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Abstract: Urchin-like tungsten oxide (WO3) microspheres self-assembled with nanobelts are de-
posited on the surface of the hydrophilic carbon cloth (CC) current collector via hydrothermal
reaction. The WO3 nanobelts in the urchin-like microspheres are in the hexagonal crystalline phase,
and their widths are around 30–50 nm. The resulted hierarchical WO3/CC electrode exhibits a
capacitance of 3400 mF/cm2 in H2SO4 electrolyte in the voltage window of −0.5~0.2 V, which makes
it an excellent negative electrode for asymmetric supercapacitors. To improve the capacitive perfor-
mance of the positive electrode and make it comparable with that of the WO3/CC electrode, both
the electrode material and the electrolyte have been carefully designed and prepared. Therefore, the
hydrophilic CC is further coated with carbon nanotubes (CNTs) to create a hierarchical CNT/CC
electrode via a convenient flame synthesis method, and a redox-active electrolyte containing an
Fe2+/Fe 3+ couple is introduced into the half-cell system as well. As a result, the high performance of
the asymmetric supercapacitor assembled with both the asymmetric electrodes and electrolytes has
been realized. It exhibits remarkable energy density as large as 403 µW h/cm2 at 15 mW/cm2 and
excellent cyclic stability after 10,000 cycles.

Keywords: flame catalytic deposition; WO3 nanobelt; CNT; redox-active electrolyte; asymmetric su-
percapacitor

1. Introduction

Although supercapacitors have been considered a new type of energy storage device
because of their long cycle life, fast charge and discharge, and excellent power density [1,2],
their low energy density severely limits their practical applications. Many researchers have
been devoted to increasing the energy density of supercapacitors while ensuring a consid-
erable power density [3–5]. Designing and assembling new asymmetric supercapacitors
are effective methods to expand their potential and increase their energy density via the
integration of various electrode materials and electrolytes [6,7].

It is well known that supercapacitors can be classified into two categories according to
the principle of energy storage: electric double-layer capacitors and pseudo-capacitors. In
comparison with the former, pseudo-capacitors store energy through a reversible oxidation-
reduction reaction during the charging and discharging process, which can provide a
larger specific capacitance. Transition metal oxides and hydroxides have been extensively
studied as electrode materials in pseudo-capacitors [8–10]. As a typical metal oxide, WO3
has multiple crystal phases and oxidation states (W2+~W6+), high theoretical specific ca-
pacitance (~1112 F/g), and good electrochemical stability in an acid electrolyte, and it
has been demonstrated to be an excellent electrode material [11,12]. Monoclinic, tetrago-
nal, hexagonal, and orthorhombic WO3 have been synthesized by adjusting the reaction
temperature and pH of the precursor solution, and it has been revealed that the material
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with the hexagonal phase is the best one for capacitors [13]. Besides the crystal phase, the
nanostructure of the metal oxide has also been found to have a strong influence on their
properties. Tungsten oxide with various structures has been fabricated and studied, in-
cluding the one-dimensional (1D) nanorods [14], the two-dimensional (2D) nanoplates [15],
and the three-dimensional (3D) nano/microspheres or nanoflowers [11,16–19]. Specifi-
cally, 3D tungsten oxide assembled with building blocks in nanoscale is suggested to be
a superior electrode material as it can provide more active sites with considerably larger
specific surface areas and buffer the physical strain and stress generated during charging
and discharging cycles [16]. For instance, pure WO3 nanoflowers in H2SO4 displayed a
capacitance of 127 F/g, and it was greatly enhanced to be 495 F/g after being coated with
reduced graphene oxide [11]. The urchin-like tungsten oxide made of WO2.72 nanowires
exhibits a capacitance of ~235 F/g at 20 A/g in H2SO4 electrolyte [19]. Generally speaking,
3D nanostructures could also facilitate the mass transport of the electrochemically active
species in the electrode/electrolyte interface and promote the performance of the electrode
materials. Therefore, materials with such hierarchical structures are attracting more and
more interest from researchers in the field of energy conversion and storage devices [20–22].

