’ ends of the reads using a trimming algorithm implemented in BWA. Tophat

requires the parameters for insert size distribution of the RNA-seq library. We determined for

each sample this by sub-sampling 1 million reads and re-aligning them to the spliced transcrip-

tome using bowtie-2.0.0-beta. Mean and standard deviation are determined from the reads

Breast cancer subtype-specific splicing program
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that align concordantly to the transcriptome using the CollectInsertSizeMetrics module in

Picard suite of tools. We next aligned all reads to hg18 reference genome using tophat-1.3.3

(—no-coverage-search—segment-length 25—segment-mismatches 2). We also provided the

gene models to the aligner at this step for faster and accurate resolution of known splice junc-

tions. Transcript quantification on the aligned bams is performed using cufflinks-2.0.0 (all

default parameters).

Gene expression analyses

RNASeq: Transcript expression levels were estimated directly from each lane of RNAseq data,

as Fragments Per Kilobase per Million mapped reads (FPKM) using cufflinks (http://cufflinks.

cbcb.umd.edu/) for transcript assembly and quantitation, with RefSeq gene models as a refer-

ence annotation set. FPKM distributions were quantile normalized across lanes. For principal

component analysis (performed via pcaMethods package in R), FPKMs were mean centered.

Subtype-specific differential gene expression was calculated in two ways 1) via gene-by–gene

linear model, of the form y ~ m0 + subtype + E and 2) by Wilcoxon rank sum test, comparing

the two subtypes. Subtype-specific isoform expression was calculated via gene gene-by–gene lin-

ear model, of the form y ~ m0 + subtype + isoform + subtype�isoform + E, where the interac-

tion between isoform and subtype identified differentially expressed genes. All effects were

treated as fixed effects, and multiple hypothesis testing was controlled via Storey’s q-value FDR.

Microarray

Microarray expression data from GSE10866 was downloaded from Gene Expression Omnibus

into R using GEOquery. The expression set was subset to arrays using the GPL1390 Agilent

Human 1A Oligo UNC custom microarray. Subtype-specific differential gene expression was

calculated via gene-by–gene linear model (R function lm), of the form y ~ m0 + subtype + E.

The intensities of probes targeting the same gene were averaged. Tumor subtype was treated as

a fixed effect, significance of the tumor subtype effect was assessed by t-test, and multiple

hypothesis testing was controlled via Storey’s q-value FDR. Estrogen time course data was ana-

lyzed as in Hua et. al.[31]

Nanostring

Isoforms with significant subtype�isoform interactions (FDR = 0.05) were submitted to Nano-

string for custom design. Two hundred and twelve isoforms, representing 106 genes, could be

designed with high quality nanostring probes unique for each isoform. A codeset specific to the

targets was designed using a 3’ biotinylated capture probe and a 5’ reporter probe tagged with a

specific fluorescent barcode; creating two sequence-specific probes for each target transcript.

Probes were hybridized to 100 ng of total RNA for 19 hours at 65˚C. Following incubation, sam-

ples were applied to the NanoString Preparation Station for automated removal of excess probe

and immobilization of probe-transcript complexes on a streptavidin-coated cartridge. All

manipulations were performed using the NanoString Preparation Station robotic fluids handling

platform. Data were collected using the nCounterTM Digital Analyzer by counting the individual

specific fluorescent barcodes and quantification of target RNA molecules in each sample.

Nanostring data processing and class prediction analysis

All normalization and analysis of the Nanostring data was performed in R. Nanostring data

were normalized by fitting a negative binomial model with terms for assay, well, median nega-

tive control, median house keeping gene, and transcript. The resulting residuals were used for
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subsequent analysis. To evaluate concordance between RNAseq and nanostring expression

levels, the ratio of each isoform pair was calculated for all samples in which RNAseq and nano-

string data was obtained. To determine the ability of isoform expression to differentiate sub-

types, the nanostring data from the 26 samples in our discovery cohort was used to train a

logisitic regression classifier. The weights from this regression classifier were then extracted

and used to classify each of the 68 FFPE samples into either ER+ or ER- cases. This classifica-

tion was compared to the pathologic diagnosis, and the performance of the classifier assessed

by receiver-operator characteristics.

