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1  |  INTRODUC TION

Colorectal cancer (CRC) is one of the most common malignant tu-
mors in the world. The mortality rate of CRC is increasing in India, 
China, and other countries, and CRC is one of the main causes of 
death in cancer patients.1 The 5- year survival rate of metastatic CRC 
(mCRC) is only 13%– 15%.2,3 The treatments for CRC face certain 

challenges, such as no option of surgery, poor effects of radiother-
apy, and chemotherapy, and only a small group of patients’ benefits 
from targeted therapy. Therefore, it is urgent to explore new treat-
ments to improve the survival rate of mCRC. With in- depth research 
on tumor immunity and the increasing emphasis on immunotherapy, 
treatment with immune checkpoint inhibitors (ICIs) is being consid-
ered for mCRC. However, in clinical studies, only a small number of 
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Abstract
Colorectal cancer is one of the most common malignant tumors and, hence, has be-
come one of the most important public health issues in the world. Treatment with 
immune checkpoint inhibitors (ICIs) successfully improves the survival rate of patients 
with melanoma, non- small- cell lung cancer, and other malignancies, and its applica-
tion in metastatic colorectal cancer is being actively explored. However, a few pa-
tients develop drug resistance. Predictive molecular markers are important tools to 
precisely screen patient groups that can benefit from treatment with ICIs. The current 
article focused on certain important predictive molecular markers for ICI treatment 
in colorectal cancer, including not only some of the mature molecular markers, such 
as deficient mismatch repair (d- MMR), microsatellite instability- high (MSI- H), tumor 
mutational	 burden	 (TMB),	 programmed	 death-	ligand-	1	 (PD-	L1),	 tumor	 immune	mi-
croenvironment	 (TiME),	and	tumor-	infiltrating	 lymphocytes	 (TILs),	but	also	some	of	
the	novel	molecular	markers,	 such	as	DNA	polymerase	epsilon	 (POLE), polymerase 
delta 1 (POLD1),	circulating	tumor	DNA	(ctDNA),	and	consensus	molecular	subtypes	
(CMS). We have reviewed these markers in- depth and presented the results from 
certain important studies, which suggest their applicability in CRC and indicate their 
advantages and disadvantages. We hope this article is helpful for clinicians and re-
searchers to systematically understand these markers and can guide the treatment of 
colorectal cancer.
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unscreened CRC patients was treated with ICIs and these patients 
responded to the treatment,4– 6 suggesting that appropriate molec-
ular markers need to be identified to evaluate treatment effects of 
ICIs. The current article summarized the available molecular markers 
to help clinicians make better decisions.

2  |  MOLECUL AR MARKERS FOR ICI 
TRE ATMENT IN CRC PATIENTS

2.1  |  Deficient mismatch repair (d- MMR) and 
microsatellite instability- high (MSI- H)

Microsatellites are highly polymorphic repetitive sequences in the 
eukaryotic	genome	comprising	1–	6	bases.	During	DNA	replication,	
irremediable deletion, insertion, and translocation may result in mi-
crosatellite instability- high (MSI- H).3 Mismatch repair genes (MMR) 
are evolutionarily conserved housekeeping genes that can accu-
rately	 identify	 base	mismatches	 during	DNA	 replication	 and	 tran-
scription and repair them in time.7 MMR is an important factor in 
determining the status of microsatellites. When patients have pro-
ficient MMR (p- MMR), the errors can be repaired in time and micro-
satellite stability (MSS) is maintained. However, when patients have 
deficient MMR (d- MMR), where the errors are not repaired in time, 
MSI- H is observed.8,9 MMR includes four main genes, mutS homolog 
6 (MSH6), mutS homolog 2 (MSH2),	 mutL	 homolog	 1	 (MLH1), and 
PMS1 homolog 2 (PMS2), and d- MMR occurs when at least one of 
these four genes has heterozygous germline mutations or there is 
hypermethylation of the MLH1 promoter.10– 13

Studies have suggested that in sporadic CRC, d- MMR/MSI- H 
was associated with the prognosis of the patients.14– 16 With the 
development of immunotherapy, the predictive values of d- MMR/
MSI- H tumors in immunotherapy have been identified. The d- MMR/
MSI- H tumors have high somatic mutations, resulting in high neo-
antigen loads. Compared to p- MMR/MSS, d- MMR/MSI- H tumors 
have nearly 20 times more mutations,17– 20 which are processed and 
presented	by	antigen-	presenting	cells	(APCs),	thereby	enhancing	the	
infiltration by various immune cells.21– 23 In addition, d- MMR/MSI- H 
tumor microenvironments are more likely to express inhibitory im-
mune checkpoint ligands, such as programmed cell death- ligand- 1 
(PD-	L1),	 and	 such	 patients	 showed	 a	 higher	 response	 rate	 to	 ICI	
treatment.24 Therefore, d- MMR/MSI- H is a key factor in ICI treat-
ment, which can be used as a predictive marker of response to ICIs 
and a prognostic indicator of the efficacy of ICIs in mCRC patients.