Apart from transition metal oxide electrodes that display high electrochemical activity
in the negative voltage range and can be used as a perfect negative electrode in asymmet-
ric supercapacitors, the positive electrode needs to be carefully selected and designed to
assemble a high-performance energy storage device. Carbon-based electrode materials
have been widely used in these devices. Compared with pseudo-capacitance electrode
materials, they have better physical and chemical stability, higher electrical conductivity,
larger specific surface area [23–25], and more importantly, stable electrochemical perfor-
mance in acid electrolytes in the wide potential window. However, the low capacitance of
the carbon-based materials may limit their application in supercapacitors [26,27]. Recently,
being coupled with the redox-active electrolyte has been identified as an effective way to
improve their electrochemical performance as the occurrence of the redox reaction of the
additives in the electrolyte on the electrode/electrolyte interface will provide additional
pseudo-capacitance for the electrochemical system [28]. In fact, adding redox-active Fe2+/3+

into the acid electrolyte to promote the capacitive performance of the composite electrodes
has been demonstrated in our previous work [28]. The common carbon-based current
collector, such as carbon cloth, has the disadvantages of poor hydrophilicity and insufficient
surface activity [29], which makes it difficult to be directly used as the electrode in the aque-
ous electrolytes. Therefore, it is worthwhile to develop effective methods to improve the
surface state and the performance of the carbon cloth for its utilization in supercapacitors.

Herein, urchin-like WO3 microspheres made of nanobelts were in situ deposited onto
carbon cloth, and the as-produced electrode was directly used as the negative electrode for
assembling an asymmetric supercapacitor. Meanwhile, the surface of the carbon cloth was
also modified, and CNTs were grown on carbon fibers via a convenient flame deposition
method to build a hierarchical electrode, which was functionalized with organic groups.
The resultant hierarchical electrode was used as the positive electrode. In the meantime, a
redox-active electrolyte containing iron ions was introduced into the electrolyte to promote
the performance of the half-cell system. The effect of the surface modification (as described
above) of the carbon cloth on its electrochemical behavior in the redox-active electrolyte
will be comprehensively studied. The performance of the asymmetric supercapacitors
assembled with both the hierarchical electrodes and electrolytes will be investigated as well.

2. Materials and Methods
2.1. Preparation of WO3/CC

Before the deposition of WO3, carbon cloth was subjected to hydrophilic treatment
according to a method reported recently [30]. In detail, carbon cloth (CC, W0S1009) with a
size of 4 × 6 cm2 was ultrasonically cleaned with acetone, alcohol, and deionized water in
sequence. After being dried in an oven at 60 ◦C, it was submerged in a mixed solution of
10 mL 98 wt% H2SO4 and 30 mL 68 wt% HNO3 and transferred to a 100 mL Teflon-lined
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stainless-steel autoclave. The autoclave was sealed and heated at 90 ◦C for 6 h. After
being cooled to room temperature, the CC was taken out and ultrasonically cleaned with
deionized water to remove the residual acid and then put into an oven at 60 ◦C.

For the growth of WO3 onto the CC, 2.5 mmol of Na2WO4·2 H2O was added to 30 mL
deionized water and then stirred until it was completely dissolved. The pH of the solution
was adjusted to 1.2 with 3 M HCl. An amount of 7 mmol of oxalic acid was subsequently
added to the solution, which was further diluted with deionized water to 50 mL to obtain a
WO3 sol. After being added to 2 g of (NH4)2SO4, it was transferred to a 100 mL Teflon-lined
stainless-steel autoclave along with the hydrophilic-treated CC. The autoclave was sealed
and heated at 180 ◦C for 16 h. After being cooled down naturally to room temperature, the
product was taken out and washed with alcohol and deionized water. Finally, the product
was dried in an oven at 60 ◦C. The as-prepared product was named “WO3/CC”.

