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Abstract: The simulation of large molecular systems remains a daunting challenge, which justifies
the exploration of novel methodologies to keep computers as an ideal companion tool for everyday
laboratory work. Whole micelles, bigger than 20 nm in size, formed by the self-assembly of hundreds
of copolymers containing more than 50 repeating units, have until now rarely been simulated, due
to a lack of computational power. Therefore, a flexible amphiphilic triblock copolymer (mPEG45-
α-PLL10-PLA25) containing a total of 80 repeating units, has been emulated and synthesized to
embody compactified nanoconstructs of over 900 assembled copolymers, sized between 80 and
100 nm, for siRNA complexing purposes. In this study, the tailored triblock copolymers containing a
controlled number of amino groups, were used as a support model to address the binding behavior
of STAT3-siRNA, in the formation of micelleplexes. Since increasingly complex drug delivery
systems require an ever more optimized physicochemical characterization, a converging description
has been implemented by a combination of experimentation and computational simulations. The
computational data were advantageous in allowing for the assumption of an optimal N/P ratio
favoring both conformational rigidifications of STAT3-siRNA with low competitive phenomena at the
binding sites of the micellar carriers. These calculations were consistent with the experimental data
showing that an N/P ratio of 1.5 resulted in a sufficient amount of complexed STAT3-siRNA with an
electrical potential at the slipping plane of the nanopharmaceuticals, close to the charge neutralization.

Keywords: polymeric micelles; isothermal titration calorimetry; molecular dynamics; capillary zone
electrophoresis; binding affinity; complexation efficiency

1. Introduction

The use of siRNA is an effective approach to treating various pathologies such as rare
genetic disorders, cardiovascular, viral or cancerous diseases [1–3]. The delivery of siRNA
is mostly accomplished via the use of cationic transfection agents [4,5]. Cationic polymers
have garnered tremendous interest due to their ability to protect siRNAs and favor cellular
uptake [6]. A large selection of amine-based polycations can be used including the iconic
poly-L-lysine (PLL). Unfortunately, the clinical use of synthetic polymers is hindered by
too low transfection efficiency and/or high toxicity [7].

With respect to polyplexes and/or micelleplexes, the most common stoichiometric
determination is based on the N/P charge ratio or more precisely, on the ratio of positive
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charges of amino groups (N) to negative charges of phosphate groups (P) [8]. Usually,
this ratio is greater than unity, which results in positive zeta-potential (ZP) values [9] that
ensure a high loading capacity and an improved transfection capability. Although optimal
complexation does not necessarily mean optimal transfection, complex stability remains a
prerequisite to be observed through optimal loading at charge neutralization ratio. Indeed,
the safety concerns related to high cytotoxicity and instability remain the main bottleneck
limiting clinical translation.

To overcome such drawbacks, efforts have been made to obtain biocompatible poly-
meric architectures, serving as siRNA supports while presenting non-toxic and biodegrad-
able features. To this end, triblock copolymeric micelles consisting of molecularly well-
defined, highly pure and non-cytotoxic entities have been developed [10]. The controlled
character of an optimal charge length of 10 lysines, conceptualized first by a computational
method [11], helps evaluate both experimental and computational complexation efficacies.
As a result, a methoxy poly(ethylene glycol)-block-poly(α-L-lysine)-block-poly(D,L-lactic
acid) (mPEG-α-PLL-PLA) triblock copolymer has been elegantly exploited as a micellar
scaffold. The enthalpy profile of the micelleplex formation was systematically examined.

On the experimental side, the complexation behavior was characterized by different
methods including capillary zone electrophoresis (CZE) and isothermal titration calorime-
try (ITC). Thereby, complexation efficacy and key parameters pertaining to the macroscopic
dissociation process, as described by an apparent dissociation constant (Kd), were conspic-
uously delineated and used to estimate binding affinity.

On the computational side, the molecular geometry of triblock copolymeric branches
binding to STAT3-siRNA was simulated by molecular dynamics (MD). The goal was to
artificially emulate a micelleplex containing fewer polymeric chains to support experimen-
tal results.

In this regard, a coupled approach based on analytical methods together with com-
putational modeling may provide fruitful information on the molecular mechanisms that
drive the complex formation of carrier-payload systems, such as polymer-siRNA complexes.
This aims to better define an N/P ratio closest to the charge neutralization point, with
optimal complexation of the payload.