As	an	important	molecular	marker	for	ICI	treatment,	the	occur-
rence rate of d- MMR/MSI- H tumors has attracted much attention. 
In	2016,	the	American	Association	for	Cancer	Research	(AACR)	re-
viewed the occurrence rate of MSI- H in different cancers (MSI- H 
was defined as the variation in at least 2 out of 5 or 30% of the 
tested microsatellite loci): The occurrence rate of MSI- H exceeded 
by 10% in patients with CRC, endometrial cancer, gastric cancer, and 
liver cancer. In ovarian cancer, cervical cancer, esophageal adeno-
carcinoma, soft tissue tumor, kidney cancer, Ewing's sarcoma, and 

head and neck cancers, the occurrence rate of MSI- H was between 
2% and 10%. In squamous cell skin cancer, basal cell skin cancer, 
prostate cancer, lung cancer, and breast cancer, it was <2%.25	About	
10%– 20% of the CRC patients have MSI- H tumors of which about 
3%	are	diagnosed	with	Lynch	syndrome	(LS)	and	about	5%	are	de-
tected having mCRC.11,26,27	 LS	 and	 sporadic	 CRC	 are	 different	 in	
terms	of	their	pathogenesis	and	treatment.	The	pathogenesis	of	LS	
involves heterozygous germline mutations in MMR.11,28 However, 
the most common cause of MSI- H in sporadic CRC is the epigenetic 
silencing of the MLH1 promoter caused by the abnormal methylation 
of the CpG islands, which is related to the somatic cell B- Raf proto- 
oncogene pV600E (BRAF pV600E) mutation.12,26 Therefore, testing 
for BRAF pV600E mutation is the best way to distinguish patients 
with	LS	from	those	with	sporadic	CRC.

Several studies have shown that compared to p- MMR/MSS 
mCRC, d- MMR/MSI- H mCRC has a higher response to ICIs. 
KEYNOTE	 016	 initially	 enrolled	 10	 d-	MMR/MSI-	H	 mCRC,	 18	 p-	
MMR/MSS mCRC, and 9 d- MMR/MSI- H non- CRC patients. The 
results of this study showed that the average number of somatic mu-
tations and the mutation- associated neoantigens in d- MMR/MSI- H 
patients were 1782 and 578, respectively, while those in p- MMR 
patients were 73 and 21, respectively. The objective response rate 
(ORR) and the progression- free survival (PFS) rate in the d- MMR/
MSI- H mCRC patients were 40% and 78%, respectively, while those 
in p- MMR/MSS mCRC patients were 0% and 11%, respectively. The 
response in d- MMR/MSI- H non- mCRC patients was similar to that 
in d- MMR/MSI- H mCRC patients.29 The 124 d- MMR/MSI- H mCRC 
patients	included	in	KEYNOTE	164	also	showed	a	higher	response	
rate when treated with Pembrolizumab.30	 KEYNOTE	 177	 further	
confirmed that using ICIs as first- line treatment for d- MMR/MSI- H 
mCRC patients significantly increased the PFS.31 The results of 
NCT03026140	 supported	 the	 treatment	 of	 d-	MMR	 CRC	 patients	
with ICIs as neo- adjuvants.32

In	May	2017,	based	on	the	results	of	KEYNOTE	016,	KEYNOTE	
164,	 and	other	 studies,	 the	Food	and	Drug	Administration	 (FDA)-	
approved Pembrolizumab for advanced and metastatic solid d- 
MMR/MSI- H tumors in adults and children.33 This was the first time 
that	 the	 FDA	 classified	 the	 patients	 based	 on	 specific	 biomarkers	
without considering the source of the tumor, making it a landmark 
event	 in	 the	 field	 of	 immunotherapy.	 In	August	 of	 the	 same	 year,	
the	FDA-	approved	Nivolumab	as	the	second-	line	treatment	drug	for	
d- MMR/MSI- H mCRC patients.34 In June 2020, based on the lat-
est	results	of	KEYNOTE	177,	the	FDA-	approved	Pembrolizumab	as	
the first- line treatment drug for D- MMR/MSI- H mCRC patients.35 
These pieces of evidence are sufficient to demonstrate the impor-
tance of d- MMR/MSI- H as a major predictive molecular marker for 
the treatment of CRC patients with ICIs. Therefore, experts recom-
mend the detection of MMR function or microsatellites status in CRC 
to predict the prognosis of early- stage patients and guide the treat-
ment of late- stage patients.36,37

Since the MMR function and microsatellites status have high 
consistency, d- MMR is equivalent to MSI- H in clinical applications. 
Common MMR and microsatellites detection methods include 
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immunohistochemistry (IHC), polymerase chain reaction (PCR), next- 
generation	 sequencing	 (NGS),	 and	 radiomics,38 all of which have 
their advantages and disadvantages. In general, IHC is used to de-
tect the MMR function and PCR to detect microsatellites status, and 
the results of the two tests showed over 90% similarity.39 However, 
there is evidence that using only one detection method may lead to 
misdiagnosis. For example, MMR function is usually evaluated using 
IHC. When one or more MMR proteins are missing, it is diagnosed as 
d- MMR. This method is simple and feasible, and can accurately de-
tect specific proteins. However, the results of IHC may be affected 
by the quality of the samples, human errors, and other factors, and 
MSI- H cases caused by non- MMR mutations may be missed.38 The 
gold standard for microsatellites detection is based on the Bethesda 
Guidelines	proposed	by	the	National	Cancer	Institute	of	the	United	
States, which adopted the PCR method and involves five types of 
microsatellites. MSI- H was defined as alterations in at least two of 
the five microsatellite loci or 30% or more loci when larger panels 
are	tested.	An	alteration	in	one	locus	was	defined	as	microsatellite	
instability-	low	(MSI-	L),	which	behaves	similarly	to	MSS.40	Although	
PCR is more precise and can identify MSI- H caused by any genetic 
mutations, certain limitations exist. For example, due to partially re-
dundant	functions	of	MSH6	and	mutL	homolog	3	(MSH3)	proteins,	
patients with MSH6 mutations will not be classified as MSI- H, but 
PCR ignores this, and PCR results cannot directly confirm which 
MMR	protein	is	functionally	deficient.	Also,	the	detection	is	expen-
sive, limiting its use further.38,41	NGS	can	be	used	to	detect	MSI-	H	
in a large number of microsatellites using a small number of nucleic 
acids and determine the tumor mutation burden (TMB). However, 
this technology is currently mainly used in biomedical research. It 
is	 necessary	 to	 further	 standardize	 the	NGS	workflow	 to	make	 it	
suitable for use in clinical practice.38 In conclusion, the Colorectal 
Cancer Committee of the Chinese Society of Clinical Oncology rec-
ommended using IHC to test the MMR function universally and PCR 
routinely to test microsatellites status in institutions with available 
platforms	 to	 perform	 PCR.	 A	 third	 diagnostic	 approach	 (such	 as	
NGS)	is	considered	when	the	results	are	inconsistent	or	drug	resis-
tance is suspected.42

2.2  |  Tumor mutational burden (TMB)

As	mentioned	above,	d-	MMR/MSI-	H	phenotype	increases	the	neo-
antigen loads and immune cell infiltration, and it is easier to trigger 
the immune response. Therefore, tumor mutational burden (TMB) 
has become a preferable marker in recent years. TMB is a measure 
of the number of mutations in the tumor genome. It is defined as the 
total number of non- synonymous somatic mutations in each coding 
region of the tumor genome, expressed as the number of mutations 
per trillion bases.