2.2. Preparation of CNT/CC

The hydrophilic-treated CC was soaked in a 1 M Ni(NO3)2 alcohol solution. After
the evaporation of the solvent, the sample was inserted into an alcohol flame for 5 min.
The temperature of the sample in the flame was measured at 700 ◦C. The product was
named “CNT/CC”. For the convenience of comparison, the carbon cloth subjected to the
hydrophilic treatment was named “CC”, and the pristine carbon cloth that had not been
subjected to the hydrophilic treatment was named “PCC”.

2.3. Assembly of the Asymmetric Supercapacitor

The as-prepared CNT/CC and WO3/CC with a size of 3× 8 mm2 were used directly as
electrodes to assemble the asymmetric capacitor, where the positive half-cell compartment
was the CNT/CC electrode in 0.2 M Fe2+/3+ + 1 M H2SO4 electrolyte, and the negative one
was the WO3/CC electrode in 1 M H2SO4 electrolyte. The two different half-cell systems
were separated by a Nafion 212 proton-exchange membrane. The resultant ASC device
with a configuration of CNT/CC/0.2 M Fe2+/3+ + 1 M H2SO4//1 M H2SO4/WO3/CC is
shown in Figure 1.
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Figure 1. Schematic diagram illustrating the assembly of the ASC device.

2.4. Characterizations

A scanning electron microscope (SEM, Phenom XL, PHENOMSCIENTIFIC, Shanghai,
China) and an energy-dispersive spectrometer (EDS, Phenom XL, PHENOMSCIENTIFIC,
Shanghai, China) were used to characterize the morphology and the element distribution
of the sample, respectively. A transmission electron microscope (TEM, JEM-2100F, JEOL,
Tokyo, Japan) was also used to characterize the morphology and crystal structure of the
samples. An X-ray diffraction (XRD, UItima IV, Rigaku Corporation, Tokyo, Japan) pattern
with a scanning angle ranging from 20◦ to 80◦ at a rate of 5◦/min was employed to
analyze the crystal phase of the sample. A Fourier transform infrared spectrometer (FTIR,
VERTEX70, Bruke, Germany) with a wavenumber range from 800 to 2000 cm−1 was used
to characterize the functional groups on the surface of the sample.

The cyclic voltammetry (CV), the galvanostatic charging/discharging (GCD), and
the electrochemical impedance spectroscopy (EIS) tests were performed on the electrodes
on an electrochemical workstation (CHI760e, CH Instruments, Shanghai, China). First, a
standard three-electrode test system was used to evaluate the properties of the CNT/CC
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and the WO3/CC electrodes individually with a saturated calomel electrode (SCE) as a
reference electrode and a Pt plate as the counter electrode. The EIS was measured in the
frequency range of 0.01–100 kHz at the open-circuit voltage with an amplitude of 5 mV. The
areal-specific capacitance (C, mF/cm2), areal energy density (E, mW h/cm2), and power
density (p, mW/cm2) were calculated from the following equations: C = I × t/(s × V),
E = C × V2/(2 × 3.6), and p = (E × 3.6)/t, respectively, where I is the discharge current (A),
t is the discharge time (s), V is the potential window (V), and s is the effective area (cm2) of
the electrode of the device.

3. Results and Discussions
3.1. The Structure and Electrochemical Behavior of the WO3/CC Electrode

The carbon cloth is woven with carbon fibers. As shown in Figure 2a,b after the
hydrothermal reaction, the surface of the CC becomes much rougher, and granular products
can be observed to be evenly distributed all over the carbon fibers of the CC. Specifically,
most WO3 particles are urchin-like microspheres with an average diameter of ~3.5 µm
(Figure 2c). The element mapping of an individual fiber of the WO3/CC electrode manifests
the location of the WO3. As shown in Figure 2d, the yellow layer represents the C element
while the purple and green layers represent the elements W and O, respectively, indicating
that the WO3 can be deposited evenly around the carbon fibers.