2. Materials and Methods
2.1. Materials

Human STAT3-siRNA (1385 atoms and 13,330.21 Da) of the following sequence was
provided by Dharmacon Inc. (Horizon Discovery Ltd., Waterbeach, UK): (sense strand:
5’-GGAGCAGCACCUUCAGGAUdTdT-3’; antisense strand: 5’-AUCCUGAAGGUGCUG
CUCCdTdT-3’). GeneRuler Ultra Low Range DNA Ladder containing TriTrac DNA Load-
ing Dye (6X) was purchased from Thermo Fisher Scientific (Vilnius, Lithuania). Agarose,
Quant-iTTM RiboGreen® RNA Reagent and Kit, SYBR Safe DNA gel stain, UltraPureTM TBE
Buffer, 10X and UltraPureTM DNase/RNase-Free Distilled Water were provided by Invitro-
gen (Thermo Fischer Sci., Carlsbad, CA, USA). Methanol (HPLC grade MeOH), ≥99.8%
was provided by Fischer Scientific (Thermo Fischer Sci., Loughborough, UK). Sodium chlo-
ride (NaCl) for the analysis was obtained from Applichem GmbH (Darmstadt, Germany).
4-Methylphtalalic anhydride 96%, phosphoric acid, extra pure, 85 wt% solution in water,
sodium hydroxide pellets, 98.5%, were purchased from Acros Organics (Geel, Belgium).
Hydrochloric acid fuming ≥ 37% (HCl), HEPES (N-[2-Hydroxyethyl)piperazine-N’-[2-
ethanesulfonic acid]) sodium salt, poly(ethylene glycol) average Mn 6000 (PEG), Trizma®

hydrochloride (TRIS HCl) and Tween 20 were obtained from Sigma Aldrich (St-Louis,
MO, USA).

2.2. Preparation of siRNA-Loaded Micelleplexes

An mPEG-α-PLL-PLA triblock copolymer was synthesized and the polymeric mi-
celles were prepared, according to a procedure recently described [8]. Briefly, polymeric
micelles were prepared using a solvent evaporation technique at a stock concentration of
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2 mg/mL. The resulting micelles were filtered through a 0.22 µm pore size hydrophilic
PVDF membrane and diluted in Milli-Q water at the corresponding charge ratio. A stock
standard solution of STAT3-siRNA was prepared at 100 µM in RNase-free water and stored
at 253 K (−20 ◦C) until use. Standard solutions were freshly prepared by diluting the stock
solution to the appropriate concentrations and verified using a Nanodrop ND 1000 UV/Vis
Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), each at 260 nm wave-
length, before use. STAT3-siRNA was complexed with the cationic micelles in RNase-free
water at different N/P charge ratios, vortexed during 10 s and left at room temperature for
at least 20 min before analysis.

2.3. Characterization of Size and Zeta Potential Measurements

Micelleplexes with different N/P ratios, each containing 1 µM siRNA, were prepared
for the measurement of hydrodynamic diameters. Determination of zeta potential values
was established for the micelleplexes with different N/P ratios containing 5 µM siRNA
diluted in 1 mM NaCl. Samples were prepared at different N/P ratios. The measurements
were carried out using a Zeta-sizer Nano (Malvern, Worcestershire, UK) at 298 K. The
results for the size and the zeta potential were compared to those obtained by nanoparticle
tracking analysis (NTA) using a PMX-220 TWIN ZetaView (Particle Metrix GmbH, Inning
am Ammersee, Germany). Micelleplexes were prepared at different ratios, containing 1 µM
siRNA and diluted 10 times before measurement. The measurements were performed in a
pulse-sensed electric field. The morphology of the dried micelleplexes was imaged using a
JSM-8001FA scanning electron microscope (SEM, JEOL, Tokyo, Japan) at an acceleration
voltage of 5 kV after the coating samples with a 20 nm gold layer and compared with
transmission electron microscopy (TEM), at a high voltage of 80 kV, using a Tecnai G2 12
(FEI Company, Eindhoven, The Netherlands). All samples were prepared to contain 1 µM
siRNA and diluted to obtain 0.04 mg/mL of polymeric materials of each ratio. Three to
5 µL of the samples were spotted on appropriate supports and dried at room temperature
over 48 h before imaging.

2.4. Gel Retardation Assay

Polymeric micelles were allowed to form complexes containing 100 ng/µL STAT3-
siRNA at different N/P ratios. The quality of complexation was determined by gel elec-
trophoresis. The complexes (10 µL) were mixed and allowed for complex formation at
room temperature for 10 min before adding the loading dye (2 µL). The samples were then
loaded onto a 4% gel agarose in a TBE buffer containing a SYBR Safe migration dye for
detection of non-complexed oligonucleotides. The electrophoresis was performed at 80 V
for 50 min in a horizontal electrophoresis apparatus and visualized by exposure to UV-
illumination (302 nm) with a molecular imaging Gel Dox XR system (Bio-Rad Laboratories,
Inc. Hercules, CA, USA).