The accumulation of TMB was significantly correlated with the 
continuous accumulation of somatic gene mutations, deletion of 
MMR, and mutations in tumor protein p53 (TP53), apolipoprotein 
B	mRNA	 editing	 enzyme,	 catalytic	 polypeptide	 3	 (APOBEC),	 DNA	

polymerase epsilon (POLE) exonuclease domain, and polymerase 
delta 1 (POLD1).43	A	TMB	high	(TMB-	H)	indicates	an	increased	for-
mation of new antigens and increasing tumor cell immunogenicity. 
Because of the relationship between TMB and d- MMR, TMB is con-
sidered an independent marker for ICI treatment. Zang et al. found 
a significant correlation between TMB- H and d- MMR in CRC.44 
Chalmers et al. found that a majority of MSI- H patients had TMB- H 
and	97%	had	TMB	≥	10	mut/Mb.	However,	only	16%	of	the	samples	
with TMB- H were classified as MSI- H.45 Moreover, there were few 
patients with both low TMB and d- MMR/MSI- H phenotypes.7,45,46 
Therefore, researchers believed that MSI- H was a subset of TMB- H 
(TMB- H is defined as >20 mut/Mb).45 Studies also found that MSS/
TMB- H tumors were more common than MSI- H/ TMB- H tumors, 
which may benefit from immunotherapy.47 In summary, the use of 
TMB as a molecular marker is independent of MMR, which means 
that TMB has a wider application and more TMB- H patients may 
benefit from ICI treatment. The relationship between TMB- H and 
MSI- H is shown in Figure 1.

The idea of TMB as an independent molecular marker for ICI 
treatment was demonstrated in a variety of tumors. The feasibil-
ity of TMB as a biomarker was initially evaluated in melanoma. The 
study showed that TMB- H was associated with a high response rate 
to ICI treatment in melanoma patients.48 Subsequently, research-
ers	found	that	 in	non-	small-	cell	 lung	cancer	 (NSCLC)	patients	with	
TMB > 10 mut/Mb, combined programmed cell death protein 1 (PD- 
1)	and	cytotoxic	T-	lymphocyte-	associated	protein	4	(CTLA-	4)	inhibi-
tor treatment led to an increased PFS.49 Samstein et al. investigated 
the relationship between TMB and overall survival (OS) rate after 
ICI treatment in 1662 patients with advanced malignant tumors and 
found that higher TMB was associated with improved OS rate.50	A	
study published in 2017 including 1638 pan- cancer patients also 
proved the effectiveness of TMB as a molecular marker for different 
types of immunotherapy in patients with different tumors.51 More 
importantly, some researchers found that non- MSI- H patients with 

F I G U R E  1 The	relationship	between	TMB-	H	and	MSI-	H
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TMB- H also benefited from ICI treatment,46,47 which suggested 
that TMB can be used as an independent molecular marker for ICI 
treatment.	 In	KEYNOTE	158,	there	was	a	correlation	between	the	
anti- tumor activity of Pembrolizumab and TMB. The ORR of TMB- H 
tumors was 29%, while that of non- TMB- H tumors was 6%. Patients 
with TMB- H were able to achieve higher ORR.52 These results 
prompted	the	FDA	to	approve	Pembrolizumab	for	the	treatment	of	
refractory advanced solid tumors in adults and children with TMB- H 
(TMB	≥	10	mut/Mb),	which	confirmed	the	importance	of	TMB	as	an	
independent	molecular	marker	for	ICI	treatment.	CHECKMATE-	227	
trial	showed	that	the	PFS	in	NSCLC	patients	with	TMB-	H	was	signifi-
cantly	higher	with	Nivolumab	and	Ipilimumab	combination	therapy	
than	chemotherapy.	The	results	validated	the	benefit	of	Nivolumab	
and Ipilimumab combination therapy and the role of TMB as a 
molecular marker for patient selection.49 Evaluating TMB helps in 
screening better responders for ICI treatment in MSI- H CRC and 
identifying beneficial ICIs in MSS CRC. Fabrizio et al. found that the 
ability of TMB to identify CRC subgroups that may be responsive 
to ICIs surpassed that of microsatellite status.46	 The	 REGONIVO	
trial included 25 CRC patients. They were divided into TMB- H and 
TMB-	L	groups	using	22.55	mut/Mb	as	the	cutoff	value.	It	was	found	
that	when	Regorafenib	and	Nivolumab	combination	therapy	was	ap-
plied, the OS of the TMB- H group was higher than that of the TMB 
low	(TMB-	L)	group	(12.5	vs.	7.9	months,	respectively).53 In conclu-
sion, TMB is a useful molecular marker for CRC.