Micromachines 2021, 12, 1195 4 of 12 
 

 

employed to analyze the crystal phase of the sample. A Fourier transform infrared spec-
trometer (FTIR, VERTEX70, Bruke, Germany) with a wavenumber range from 800 to 2000 
cm−1 was used to characterize the functional groups on the surface of the sample. 

The cyclic voltammetry (CV), the galvanostatic charging/discharging (GCD), and the 
electrochemical impedance spectroscopy (EIS) tests were performed on the electrodes on 
an electrochemical workstation (CHI760e, CH Instruments, Shanghai, China). First, a 
standard three-electrode test system was used to evaluate the properties of the CNT/CC 
and the WO3/CC electrodes individually with a saturated calomel electrode (SCE) as a 
reference electrode and a Pt plate as the counter electrode. The EIS was measured in the 
frequency range of 0.01–100 kHz at the open-circuit voltage with an amplitude of 5 mV. 
The areal-specific capacitance (C, mF/cm2), areal energy density (E, mW h/cm2), and 
power density (p, mW/cm2) were calculated from the following equations: C = I × t/(s × V), 
E = C × V2/(2 × 3.6), and p = (E × 3.6)/t, respectively, where I is the discharge current (A), t 
is the discharge time (s), V is the potential window (V), and s is the effective area (cm2) of 
the electrode of the device. 

3. Results and Discussions 
3.1. The Structure and Electrochemical Behavior of the WO3/CC Electrode 

The carbon cloth is woven with carbon fibers. As shown in Figure 2a,b after the hy-
drothermal reaction, the surface of the CC becomes much rougher, and granular products 
can be observed to be evenly distributed all over the carbon fibers of the CC. Specifically, 
most WO3 particles are urchin-like microspheres with an average diameter of ~3.5 μm 
(Figure 2c). The element mapping of an individual fiber of the WO3/CC electrode mani-
fests the location of the WO3. As shown in Figure 2d, the yellow layer represents the C 
element while the purple and green layers represent the elements W and O, respectively, 
indicating that the WO3 can be deposited evenly around the carbon fibers. 

 
Figure 2. SEM images of (a) CC; (b,c) WO3/CC; and (d) element distribution of W, O, and C on the 
WO3/CC electrode. 

Furthermore, some needles with different lengths can be observed on the rough sur-
face of the WO3 microspheres (Figure 2b,c). A TEM analysis was conducted to characterize 
the structure of the needles in the urchin-like WO3 microspheres. As shown in Figure 3a, 
such needles are actually WO3 nanobelts, which were self-assembled into microspheres 

Figure 2. SEM images of (a) CC; (b,c) WO3/CC; and (d) element distribution of W, O, and C on the
WO3/CC electrode.