Isoform analysis

AStalavista was used to extract splicing events from refseq gene models. For all gene symbols

with multiple refseq isoforms, subtype-specific isoform expression for all possible isoform

pairs was calculated via gene gene-by–gene linear model, of the form y ~ m0 + subtype + iso-

form + subtype�isoform + E, where the interaction between isoform and subtype identified

differentially expressed genes. By comparing isoforms in a pairwise fashion, we could deter-

mine whether subtype-specific isoforms differ in 5’UTR, 3’UTR or coding sequence. For

differentially expressed isoforms that differ in 5’UTR sequence, 1000bp upstream of each dif-

ferent 5’UTR sequence was extracted. Beta coefficients from the linear model were used to

determine which isoform was expressed in each subtype to allow separation of ER+ 5’UTR

and TNBC 5’UTRs. These sequences were supplied to MEME 2.6 to identify enrichment of

transcription factor binding sites.

Knockdown expression analysis

Illumina reads were treated as above, and aligned to hg18 with Tophat. Cufflinks with refseq

gene models was used to assemble transcripts. Cuffdiff was used to identify differentially

expressed isoforms, using refseq genes models as a reference.

Cell culture/siRNA

MCF7 were cultured in DMEM/10% FBS + penicillin/streptomycin. Dharmacon ON-Target-

plus SMARTpools were ordered for each of the splicing factors, plus negative controls. siRNA

transfection used DharamaFECT1 and followed manufacturer’s protocols. Briefly, cells were

Table 2. Primers for qPCR.

MAGOHB F TTG GCC GAC AGG AGC TTG AAA TTG

R AGG CCT TCA GGA TCC TTT GAC TGA

PCBP2 F CAC CAG TTG GCA ATG CAA CAG TCT

R ATG CAT CCA AAC CTG CCC AAT AGC

THOC1 F ACA AGG GAA CAC ATG CCC ACT TTG

R AAG TGA GGG CTT CTC CGT GCT AAT

YBX2 F ACG TCC GGA ATG GTT ACG GAT TCA

R TAC ATT AGT GGC TTC TGC GCC CTT

MAGOH F TCT TGG AAG TTC AGG CTC GGT TGT

R ATC TTA ACT TCC CGT CCG GTC GAA

YBX1 F AGG TCA TCG CAA CGA AGG TT

R TGC ACA GGA GGG TTG GAA TAC TGT

GAPDH F TCG ACA GTC AGC CGC ATC TTC TTT

R ACC AAA TCC GTT GAC TCC GAC CTT

doi:10.1371/journal.pgen.1006589.t002
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trypsanized, counted and diluted to 1x10^5 cells/ml, and 3 mls were plated/well in 6-well

plates. Cells were incubated at 37C overnight. Cells were transfected the next day with 2uM

siRNA using DharmaFECT1. RNA was harvested using Qiagen RNeasy, following manufac-

turer’s protocols, 72 hours after transfection. Experiments were performed as biological dupli-

cates. Knockdown was confirmed using qrtPCR, using one step RT-PCR SYBR Green master

mix from BioRad, following manufacturer’s instructions. qPCR was performed in an ABI Ste-

pOne real time PCR machines. GAPDH primers were used as a control. All primer sequences

are shown in Table 2.

Supporting information

S1 Fig. RNAseq expression data recapitulates microarray expression data. Plot of the beta

coefficient from the linear model used to identify subtype-specific expressed genes, with RNA-

seq data plotted on the x-axis and microarray data plotted on the y-axis. RNAseq is highly con-

cordant with microarray data. ESR1, FOXA1, and XBP1 (in red), which are known to be

highly differentially expressed between breast cancer subtypes, are highly differentially

expressed in both RNAseq and microarray data sets.

(TIF)

S2 Fig. Subtype-specific differentially expressed genes from RNAseq data recapitulate pre-

vious data sets. Top two gene sets from Gene Set Enrichment Analysis of normalized RNAseq

data are genes up-regulated and down-regulated in ER+ breast cancer.

(TIF)

S3 Fig. Subtype-specific isoforms are enriched for genes in the apoptotic pathway. A) Top

10 enriched pathways from DAVID analysis on differentially expressed isoforms between sub-

types (plotting–log10 p value). Genes in apoptotic categories are enriched. B) Top gene sets

from Gene Set Enrichment Analysis of Isoform FPKM data show enrichment for apoptotic

gene modules.

(TIF)

S4 Fig. Single isoform genes alone differentiate breast cancer subtypes. First two principal

components derived from RefSeq gene RNAseq FPKM expression levels for single isoform

genes only. TCGA samples are segregated by breast cancer subtype.