Tumor mutational burden is defined as a pan- cancer marker. 
However, researchers found that in some genetically unstable germ 
cell tumors, the relationship between TMB and ICI treatment was 
unclear, which suggested that the scope of application of TMB needs 
to be defined.54,55 In addition, as a pan- cancer marker, a fixed cut-
off of TMB that can be applied to different tumors was difficult to 
identify.50 In a meta- analysis, the researchers summarized the most 
common cutoff values of TMB, which were 10, 16, and 20 mut/Mb. 
The	CHECKMATE	227	study	supported	the	application	of	the	cut-
off of 10 mut/Mb.49,56	 Another	 study	 classified	 the	 cutoff	 values	
of TMB into 3 groups: low (1– 5 mut/Mb), intermediate (6– 19 mut/
Mb),	and	high	(≥20	mut/Mb).	They	found	that	cancers	with	a	higher	
TMB, measured by comprehensive genomic profiling, have a higher 
likelihood of responding to immunotherapy.51 In CRC, Schrock et al. 
studied 22 d- MMR/MSI- H mCRC patients who were treated with 
PD-	1	or	PD-	L1	inhibitors.	They	not	only	proved	that	TMB-	H	can	be	
used as an independent molecular marker but also found that when 
the cutoff value of TMB was between 37 and 41 mu/Mb, a better 
prediction was achieved.57 In short, no reliable evidence exists that 
supports the use of a universal cutoff value to define TMB- H and 
TMB-	L.	On	the	contrary,	it	seems	more	feasible	to	determine	indi-
vidual cutoff values for specific tumors.

In addition, the detection methods of TMB were also an im-
portant factor in determining its value. Whole- exome sequencing 
(WES) was the gold standard for TMB detection, but it was costly, 
and the detection standards lacked uniformity.43,58	 NGS	 was	 the	
most widely used because of its convenience and low cost, although 
it introduced errors that were dependent on the panel size.59,60 

Studies	reported	a	correlation	between	TMB	predicted	by	NGS	and	
that	by	WES	but	 the	methods	used	 to	 calculate	TMB	 in	NGS	and	
WES also affect the TMB results.61,62 For example, WES involved 
only	missense	mutations.	MSK-	IMPACT's	NGS	sequencing	method	
considered	only	non-	synonymous	mutations	but	the	F1CDx	NGS	se-
quencing method not only counted non- synonymous mutations but 
also the synonymous mutations,63,64 suggesting that the detection 
methods also have an impact on TMB.

In the selection of biological specimens, tissue specimens were 
used for tissue- based TMB (t- TMB) detection, which had high de-
tection accuracy but the sampling requirements were also high.43 
Blood- based TMB (b- TMB) was a valuable substitute for t- TMB be-
cause of its ease of sampling and high consistency with t- TMB in the 
predicted results.65– 67

In conclusion, TMB, as an independent molecular marker for ICI 
treatment, has a high application value. However, it is urgent to de-
fine the cutoff of TMB and optimize its detection method.

3  |  PROGR AMMED CELL DE ATH- 
LIGAND - 1 (PD -  L1)

Programmed cell death protein 1 (PD- 1) is currently one of the most 
widely known inhibitory immune checkpoints, which has two main 
ligands:	programmed	cell	death-	ligand-	1	 (PD-	L1)	and	 ligand-	2	 (PD-	
L2).	PD-	L1	is	usually	expressed	on	activated	T-		and	B-	lymphocytes	
and macrophage subsets induced by inflammatory cytokines,68 and 
plays a role in protecting tissues from excessive inflammation and 
autoimmune responses.69	In	tumor	cells,	PD-	L1	was	overexpressed	
as a carcinogenic factor.70 In a study involving 1000 Chinese cancer 
patients,	PD-	L1	amplification	occurred	most	frequently	in	lung	squa-
mous cell carcinoma (14.3%), human epidermal growth factor recep-
tor- 2 (HER2)- positive breast cancer (8.8%), and breast cancer with 
unknown HER2 status (5.8%), while in lung adenocarcinoma and 
CRC,	the	amplification	rate	of	PD-	L1	was	low.44

As	the	main	ligands	of	PD-	1,	PD-	1	and	PD-	L1	combined	to	trans-
mit co- inhibitory signals to limit the proliferation of tumor- infiltrating 
lymphocytes and peripheral lymphocytes, stimulate effector T cells 
to transform into regulatory T cells, and induce T- cell exhaustion.71– 73 
Previous studies have shown that there is a potential connection be-
tween	PD-	L1	levels	and	the	ICI	treatment,	prompting	researchers	to	
consider	PD-	L1	as	a	molecular	marker	for	ICI	treatment.74– 76

Studies	have	found	that	PD-	L1-	positive	patients	benefit	from	ICI	
treatment	more	than	PD-	L1-	negative	patients.	In	an	earlier	study,	in	
patients	with	NSCLC,	melanoma,	kidney	cancer,	prostate	cancer,	and	
CRC,	using	5%	of	the	tumor	cells	expressing	PD-	L1	as	the	threshold,	
it	was	 found	 that	PD-	L1-	positive	patients	 treated	with	Nivolumab	
showed a significantly higher objective response than the negative 
patients.5	The	KEYNOTE	001	study	showed	that	when	 the	 tumor	
proportion	score	(TPS)	of	PD-	L1	reached	at	least	50%	in	NSCLC,	the	
efficacy of ICI was better, and when TPS < 50%, the higher the TPS, 
the higher was the response rate.77	KEYNOTE	042	suggested	that	
when	TPS	≥	50%,	≥20%,	and	≥1%,	patients	showed	better	OS	with	
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Pembrolizumab treatment compared to chemotherapy.78 Similarly, 
KEYNOTE	 024	 also	 showed	 that	 when	 Pembrolizumab	 was	 used	
to	 treat	 patients	 with	 advanced	 NSCLC	 and	 PD-	L1	 expression	 in	
at least 50% of the tumor cells, the PFS and OS were significantly 
higher and fewer adverse events occurred than those adminis-
tered platinum- based chemotherapy.79 The results of this study 
led	the	FDA	to	approve	the	use	of	Pembrolizumab	in	the	treatment	
of	 untreated	metastatic	 NSCLC	 (without	 epidermal	 growth	 factor	
receptor	 (EGFR)	 or	 anaplastic	 Lymphoma	 Kinase	 (ALK)	 abnormal-
ities) and propose that when >50% of tumor cells expressed PD- 
L1,	Pembrolizumab	can	be	used	as	the	first-	line	drug.	When	>1% of 
tumor	cells	express	PD-	L1,	Pembrolizumab	can	be	used	for	second-	
line treatment.80