Furthermore, some needles with different lengths can be observed on the rough surface
of the WO3 microspheres (Figure 2b,c). A TEM analysis was conducted to characterize
the structure of the needles in the urchin-like WO3 microspheres. As shown in Figure 3a,
such needles are actually WO3 nanobelts, which were self-assembled into microspheres
during the hydrothermal deposition of the WO3 onto the CC. The WO3 nanobelts in urchin-
like microspheres have an average width around 30~50 nm. Moreover, the length of the
belts could be as large as several micrometers, as seen from those bridging between the
microspheres in Figure 2c, which are highlighted by red arrows. The crystal structure
of the WO3 was further verified by an XRD. As shown in Figure 3c, all the diffraction
peaks of the sample can be indexed to the hexagonal phase of the WO3 (h-WO3, JCPDS
No.33-1387). Moreover, the ordered lattice stripes with spaces of 0.39 nm, 0.314 nm,
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0.248 nm, 0.238 nm, and 0.163 nm in the high-resolution TEM (HRTEM) image, as shown
in Figure 2a,b, can be assigned to the (001), (200), (201), (210), and (202) planes of the
hexagonal WO3, respectively, which is also consistent with its XRD analysis, confirming
the deposit of the hexagonal phase of the WO3 nanobelts on the CC. Figure 3d illustrates
the schematic crystal structure of the hexagonal WO3 with its layered structure, which is
composed of the cubic perovskite-like structure with a (WO6) octahedron as the constituent
unit. The W atom in the unit is located at the center of the octahedron, while the O
atom is located at each vertex of the octahedron, as shown in the orange dotted box in
Figure 3d. Three types of tunnels, including triangular and hexagonal types as well as four
coordinated square windows (highlighted with red arrows in Figure 3d), are formed in
the hexagonal WO3 structure based on the rotation of the cubic unit so that the tunnels
formed by W-O enable the proton insertion/de-insertion into the crystalline structure,
which is beneficial to its electrochemical process in the acidic electrolyte. Additionally, the
surface terminal oxygen atom (-O site) is expected to be more actively involved in the redox
reactions, which can be reduced to a -OH terminal in the electrolyte. Furthermore, the
hierarchical 3D urchin-like WO3 microspheres directly grown on the surface of the carbon
fibers in the carbon cloth will support fast ion diffusion, improved electrolyte wettability,
and the accommodation of large volume expansion during the cyclic test [31].
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Figure 3. (a,b) TEM images of WO3; (c) XRD pattern of WO3/CC; and (d) the schematic crystal
structure of hexagonal WO3.

The electrochemical performance of the WO3/CC electrode was evaluated by both CV
and GCD tests with a three-electrode system. Figure 4a shows the CV curve of WO3/CC
at 10 mV/s, where two pairs of reversible redox peaks appear at −0.24 V (peak I), 0.08 V
(peak II), −0.17 V (peak II’), and −0.43 V (peak I’). These peaks can be attributed to the
two-step electrochemical redox-reaction process of the WO3, including the proton diffusion
kinetics in the layered structure of the WO3 [32,33]. The electrochemical reaction involved
in the process can be assigned as: WO3 + xH+ + xe− ↔ HXWO3 . The GCD curves of
WO3/CC at different current densities were shown in Figure 4b, and the corresponding
specific capacitance values were calculated and plotted in Figure 4c. The specific capac-
itance of WO3/CC was 3400 mF/cm2 at 10 mA/cm2, and it remained at 2571 mF/cm2

at 50 mA/cm2. The high capacitive performance of the electrode can be attributed to the
great affinity of the WO3 to the hydrophilic CC, leading to the strong adhesion of the WO3
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nanobelts to the CC current collector. Therefore, the as-prepared WO3/CC can be used as
an excellent negative electrode in asymmetric supercapacitors.
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3.2. The Structure and Electrochemical Performance of CNT/CC

The structure of the CNT/CC electrode was analyzed by SEM. Compared with the
smooth surface of the CC, as shown in Figure 2a, the fluffy surface of the CC with a cluster
structure distributed evenly can be observed after the flame treatment (Figure 5a). In the
SEM image at high magnification (Figure 5b), it can be observed that the clusters on the
CC are actually CNT agglomerates, where a CNT forest has grown on a single carbon
fiber. This result is different from the fine, single CNT that had been deposited inside
the thicker carbon nanotubes with a similar flame method as was reported recently [34].
The possible reason could be the limited nanospace of the tube tunnel for the flame
growth of CNTs. The image from the TEM in Figure 5c shows the hollow structure of
the deposited CNTs. Different from most commercial CNTs fabricated with the CVD
method, the flame-synthesized CNTs appear to be wavy rather than straight. They have a
diameter of 10~40 nm and have grown randomly and entangled with each other on the
surface of the carbon fiber, as shown in Figure 5b,c. Furthermore, although the hierarchical
carbon materials display weak FTIRATR signals and slanted baselines as usual, as shown
in Figure 5d, the detected peaks at 1100, 1544, and 1653 cm−1 can be attributed to the
C-O, C-OR, C=O, and COOH groups, respectively [35], indicating the existence of some
organic functional groups after the hydrophilic and flame treatment of the carbon cloth.
As revealed before, the flame-synthesized 1D carbon nanomaterials inherently have been
modified with oxygen-containing functional groups, which is one of their advantages as
electrode materials compared to those produced with CVD methods. Obviously, both the
hierarchical structure and the functional carbon components in the as-produced CNT/CC
electrode are beneficial to its electrochemical performance.