2.5. Capillary Zone Electrophoresis (CZE)
2.5.1. Instrumentation

Electrophoretic data were generated using an HP G1600AX 3D CE system, (Agilent
Technologies, Waldbronn, Germany) equipped with a diode-array detector. Separations
were carried out in an uncoated fused silica capillary (Composite, Metal Service, Worcester-
shire, UK) with a 50 µm inner diameter and 48.5 cm total length, thermostatted at 298 K.
A suitable optical window was conceived allowing for an alignment interface to the UV
detector. UV detection was set at 210 and 260 nm, with a bandwidth of 10 nm. Prior to its
first use, the capillary was sequentially washed (5 bar) with HPLC grade MeOH, 1M HCl, 1
M NaOH, Milli-Q H2O (1 min each). The background electrolyte (BGE) was constituted
with 100 mM Tris HCl, 100 mM HEPES Na+, 100 mM NaCl, 0.1% PEG 6000, 0.1% Tween 20
and adjusted to pH 7.4 with 0.1 M H3PO4. The capillary was rinsed (1 bar) with BGE (5 min)
and the separation voltage (10 kV) was applied for 5 min, driving a current flow of 52 µA
at a power of 0.5 W. Prior to each sample injection, the capillary was successively washed
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with water (3 min) and then equilibrated with BGE (3 min). Samples were kept at ambient
temperature in an autosampler and hydrodynamically injected by applying a pressure
of −50 mbar during 7 s to overcome sensitivity issues at high N/P ratios. The separated
BGEs were refreshed every ten runs to keep a low current difference (0.32 µA ± 0.08).
Following each working day, the capillary was washed with water (5 min) and flushed with
air (5 min) for dry storage. PEG present in the BGE served as a dynamic coating, allowing a
reduction of the electro-osmotic flow for the detection of siRNAs using a short-end injection
technique. The effective capillary length (Le) was reduced by performing the injection on
the detector side (Le = 8.5 cm) instead of on the conventional injection on its opposite side
(Le = 40 cm), to detect siRNAs in less than 5 min. This method was adapted by using a silica
capillary from a previous publication by Furst et al. [12]. Basic conditioning allows the
hydrolysis of siloxanes. The addition of 0.1% Tween 20 was used to decrease the adsorption
of siRNA to the capillary wall.

2.5.2. Standard Solutions and Samples

4-Methylphtalate anhydride (4 µg/mL) was added to all final concentrations of the
siRNA standard solutions and samples, as an internal standard. As previously mentioned
for quantification [12], the areas under the curve (AUC) at 260 nm at the migration time of
siRNA were normalized to the AUC at 210 nm at the migration time of 4-methylphthalic
anhydride in accordance with the following Equation (1):

Normalized peak ratios =

(
A260
T260

)
(

A210
T210

) , (1)

A calibration curve was established using nine concentration levels of siRNA (k = 9)
in triplicate (n = 3) between 0.5 to 8 µM prepared in RNase-free water with a dispersion
around a linear relationship (r2 = 0.9955). The micelleplexes were prepared to contain
a 7 µM siRNA concentration at different N/P ratios, ranging from 0 to 5. Finally, the
percentage of complexed siRNA was calculated by subtraction of non-complexed siRNA
normalized to siRNA alone, used as control.

2.6. RiboGreen® Fluorescence-Based Assay

The concentration of non-complexed siRNA was determined using a Quant-iT Ri-
boGreen RNA assay (Invitrogen, Life Technologies, Eugene, OR, USA), following the
manufacturer’s protocol. Micelleplexes were prepared at various N/P ratios with 37.5 nM
siRNA concentrations and transferred onto a 96-well plate. The fluorescence was mea-
sured using a Synergy Mx microplate reader (BioTeK, Winooski, VT, USA) with standard
excitation and emission wavelengths set at 485 ± 10 nm and 530 ± 12.5 nm, respectively.