It is worth noting that although numerous experiments have 
proved	the	feasibility	of	PD-	L1	as	a	molecular	marker,	several	rea-
sons limit its use as a molecular marker for ICI treatment. Firstly, 
the	expression	of	PD-	L1	shows	poor	association	with	that	of	the	
other	molecular	markers	such	as	d-	MMR	and	TMB.	A	systematic	
review using pan- cancer analysis showed that the co- expression 
ratio	 of	 PD-	L1,	 TMB-	H,	 and	MSI-	H	was	 2.9%,	 but	 those	 of	 PD-	
L1	 and	MSI-	H	 and	 PD-	L1	 and	 TMB	were	 only	 0.59%	 and	 8.5%,	
respectively.	 In	 CRC,	 the	 co-	expression	 ratio	 of	 PD-	L1,	 TMB-	H,	
and	MSI-	H	was	 12.8%,	 but	 those	 of	MSI-	H	 and	 PD-	L1	 and	 PD-	
L1	 and	 TMB-	H	 were	 only	 0.6%	 and	 1.2%,	 respectively.7 Other 
studies	 found	 that	 the	 expression	 of	 PD-	L1	 showed	 great	 vari-
ability across tumors with different microsatellite states not only 
in d- MMR/MSI- H or TMB- H but also in p- MMR/MSS or TMB- 
L.7,81,82	Secondly,	 the	expression	of	PD-	L1	showed	temporal	and	
spatial heterogeneity, which may be affected by changes in the 
tumor microenvironment, different stages of the tumor, chosen 
treatment, sampling time, and sampling site. Differences in the 
detection methods, antibodies, standards, and thresholds of the 
various	detection	platforms	of	PD-	L1	are	also	factors	affecting	its	
accuracy.81,83– 85

Therefore,	the	use	of	PD-	L1	as	a	molecular	marker	to	guide	ICI	
treatment	 is	not	validated,	but	 it	 is	 also	 true	 that	PD-	L1	 is	one	of	
the	most	mature	molecular	markers	 available.	Actively	optimizing,	
standardizing,	and	achieving	reproducibility	in	PD-	L1	detection	and	
developing the combined application of molecular markers may pro-
mote	the	use	of	PD-	L1	as	a	stable	molecular	marker	for	ICI	treatment	
in CRC patients.

4  |  TUMOR IMMUNE 
MICROENVIRONMENT ( TIME) AND 
TUMOR- INFILTR ATING LYMPHOCY TES 
( TIL S)

Tumor microenvironment (TME) refers to the environment in 
which the cancer cells interact with their surroundings, which 
consist of a variety of cells (immune cells, fibroblasts, endothe-
lial cells, etc.) and extracellular components (growth factors, cy-
tokines, extracellular matrix, hormones, etc.).86 Tumor progression 

and the therapeutic effect of anti- tumor drugs are not only reg-
ulated by genes in the tumor cells but also by the immune fac-
tors in TME.86,87 One of the most important TME factors is the 
tumor-	infiltrating	lymphocytes	(TILs).	TILs	play	an	important	role	
in anti- tumor immunity and can be used as a marker of patient 
prognosis.	Galon	et	al.	proved	that	the	level	of	TILs	in	the	primary	
tumor was a strong independent predictor of recurrence and OS, 
and	high	TILs	level	was	a	positive	prognostic	factor.88	Also,	in	CRC,	
researchers	generally	believed	that	the	high	level	of	TILs	was	posi-
tively correlated with prognosis.89– 91	TILs	have	a	high	predictive	
value in response to ICI treatment and play an important role in 
tumor	immunotherapy.	In	mCRC,	patients	with	high	levels	of	TILs	
treated with ICIs had better response rates, PFS, and OS than pa-
tients	with	low	levels	of	TILs.92

In	recent	years,	studies	have	found	that	high	TILs	were	signifi-
cantly	 correlated	with	 the	expression	of	MSI-	H,	TMB,	and	PD-	L1.	
Therefore,	it	is	proposed	that	TILs	can	be	used	as	a	molecular	marker	
for ICI treatment in CRC patients. Smyrk et al. found that the level 
of	TILs	was	related	to	the	patient's	microsatellites	status.	When	the	
level was 5, the sensitivity of predicting the MSI- H status in colorec-
tal cancer was 93%, and the specificity was 62%.93	Fotios	Loupakis	
et al. found that there was a significant correlation between the lev-
els	of	TILs	and	TMB-	H.92 Mara Kitsou et al. studied the relationship 
between	immune	checkpoint	molecules	and	the	level	of	TILs	in	CRC	
and found that in colon cancer, it was positively correlated with the 
expression	of	CD8,	adenosine	A2a	receptor	 (ADORA2A),	CTLA-	4,	
hepatitis	A	virus	cellular	receptor-	2	(HAVCR2),	Lymphocyte	activa-
tion	gene	3	protein	 (LAG3),	PD-	L1,	PD-	L2,	T-	cell	 immunoreceptor	
with Ig and ITIM domains (TIGIT), and V- domain Ig suppressor of 
T-	cell	activation	(VISTA).94 Based on these results, it is reasonable to 
suggest	that	TILs	have	the	potential	to	be	used	as	molecular	markers	
for ICI treatment.