In order to study the effect of the hydrophilic treatment and CNT decoration on the
promotion of the performance of the CC electrode, the electrochemical behavior of the
PCC, CC, and CNT/CC has been measured at 0.2 M Fe2+/3+ + 1 M H2SO4 electrolyte
under a three-electrode system, respectively. Figure 6a shows that all the CV curves of
the three different samples tested at the same condition display a pair of redox peaks at
almost the same peak potential, which originates from the electrochemical reaction of the
redox-active couples in the electrolyte: Fe3+ + e− ↔ Fe2+ . In addition, the area of the CV
curve of the hydrophilic carbon cloth (CC) is obviously larger than that of the pristine
one (PCC). Moreover, after further flame treatment, the resultant CNT/CC sample shows
a much larger CV area than both CC and PCC, confirming the superior performance of
this hierarchical electrode. The specific capacitance calculated from the GCD curves in
Figure 6b is: C (CNT/CC) = 4200 mF/cm2 > C (CC) = 1620 mF/cm2 > C (PCC) = 1260 mF/cm2,
indicating that the CNT/CC has the largest specific capacitance out of all three electrodes.
This result could be due to the CNTs grown on the carbon fiber surface, which could greatly
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enlarge the specific surface area of the electrode and provide more active sites for the
redox reaction of the iron ion couples, thus leading to a much larger pseudo-capacitance
of the electrode. Figure 6c shows the GCD curves of the CNT/CC recorded at different
current densities. The corresponding specific capacitance values are shown in Figure 6d.
The specific capacitance of the half-cell system at 60 mA/cm2 is 4200 mF/cm2. When
the current density is increased to 100 mA/cm2, its specific capacitance still maintains
2600 mF/cm2.
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of PCC, CC, and CNT/CC electrodes at 60 mA/cm2; (c) GCD curves of CNT/CC electrode at various
current densities; and (d) the specific capacitance of CNT/CC electrode at various current densities.
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3.3. The Electrochemical Performance of the Assembled Asymmetric Supercapacitor

Since both the half-cell system of the WO3/CC in H2SO4 and the CNT/CC in 0.2 M
Fe2+/3+ + 1 M H2SO4 exhibited high electrochemical performance, it is highly expected
that the asymmetric supercapacitors assembled with them will be an energy storage
device with a high energy density. In this study, the configuration of the assembled
asymmetric supercapacitor can be expressed as CNT/CC/0.2 M Fe2+/3+ + 1 M H2SO4//1 M
H2SO4/WO3/CC. As shown in Figure 1, both the electrodes can be well stabilized in their
respective electrolytes, and their electrochemical performance will be maximized in the
newly designed device. Figure 7a shows the CV curve of the WO3/CC and the CNT/CC
under their respective “electrode–electrolyte” systems. The areas of the CV curves of
the WO3/CC and the CNT/CC are almost the same, indicating the charge between the
positive and the negative parts in the ASC device is well balanced. Figure 7b shows the
CV curve of the ASC under different voltage ranges, which implies that the voltage range
of the device is better to be set up as 0~1.5 V, as an obvious polarization can be found
when the high potential is larger than 1.5 V. In addition, the evident redox peaks can be
observed in the CV curves, indicating the pseudo-capacitance behavior of the assembled
ASC, which can be ascribed to the redox reaction of the WO3/CC negative electrode in the
normal H2SO4 electrolyte and that of the active couple Fe2+/3+ on the CNT/CC positive
electrode. Figure 7c shows the GCD curves under different current densities, and the
corresponding specific capacitance values calculated from the GCD curve are shown in
Figure 7d. Specifically, the area-specific capacitance of the ASC is as high as 1289 mF/cm2

at a current density of 20 mA/cm2, and it still maintains 594 mF/cm2 when the current
density is increased to 100 mA/cm2.
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Figure 7. Electrochemical behavior of the ASC device with the configuration of CNT/CC/0.2 M
Fe2+/3+ + 1 M H2SO4//1 M H2SO4/WO3/CC. (a) CV curves of CNT/CC electrode in 0.2 M Fe2+/3+