(TIF)

S5 Fig. Nanostring isoform expression validates RNAseq isoform detection. Each panel is

represents one of the initial discovery samples, with the ratio of two isoform expression levels

from RNAseq data plotted on the x-axis and the ratio of two isoform expression levels from

nanostring data plotted on the y-axis.

(TIF)

S6 Fig. Subtype-specific isoforms that differ at the 5’ and 3’ UTR include isoforms that dif-

fer in coding sequence and isoforms that differ only in noncoding sequence. There is no sig-

nificant difference between subtypes.

(TIF)

S7 Fig. MAGOH and YBX1 are differentially expressed between breast cancer subtypes.

Left panel shows FPKM expression level, by sample, for MAGOH (top) and YBX1 (bottom).

Right panel show the gene model for MAGOH (top) and YBX1 (bottom), with genomic posi-

tion on the x-axis, exons represented as thick lines, and introns represented as thin lines.

(TIF)
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S8 Fig. Splicing factors are differentially expressed between breast cancer subtypes. Box-

plots of log2 FPKM values for 6 splicing factors in the discovery data set by subtype.

(TIF)

S9 Fig. siRNA knockdown of splicing factors is confirmed by qrtPCR. Following transfec-

tion of siRNA, expression levels of splicing factors were quantified by qrt-PCR, normalized

using TUBB, and compared to scrambled control siRNA.

(TIF)

S10 Fig. Genes affected by knockdown of splicing factors show significant overlap with

subtype-specific isoforms.

(TIF)

S11 Fig. Genes affected by knockdown of splicing factors show significant overlap with ER

binding sites.

(TIF)

S12 Fig. Genes affected by knockdown of splicing factors show significant overlap with PR

binding sites.

(TIF)

S1 Table. Sample Demographics University of Chicago Cohort.

(XLS)

S2 Table. Summary of Mapped Reads Statistics.

(XLS)

S3 Table. Differential Gene and Isoform Expression Data, Discovery UC Cohort.

(TXT)

S4 Table. Summary of Gene Set Enrichment Analysis for UC Discovery Cohort.

(XLS)

S5 Table. List of Splicing Factor Genes.

(TXT)

S6 Table. Subtype-specific Splice Factor expression.

(XLS)

Author Contributions

Conceptualization: TPS CDB KPW.

Data curation: TPS CDB CB.

Formal analysis: TPS CDB CB.

Funding acquisition: TPS KPW RG.

Investigation: AP VM MM RK.

Resources: RG.

Supervision: TPS KPW.

Writing – original draft: TPS CDB KPW.

Writing – review & editing: TPS CDB KPW.

Breast cancer subtype-specific splicing program

PLOS Genetics | DOI:10.1371/journal.pgen.1006589 March 6, 2017 17 / 19

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s013
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006589.s018


References
1. Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J Clin. 2010; caac.20073.

2. Nguyen PL, Taghian AG, Katz MS, Niemierko A, Abi Raad RF, Boon WL, et al. Breast cancer subtype

approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and dis-

tant recurrence after breast-conserving therapy. J Clin Oncol Off J Am Soc Clin Oncol. 2008; 26: 2373–

2378.

3. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab

after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005; 353: 1659–1672.

doi: 10.1056/NEJMoa052306 PMID: 16236737

4. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Davidson NE, et al. Trastuzumab plus adjuvant

chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005; 353: 1673–1684. doi:

10.1056/NEJMoa052122 PMID: 16236738

5. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year sur-

vival: an overview of the randomised trials. Lancet. 2005; 365: 1687–1717. doi: 10.1016/S0140-6736

(05)66544-0 PMID: 15894097

6. Freedman GM, Anderson PR, Li T, Nicolaou N. Locoregional recurrence of triple-negative breast can-

cer after breast-conserving surgery and radiation. Cancer. 2009; 115: 946–951. doi: 10.1002/cncr.

24094 PMID: 19156929

7. Kaplan HG, Malmgren JA. Impact of triple negative phenotype on breast cancer prognosis. Breast J.

2008; 14: 456–463. doi: 10.1111/j.1524-4741.2008.00622.x PMID: 18657139

8. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast

tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003; 100: 8418–

8423. doi: 10.1073/pnas.0932692100 PMID: 12829800

9. Goehe RW, Shultz JC, Murudkar C, Usanovic S, Lamour NF, Massey DH, et al. hnRNP L regulates the

tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. J Clin

Invest. 2010; 120: 3923–3939. doi: 10.1172/JCI43552 PMID: 20972334

10. Moore MJ, Wang Q, Kennedy CJ, Silver PA. An Alternative Splicing Network Links Cell-Cycle Control

to Apoptosis. Cell. 2010; 142: 625–636. doi: 10.1016/j.cell.2010.07.019 PMID: 20705336

11. Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. Aberrant RNA splicing in cancer; expres-

sion changes and driver mutations of splicing factor genes. Oncogene. 2016; 35: 2413–2427. doi: 10.