2.7. Molecular Dynamics Simulations

The human STAT3-siRNA starting coordinates were built in the canonical B-form using
the AMBER NAB tool. The mPEG-α-PLL-PLA triblock copolymer was modeled using the
Avogadro chemical editor [13]. In particular, the initial conformation of the PLL moiety
was obtained from the PEPFOLD-3 server [14]. Partial charges of the triblock copolymer
were obtained using the AM1-BCC method [15], widely used in the field of polymer partial
charge calculation [11,16,17]. The general amber force field (GAFF) [18] was chosen to
describe the siRNA and the triblock copolymer molecules. The AMBER99-ILDN force
field [19] was chosen to describe the siRNA and the triblock copolymer topologies. The
triblock copolymer and the siRNA were set in the center of the cubic box with a 10 nm side
and a minimum starting distance of 1.5 nm between them. The system was subsequently
solvated with TIP3P water [20] and filled with ions (Cl− and Na+) at a concentration of
0.15 M. The GROMACS 2020.1 [21,22] package was adopted for performing molecular
dynamics (MD) simulations. A 100 ps position restrain MD was carried out in respect of
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the NVT ensemble using the v-rescale [23] thermostatted at 300 K and the NPT ensemble
using Berendsen [24] barostatted at 1 atm after a process of 1000 steps of steepest descent
energy minimization. Three replicas of 200 ns production MD simulations were performed
in an NPT ensemble using a Parinello Rahman [25] barostat. The long-range electrostatic
interactions were calculated at every step using the particle-mesh Ewald (PME) [26] method
with a cut-off of 1 nm. A cut-off of 1 nm was also applied to Lennard–Jones [27] interactions.
All of the analyses were performed using an ensemble trajectory of the last 20 ns of the
three replicas. The binding enthalpy between the siRNA and the triblock copolymers
was calculated using a molecular mechanics generalized Born model augmented with the
solvent-accessible surface area (MM-GBSA) [28]. The stoichiometric value was calculated
considering only the PLL segment. The PLL residues were considered complexed only
when they were located at a distance of at least 0.3 nm from the siRNA macromolecule.

2.8. Estimation of Binding Affinity

ITC measurements were performed on a model VP-ITC titration calorimeter system
(MicroCal, Northampton, MA, USA) at 298 K and 1 atm, according to a previous method
described by Zheng et al. [29]. Milli-Q water was degassed under vacuum for 10 min and
equilibrated to room temperature before use. The titration was initiated after achieving
a stable baseline. To prevent any errors due to syringe filling, an initial aliquot of 2 µL
was injected. Then, 10 µL of micelles solutions (3 mM nitrogen of PLL10; 0.3 mM triblock
copolymer; 1.59 mg/mL of polymeric micelles) was titrated to the STAT3-siRNA (0.05 mM
phosphate of siRNA; 1.25 µM siRNA; 2 mL) present in the 1.8 mL sample cell. Constant
injections, at a spacing time of 180 s, were carried out until a complete saturation of
siRNA with the polymeric micelle was obtained. ITC data were analyzed with Origin 7
software (Microcal, Inc., Los Angeles, CA, USA) with a single-site-binding assumption
as a fitting model. The association constant (Ka), dissociation constant (Kd = 1/Ka) and
thermodynamic parameters of enthalpy change in binding (∆H) were calculated by a
nonlinear regression. Gibbs free energy (∆G) and entropy (∆S) were determined using the
following Equations (2) and (3):

∆G = −RT ln (Ka), (2)

∆S = (∆H − ∆G)/T, (3)

where R is the ideal gas constant (8.314 J K−1 mol−1) and T is the temperature in Kelvin (K).

3. Results
3.1. Particle Size, Zeta Potential and Morphology

Micelleplexes were produced at different N/P ratios and characterized using DLS
and NTA for the size and the ZP (Figure 1A,B). Morphology and size were analyzed by
SEM and TEM, which showed no differences when varying N/P ratios with a typical
representation obtained at N/P = 3 (Figure 1C,D). The size and the polydispersity indexes
(PDI), measured by DLS, were reduced with the increasing N/P ratio, while the median and
mean values remained constant, as shown by NTA. The span values obtained by NTA were
also decreased from 0.9 for N/P = 1 to 0.7 for N/P = 5. Negatively charged micelleplexes
were obtained at N/P = 0.5 and 1, while positively charged complexes were obtained at
10 mV for N/P = 2 and 15 mV for N/P = 5, as seen by both NTA and DLS techniques.
A spherical morphology with a size around 100 nm was confirmed by SEM and TEM
microscopy (Figure 1C,D). A neutral charge point around N/P = 1.25 can be observed with
a micellar system containing a determined number of cationic charges. The fact that this is
very close to the value of 1 shows that the supramolecular arrangement of the polymers
reduces the availability of cationic charges, which requires a slightly higher ratio.
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Figure 1. (A) The particle size/polydispersity index (PDI) and (B) zeta potential of siRNA micelle-
plexes as determined by the intensity of dynamic/electrophoretic light scattering (yellow-filled bars)
and the nanoparticle tracking analysis (hatched bars) at an N/P ratio varying from 0.5 to 5. PDI is
represented by #. Error bars are the standard deviation (SD) of triplicates. Typical images at N/P = 3
by (C) SEM and (D) TEM.