At	present,	 researchers	 generally	 believe	 that	 the	evaluation	
and	intervention	of	TILs	was	one	of	the	important	means	to	pre-
dict or mediate the resistance to immunotherapy.95 To achieve 
this goal, researchers put forward the concept of “Immunoscore 
(I).” The Immunoscore assessed the density of CD45RO and CD8 
immune cells in the core of the tumor (CT) and invasive margin 
(IM) of the tumor tissue, and the patients were scored (0– 4 points) 
based on that. “I0” meant that the density of the two types of cells 
was low in both the regions; “I4” meant that the two types of cells 
had high density in both the regions; and “I1- I3” represented the 
intermediate densities.96,97 Studies have found that in stage I- III 
CRCs, the higher the density of immune cell infiltration, the higher 
was the patient score, and the better was the prognosis.96,98,99 
In mCRC patients, MSI- H was confirmed to be associated with 
a high Immunoscore.100	The	expression	of	PD-	1/PD-	L1	was	also	
significantly higher in I3 and I4 tumor patients in CRC, who might 
potentially benefit from ICI treatment.98,101 In summary, research-
ers suggested that Immunoscore is a novel marker independent 
of microsatellites.102,103 However, the current evidence to support 
Immunoscore as a predictive marker is insufficient and further re-
search is needed.
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5  |  DNA POLYMER A SE EPSILON (P OLE ) 
OR POLYMER A SE DELTA 1 (P OLD1)

In	 addition	 to	 chromosomal	 instability	 (CIN)	 and	 d-	MMR,	 DNA	
damage response (DDR) system dysfunction caused by polymer-
ase epsilon (POLE) or polymerase delta 1 (POLD1) mutations is also 
one of the important mechanisms underlying colorectal cancer.104 
POLE/POLD1 are the key genes of the DDR pathway, encoding 
the	catalytic	subunit	of	DNA	polymerase	epsilon	and	the	125-	kDa	
catalytic	subunit	of	DNA	polymerase	delta,	respectively,	which	con-
tribute	 to	 the	 fidelity	of	DNA	 replication.105 Regarding the use of 
POLE/POLD1 as molecular markers for ICI treatment, the prevail-
ing view was that mutations in POLE/POLD1 may lead to TMB- H 
and neoantigen load.106– 108 Some researchers have also proposed 
that during DDR dysfunction, the stimulator of the interferon gene 
(STING)	 pathway	may	 be	 activated	 to	mediate	 natural	 anti-	tumor	
immunity.109,110 It is worth noting that POLE/POLD1 carry the exo-
nuclease domains, which correct errors during the copying process 
and ensure high fidelity. When mutations occur in exonuclease do-
mains (exonuclease domain mutations (EDMs), also referred to as 
proofreading domain mutations), they generate a high number of 
mutant phenotypes in tumor cells.111,112 Therefore, carrying EDMs 
are called pathogenic mutations, which are more closely related to 
tumor immune response.

Some studies found that POLE/POLD1 mutation analysis may 
help determine which patients can benefit from ICI treatment, and 
this ability is independent of d- MMR/MSI- H. It was found that 
POLE/POLD1 mutations were associated with an improved response 
rate, PFS, and OS in patients with metastatic uroepithelial carci-
noma,	NSCLC,	melanoma,	CRC,	and	other	malignant	tumors	treated	
with PD- 1 inhibitors.108,113,114 Wang et al. analyzed the incidence of 
POLE/POLD1 mutations in 47,721 patients with different tumors. The 
mutation rates of POLE/POLD1 were 2.79% and 1.37%, respectively, 
and the mutations were higher in skin tumors (16.59%), endometrial 
cancer	(14.85%),	melanoma	(14.73%),	and	CRC	(7.37%).	Also,	in	most	
cancers, the TMB of patients who carried POLE/POLD1 mutations 
was	significantly	higher	 than	 that	of	non-	carriers.	Among	patients	
treated with ICIs, the OS of patients who carried POLE/POLD1 mu-
tations was significantly better than that of non- carriers. This study 
also found that 26% of the patients who had POLE/POLD1 muta-
tions	 also	 showed	MSI-	H.	 After	 removing	 this	 subset	 of	 patients,	
the remaining patients with MSS were found to benefit significantly 
from ICI treatment. Multivariate Cox regression analysis showed 
that POLE/POLD1 mutation was an independent factor determining 
which solid tumor patients may benefit from ICI treatment.108

In CRC patients, the application of POLE/POLD1 mutation as 
a molecular marker for ICI treatment is being researched. In 2017, 
Gong et al. reported a case of an MSS colon cancer patient with 
POLE mutation who showed a significant response rate after receiv-
ing	 Pembrolizumab.	 This	 patient	 not	 only	 had	 a	 high	 level	 of	 TILs	
but also showed a hypermutated tumor profile, with TMB reach-
ing	122	mut/Mb,	and	the	expression	of	PD-	1	and	PD-	L1	as	high	as	
in 90% and 99% of the tumor cells, respectively.115 Subsequently, 

researchers found that nearly 1.8%- 3.1% of CRC patients were di-
agnosed with pathogenic POLE mutation and showed higher TMB 
and	 PD-	L1.111,112,116	 Another	 group	 of	 researchers	 found	 that	 pa-
tients with POLE pathogenic mutation had similar immunogenicity 
as d- MMR patients, with higher CD8+ lymphocytes, cytotoxic T- cell 
markers, TMB, neoantigen load, and effector cytokines. PD- 1, PD- 
L1,	CTLA-	4,	LAG3,	and	indoleamine	2,3-	dioxygenase	1	(IDO1)	were	
highly expressed, too.117	At	present,	there	have	been	more	and	more	
clinical studies focusing on POLE/POLD1 mutation and ICI treat-
ment, and more evidence supporting the use of POLE/POLD1 muta-
tion as molecular markers is expected. The clinical trials studying the 
efficacy of ICI in treating CRC patients with POLE/POLD1 mutation 
are summarized in Table 1.