1038/onc.2015.318 PMID: 26300000

12. Adler AS, McCleland ML, Yee S, Yaylaoglu M, Hussain S, Cosino E, et al. An integrative analysis of

colon cancer identifies an essential function for PRPF6 in tumor growth. Genes Dev. 2014; 28: 1068–

1084. doi: 10.1101/gad.237206.113 PMID: 24788092

13. Okumura N, Yoshida H, Kitagishi Y, Nishimura Y, Matsuda S. Alternative splicings on p53, BRCA1 and

PTEN genes involved in breast cancer. Biochem Biophys Res Commun. 2011; 413: 395–399. doi: 10.

1016/j.bbrc.2011.08.098 PMID: 21893034

14. Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J, et al. CD44 splice isoform switch-

ing in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer

progression. J Clin Invest. 2011; 121: 1064–1074. doi: 10.1172/JCI44540 PMID: 21393860

15. Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH, et al. An EMT–Driven

Alternative Splicing Program Occurs in Human Breast Cancer and Modulates Cellular Phenotype.

PLoS Genet. 2011; 7: e1002218. doi: 10.1371/journal.pgen.1002218 PMID: 21876675

16. Yao R, Jiang H, Ma Y, Wang L, Wang L, Du J, et al. PRMT7 Induces Epithelial-to-Mesenchymal Transi-

tion and Promotes Metastasis in Breast Cancer. Cancer Res. 2014; 74: 5656–5667. doi: 10.1158/0008-

5472.CAN-14-0800 PMID: 25136067

17. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian tran-

scriptomes by RNA-Seq. Nat Methods. 2008; 5: 621–628. doi: 10.1038/nmeth.1226 PMID: 18516045

18. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical repro-

ducibility and comparison with gene expression arrays. Genome Res. 2008; 18: 1509–1517. doi: 10.

1101/gr.079558.108 PMID: 18550803

19. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinforma Oxf

Engl. 2009; 25: 1105–1111.

20. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and

quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentia-

tion. Nat Biotechnol. 2010; 28: 511–515. doi: 10.1038/nbt.1621 PMID: 20436464

21. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of

breast cancer based on intrinsic subtypes. J Clin Oncol Off J Am Soc Clin Oncol. 2009; 27: 1160–1167.

Breast cancer subtype-specific splicing program

PLOS Genetics | DOI:10.1371/journal.pgen.1006589 March 6, 2017 18 / 19

http://dx.doi.org/10.1056/NEJMoa052306
http://www.ncbi.nlm.nih.gov/pubmed/16236737
http://dx.doi.org/10.1056/NEJMoa052122
http://www.ncbi.nlm.nih.gov/pubmed/16236738
http://dx.doi.org/10.1016/S0140-6736(05)66544-0
http://dx.doi.org/10.1016/S0140-6736(05)66544-0
http://www.ncbi.nlm.nih.gov/pubmed/15894097
http://dx.doi.org/10.1002/cncr.24094
http://dx.doi.org/10.1002/cncr.24094
http://www.ncbi.nlm.nih.gov/pubmed/19156929
http://dx.doi.org/10.1111/j.1524-4741.2008.00622.x
http://www.ncbi.nlm.nih.gov/pubmed/18657139
http://dx.doi.org/10.1073/pnas.0932692100
http://www.ncbi.nlm.nih.gov/pubmed/12829800
http://dx.doi.org/10.1172/JCI43552
http://www.ncbi.nlm.nih.gov/pubmed/20972334
http://dx.doi.org/10.1016/j.cell.2010.07.019
http://www.ncbi.nlm.nih.gov/pubmed/20705336
http://dx.doi.org/10.1038/onc.2015.318
http://dx.doi.org/10.1038/onc.2015.318
http://www.ncbi.nlm.nih.gov/pubmed/26300000
http://dx.doi.org/10.1101/gad.237206.113
http://www.ncbi.nlm.nih.gov/pubmed/24788092
http://dx.doi.org/10.1016/j.bbrc.2011.08.098
http://dx.doi.org/10.1016/j.bbrc.2011.08.098
http://www.ncbi.nlm.nih.gov/pubmed/21893034
http://dx.doi.org/10.1172/JCI44540
http://www.ncbi.nlm.nih.gov/pubmed/21393860
http://dx.doi.org/10.1371/journal.pgen.1002218
http://www.ncbi.nlm.nih.gov/pubmed/21876675
http://dx.doi.org/10.1158/0008-5472.CAN-14-0800
http://dx.doi.org/10.1158/0008-5472.CAN-14-0800
http://www.ncbi.nlm.nih.gov/pubmed/25136067
http://dx.doi.org/10.1038/nmeth.1226
http://www.ncbi.nlm.nih.gov/pubmed/18516045
http://dx.doi.org/10.1101/gr.079558.108
http://dx.doi.org/10.1101/gr.079558.108
http://www.ncbi.nlm.nih.gov/pubmed/18550803
http://dx.doi.org/10.1038/nbt.1621
http://www.ncbi.nlm.nih.gov/pubmed/20436464