+ 1 M H2SO4 electrolyte and WO3/CC electrode in 1 M H2SO4 electrolyte at 10 mV/s; (b) CV curves
of the ASC operated in different voltage windows; (c) GCD curves of the ASC at different current
densities; and (d) the specific capacitance of the ASC under different current densities.
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The Ragone plot in Figure 8a displays the energy density and power density of
the ASC device, which is calculated from the GCD curves at various current densities in
Figure 7c. Significantly, the ASC device exhibits an energy density as high as 403 µW h/cm2

(27 m Wh/cm3) at a power density of 15 mW/cm2 (992 m W/cm3), and it still maintains
186 µW h/cm2 when the power density is as high as 74 mW/cm2. As shown in Figure 8a,
the value is much higher than that of other asymmetric supercapacitors reported previ-
ously [36–41]. The Nyquist plot of the device in Figure 8b shows an equivalent series
resistance (Rs = 8.5 Ω), which is lower than the reported result [27], and the measured
charge-transfer resistance (Rct = 19.49 Ω) may be caused by the existence of the proton
exchange membrane. In addition, the multi-cycling test, shown in Figure 8c, manifests
that the ASC device has a capacitance retention rate of 102% after 10,000 cycles. At the
same time, its corresponding coulombic efficiency is still as high as 95%, indicating that
the device exhibits excellent stability. The remarkable cyclic stability could be due to the
hierarchical structure of both the electrodes, which causes the gradual infiltration of the
redox-active Fe3+/2+ into the entangled CNTs on the CC in the positive half-cell during the
long-term cycling process, and the progressively expanding percolation of the small proton
into the multi-tunnel crystalline structure of the h-WO3 nanobelts in their self-assembled,
urchin-like microspheres in the negative part, as shown in Figure 3d. Moreover, after the
parallel connection of two ASC devices, the charge and discharge time of the corresponding
GCD curve in Figure 8d increases significantly, which proves that our ASC device has the
potential for practical application.
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other results in literature; (b) Nyquist plot of the device; (c) multi-cycling test of the device; and
(d) GCD curves of two devices connected in parallel.
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4. Conclusions

In summary, urchin-like microspheres self-assembled by h-WO3 nanobelts with widths
around 30~50 nm are deposited on the surface of the hydrophilic CC through a hydrother-
mal reaction. Due to its excellent specific capacitance (3400 mF/cm2 at 10 mA/cm2) in
1 M H2SO4 electrolyte, the resulted hierarchical WO3/CC electrode is directly applied
as the negative electrode of the ASC device. A simple flame method has been used to
deposit CNTs onto the surface of the CC to make the hierarchical positive electrode as well,
which exhibits much higher specific capacitance in a redox-active electrolyte than those
without the flame treatment. More importantly, the assembled asymmetric supercapacitor
device contains both asymmetric electrodes and electrolytes (CNT/CC/0.2 M Fe2+/3+ +
1 M H2SO4//1 M H2SO4/WO3/CC) and exhibits a remarkable energy density as high
as 403 µW h/cm2 at the power density of 15 mW/cm2. Moreover, it maintains excel-
lent long-term cyclic stability after 10,000 cycles, which could be due to the hierarchical
structure of both electrodes, including the porous multi-tunnel crystalline structure of the
hexagonal WO3 nanobelts in the urchin-like microspheres. The novel configuration of the
ASC device provides better opportunities for the convenient design and fabrication of the
next generation of high-performance supercapacitors.
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