In conclusion, the use of POLE/POLD1 pathogenic mutation as 
molecular markers for ICI treatment has been confirmed in several 
types	 of	 tumors.	 Although	 the	 incidence	 of	 POLE/POLD1 patho-
genic mutations in CRC is low, these patients have unique immuno- 
phenotypes and extraordinary responses to ICI treatment, which are 
worthy of further study. More importantly, the POLE/POLD1 patho-
genic mutation has a higher application value in MSS patients that 
may enable more patients to benefit from ICI treatment.

6  |  CIRCUL ATING TUMOR DNA (C TDNA)

Circulating	 tumor	 DNA	 (ctDNA),	 a	 classic	 short-	stranded	 DNA	
fragment having an average length of 120– 160 bp, is present in 
the serum and is released due to necrosis and apoptosis of circu-
lating tumor cells.118,119	Previous	studies	showed	that	ctDNA	was	
widely used to detect minimal residual diseases, predict patient 
prognosis, assess tumor burden, assess mutational burden, pre-
dict microsatellite status, monitor the effects of chemotherapy 
and targeted therapy, detect drug resistance, and identify novel 
mutations to predict the efficacy of treatment.118,120 In recent 
years,	 ctDNA	has	 been	widely	 explored	 and	much	progress	 has	
been made in predicting the response rate of ICI treatment in 
tumor patients.

A	study	including	1,000	patients	with	locally	advanced	or	met-
astatic	tumors	treated	with	 ICIs	showed	that	on-	treatment	ctDNA	
dynamics appear to be predictive of the long- term benefit of immu-
notherapy	across	tumor	types.	ctDNA	dynamics	can	help	differenti-
ate patients who will ultimately derive benefit from immunotherapy 
from those who are unlikely to derive further benefit.121	A	prospec-
tive clinical trial involving 5 different tumor types also revealed 
the	correlation	between	the	level	of	ctDNA	and	the	efficacy	of	ICI	
treatment.	The	trial	measured	the	ctDNA	level	in	73	patients	after	3	
cycles of Pembrolizumab treatment and found that 33 patients had 
a	ctDNA	level	lower	than	the	baseline.	These	patients	showed	bet-
ter clinical efficacy during the treatment, and 14 patients achieved 
an	 objective	 response.	 The	 ctDNA	 level	 of	 40	 patients	 increased	
compared to the baseline. Most of these patients experienced dis-
ease progression or poor survival, and only one patient experienced 
objective	 response.	When	 the	 ctDNA	 was	 eliminated	 due	 to	 the	
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treatment, the patient's OS was 100%.122 The results indicated that 
ctDNA	may	be	used	as	a	molecular	marker	 independent	of	PD-	L1	
and TMB.

In melanoma patients, researchers found that patients with 
low	ctDNA	(≤20	copies/ml)	before	commencing	therapy	who	re-
ceived	first-	line	ICI	treatment	showed	a	higher	PFS.	When	ctDNA	
was	elevated,	patients	who	received	CTLA-	4	and	PD-	1	inhibitors	
showed better PFS than patients treated only with PD- 1 inhibi-
tors.123	The	IMvigor010	(NCT02450331)	study	tested	the	ctDNA	
of patients with infiltrating urothelial carcinoma who received 
Atezolizumab	and	analyzed	the	relationship	between	the	level	of	
ctDNA	and	the	treatment	effect	of	Atezolizumab,	showing	that	the	
treatment	with	Atezolizumab	 improved	 the	disease-	free	 survival	
(DFS)	and	OS	of	ctDNA-	positive	patients	but	showed	no	change	
in	 ctDNA-	negative	 patients.	 The	 ctDNA	 clearance	 occurred	 in	
18.2%	of	ctDNA-	positive	patients	treated	with	Atezolizumab	who	
showed better OS and DFS. In the observation group, this phe-
nomenon was observed in only 3.8% of the patients.124 This result 
showed	that	the	level	and	clearance	rate	of	ctDNA	can	be	used	as	
predictors of the response and effect of ICI treatment in tumor pa-
tients. To further explore the mechanism, researchers performed 
exploratory transcriptional analysis to assess the expression of 
other immune- related biomarkers and found that compared to 
ctDNA-	negative	 patients,	 ctDNA-	positive	 patients	 showed	 a	
higher expression of cell cycle and keratin genes, suggesting that 
these	tumors	may	be	more	aggressive.	In	ctDNA-	positive	patients,	
when	TMB	and	PD-	L1	were	overexpressed	or	pan-	fibroblast	TGFβ 
response (F- TBRS) signature and angiogenesis genes were under- 
expressed,	Atezolizumab	significantly	improved	patient	prognosis,	
but	there	was	no	such	relationship	in	ctDNA-	negative	patients.124 
Other researchers also found that it is feasible to evaluate TMB, 
PD-	L1,	 and	 microsatellites	 states	 using	 ctDNA118,119; therefore, 
it is a potential molecular marker for ICI treatment and worthy 
of further research. Kim et al. found that, in metastatic gastric 
cancer, the total effective rate and PFS of patients with a high 
ctDNA	burden	who	were	treated	with	PD-	1	inhibitor	significantly	
improved	compared	to	patients	with	low	ctDNA	burden.125 These 
results	 provided	 support	 for	 ctDNA	 as	 a	 promising	 molecular	
marker	for	ICI	treatment.	In	CRC,	it	was	found	that	ctDNA	can	be	
used for the detection of initial tumor burden, patient prognosis 
assessment, minimal residual disease detection, recurrence mon-
itoring, chemotherapy or targeted therapy response prediction, 
drug resistance monitoring, etc.119 However, studies suggesting 
the	possibility	of	ctDNA	as	a	molecular	marker	for	ICI	treatment	in	
CRC patients are not available.