22. Subramanian A. From the Cover: Gene set enrichment analysis: A knowledge-based approach for inter-

preting genome-wide expression profiles. Proc Natl Acad Sci. 2005; 102: 15545–15550. doi: 10.1073/

pnas.0506580102 PMID: 16199517

23. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation,

Visualization, and Integrated Discovery. Genome Biol. 2003; 4: R60–R60.

24. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabo-

lism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci. 2010;

107: 8788–8793. doi: 10.1073/pnas.1003428107 PMID: 20421486

25. David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs

unhinged. Genes Dev. 2010; 24: 2343–2364. doi: 10.1101/gad.1973010 PMID: 21041405

26. Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A, Garber J, et al. Genome-wide association

study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci U S A. 2008; 105:

4340–4345. doi: 10.1073/pnas.0800441105 PMID: 18326623

27. Sablina AA, Chen W, Arroyo JD, Corral L, Hector M, Bulmer SE, et al. The tumor suppressor PP2A

Abeta regulates the RalA GTPase. Cell. 2007; 129: 969–982. doi: 10.1016/j.cell.2007.03.047 PMID:

17540176

28. Fushimi K, Ray P, Kar A, Wang L, Sutherland LC, Wu JY. Up-regulation of the proapoptotic caspase 2

splicing isoform by a candidate tumor suppressor, RBM5. Proc Natl Acad Sci. 2008; 105: 15708–

15713. doi: 10.1073/pnas.0805569105 PMID: 18840686

29. Logette E, Wotawa A, Solier S, Desoche L, Solary E, Corcos L. The human caspase-2 gene: alternative

promoters, pre-mRNA splicing and AUG usage direct isoform-specific expression. Oncogene. 2003;

22: 935–946. doi: 10.1038/sj.onc.1206172 PMID: 12584573

30. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, et al. Comprehensive

molecular portraits of human breast tumours. Nature. 2012; 490: 61–70. doi: 10.1038/nature11412

PMID: 23000897

31. Hua S, Kittler R, White KP. Genomic antagonism between retinoic acid and estrogen signaling in breast

cancer. Cell. 2009; 137: 1259–1271. doi: 10.1016/j.cell.2009.04.043 PMID: 19563758

32. Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, et al. RNA sequencing of cancer

reveals novel splicing alterations. Sci Rep. 2013; 3.

Breast cancer subtype-specific splicing program

PLOS Genetics | DOI:10.1371/journal.pgen.1006589 March 6, 2017 19 / 19

http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://dx.doi.org/10.1073/pnas.1003428107
http://www.ncbi.nlm.nih.gov/pubmed/20421486
http://dx.doi.org/10.1101/gad.1973010
http://www.ncbi.nlm.nih.gov/pubmed/21041405
http://dx.doi.org/10.1073/pnas.0800441105
http://www.ncbi.nlm.nih.gov/pubmed/18326623
http://dx.doi.org/10.1016/j.cell.2007.03.047
http://www.ncbi.nlm.nih.gov/pubmed/17540176
http://dx.doi.org/10.1073/pnas.0805569105
http://www.ncbi.nlm.nih.gov/pubmed/18840686
http://dx.doi.org/10.1038/sj.onc.1206172
http://www.ncbi.nlm.nih.gov/pubmed/12584573
http://dx.doi.org/10.1038/nature11412
http://www.ncbi.nlm.nih.gov/pubmed/23000897
http://dx.doi.org/10.1016/j.cell.2009.04.043
http://www.ncbi.nlm.nih.gov/pubmed/19563758