In	addition	to	b-	TMB,	ctDNA	can	be	detected	in	liquid	biopsies.	
Compared to obtaining specimens from tissues, liquid biopsy has 
a profound impact on the precision treatment of tumors due to its 
advantages of non- invasiveness, high safety, fast detection speed, 
cost- effectiveness, ease of sampling, and strong reproducibility. 
Common	detection	methods	 include	 digital	 PCR,	BEAMing	 (Bead,	
Emulsion,	 Amplification,	 and	 Magnetic),	 WES,	 and	 NGS.	 These	
different technologies have their advantages and disadvantages, TA
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requiring comprehensive consideration by researchers.119 In recent 
years,	with	 the	advancements	 in	NGS	technology,	more	and	more	
researchers	 have	 adopted	 NGS	 for	 ctDNA	 detection.	 Sequencing	
Quality Control Phase 2 (SEQC2) project studied the performance 
of	the	NGS-	based	ctDNA	detection	method.	The	study	used	a	cross-	
platform blind verification method to comprehensively evaluate the 
sensitivity,	specificity,	accuracy,	and	reproducibility	of	ctDNA	liquid	
biopsy products. The results of this study may help establish indus-
try standards, provide technical guidelines for liquid biopsies, and 
promote the development and transformation of tumor and clinical 
studies.126

In	conclusion,	ctDNA	 is	a	potential	novel	molecular	marker	 for	
ICI treatment for CRC.

7  |  CONSENSUS MOLECUL AR SUBT YPES 
(CMS)

Using genome expression and cell phenotypes, Guinney et al. pro-
posed the consensus molecular subtypes (CMS) of CRC, which in-
cluded CMS1 (MSI Immune, 14%), CMS2 (Canonical, 37%), CMS3 
(Metabolic, 13%), and CMS4 (Mesenchymal, 23%).127 CMS1 is mainly 
composed of d- MMR/MSI- H tumors, with TMB- H, BRAF mutation, 
and high immune infiltration characteristics.

CMS1 patients showed highly infiltrated cytotoxic lymphocytes, 
CD8+ T cells, CD4+ memory T cells, T helper cells 1, follicular helper 
T cells, γδ	 T	 cells,	 activated	 dendritic	 cells,	 natural	 killer	 cells	 (NK	
cells), and M1 macrophages and active immune microenvironment 
and good prognosis.127– 129	At	 the	 same	 time,	PD-	1,	PD-	L1,	CTLA-	
4, etc., were highly expressed in CMS1.127– 130 TMB and neoantigen 
loads were high, too,103 suggesting that the CMS1 patients may ben-
efit from ICI treatment.

High chromosome instability, “WNT and MYC activation— APC 
mutation— adenoma— TP53 mutation— adenocarcinoma” model were 
characteristics of CMS2.127,130 CMS2 was also known as the “im-
mune desert.” There were lesser infiltrating immune cells in tumor 
tissues	and	were	mainly	composed	of	static	NK	cells	and	naive	CD4+ 
T cells or B cells.128 Therefore, CMS2 patients cannot acquire ac-
tive	anti-	tumor	immunity.	Among	all	CMS	groups,	the	CMS2	group	
had	the	least	MSI-	H	patients	and	the	expression	of	PD-	1/PD-	L1	in	
tumor tissues was lower. Therefore, it showed a weak response to 
ICI treatment.127– 129

CMS3 was characterized by high Kirsten rat sarcoma viral onco-
gene (KRAS) mutation, metabolic dysregulation, and impaired lipid 
oxidation.127,130	About	16%	of	the	CMS3	group	population	was	com-
posed of MSI- H patients,103 and some patients expressed T helper 
cell 17, naive B cells, naive T cells, resting T cells, and PD- 1+ T cells. 
Same as CMS2, lymphocytes, monocytes, and myeloid cells were 
less among the infiltrated cells, suggesting that the immune micro-
environment of CMS3 was in a dormant state.127– 129

CMS4 was characterized by epithelial- mesenchymal transition, 
stromal remodeling, interstitial activation, angiogenesis, and im-
mune cell infiltration. MSI- H tumors accounted for 6% of CMS4. 

CMS4 had an activated complement pathway and was rich in lym-
phocytes and macrophages, showcasing its inflammatory character-
istics. However, due to fewer CD8+ and CD4+ T cells and more Treg 
cells and M2 macrophages, CMS4 presented an immune mechanism 
different from CMS1.127– 129 Characteristics of consensus molecular 
subtypes are summarized in Table 2.

CMS1 and CMS4 tumors were also known as “hot tumors.” They 
are immunoreactive and the main targets of ICI treatment. CMS2 
and CMS3 tumors, known as “cold tumors,” had a low response rate 
to ICI treatment. Therefore, methods to make them “hot” to increase 
the response rate to ICI treatment need to be identified.

8  |  CONCLUSION

Precision medicine began with targeted therapy and thriving in 
immunotherapy. The original intention of immunotherapy was to 
use anti- tumor immunity to develop new treatment methods and 
achieve	more	precise	treatment.	As	the	main	method	of	immuno-
therapy, ICI treatment has been used to treat a variety of malig-
nant tumors, and it has become one of the main treatment methods 
for mCRC. In the ICI treatment, the concept of applying molecular 
markers to guide the treatment of different diseases helps clini-
cians develop an open mind and is an important step to bringing 
precision medicine into practice. However, there are no perfect 
molecular markers at present. It is difficult to identify a molecu-
lar marker that shows a consistently accurate performance to pre-
dict ICI treatment response and curative effect. Therefore, we hope 
that better molecular markers are identified or the existing ones 
are developed further to promote the standardization of ICI treat-
ment	so	that	more	patients	can	benefit	from	it.	An	ideal	molecular	
marker should have high specificity and sensitivity, a wide range of 
applications, ease of sampling and measurement, and standardized 
detection methods. However, the aforementioned molecular mark-
ers do not meet these requirements currently. Therefore, we hope 
that better markers are identified or the value of existing markers 
can be fully tapped through joint applications and improved detec-
tion methods. In short, the development of ideal molecular markers 
has a long way to go.
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