A mean of Z-average for all N/P ratios obtained by intensity (DLS) gives a size value
around 100 nm (Figure 1A). A median size of 110 nm, based on the number of particles
tracked, is observed by NTA at all N/P ratios. The size of micelleplexes is similar for all
ratios, as confirmed by microscopy (SEM and TEM). However, the values for each ratio of
Z-Ave by DLS, the standard deviations (DLS, NTA), PDI for DLS and span for NTA tend to
decrease when increasing the amount of triblock copolymers.

Usually, the average size of the intensity-weighted size distribution is greater than
its corresponding numeric weight. Although these values are very close, this seems to
contradict the mean sizes obtained by these two techniques, probably due to a different
range measurement for NTA. Indeed, NTA studies have reported a practical detection limit
of 60 to 70 nm [30].

3.2. Complexation Efficacy and Molecular Mechanism of Interaction

The efficiency of STAT3-siRNA complexation was visualized qualitatively by agarose
gel electrophoresis with a complex formation from N/P 0.5 and quantified by CZE and
RiboGreen fluorescence-based assay (Figure 2A). The structural conformation of triblock
copolymers complexing siRNA was investigated by MM-GBSA. The angle θ of the siRNA,
the total buried surface and H-bond number between STAT3-siRNA and the triblock
copolymers were estimated computationally (Figure 2B).
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Figure 2. (A) Binding properties of triblock copolymeric micelles and STAT3-siRNA run on 4%
gel agarose electrophoresis. Typical electropherogram (260 nm) of a standard solution containing
2 µM STAT3-siRNA and 4 µg/mL of the internal standard (IS). Percentage of the complexed siRNA
versus the N/P ratio obtained by RiboGreen assay (claret) and capillary electrophoresis (purple)
(n = 3). (B) Molecular conformation of the complexes by addition of triblock copolymers. Along
the filament axis, the angle θ is calculated connecting the nucleotides located at the center of mass
and the ending nucleotide bases highlighted in orange. The contribution to the complexation of the
polymeric segments PEG, PLL, PLA involved in the complex formation was estimated by calculating
the H-bond numbers and the total buried surfaces.

A qualitative retention and retardation display can be obtained by gel agarose elec-
trophoresis showing a separation of siRNAs from the polymeric carrier below N/P 0.5
(60% non-complexed siRNAs). The oligonucleotides migrated, as they were not completely
retained by the positive charges coming from the carrier. At N/P = 0.25, a smear pat-
tern showing a weak retention linked to an insufficient amount of copolymers showed
that the oppositely charged polyelectrolytes were being pulled apart, jointly indicated
by Kwok et al. [31]. Above N/P = 0.5, the bound siRNAs were retained in the wells, as
observed by smudges with more compact patterns at increasing N/P ratios. Capillary
electrophoresis conditions allowed a robust separation, which was demonstrated by the
reproducibility of the injection at a standardized concentration of 2 µM of siRNA with an
electropherogram presented in Figure 2A. Complexation efficiency can be determined in
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an automated manner by CZE under simple and inexpensive conditions. Both CZE and
Ribogreen techniques showed 80% loading capacity at N/P = 1 and 90% at N/P = 2.

The angle θ analysis (Figure 2B) between the three nucleotides’ center of mass showed
that one triblock copolymer branch does not impair the average angle upon interaction.
However, the addition of interacting copolymers resulted in a slightly decreased standard
deviation of the θ angle with an increased average angle towards a rectilinear geometry of
STAT3-siRNA. This shows that the siRNA is stabilized and stiffened when surrounded by
the triblock copolymers. Molecular dynamics simulations showed that the PLL segment is
the main interacting portion of the triblock copolymer with the siRNA, both in H-bonds
(7.8 ± 2.3, 18.7± 5.7, 23.7± 6.3 and 29.8± 3.6 for 1, 4, 6 and 8 copolymers, respectively) and
in total buried surfaces (6.5 ± 0.5 nm2, 16.3 ± 0.7 nm2, 21.8 ± 0.8 nm2 and 22.9 ± 1.0 nm2

for 1, 4, 6 and 8 copolymers).

3.3. Complexation Efficacy and Molecular Mechanism of Interaction

In contrast to intensive studies in structure-properties relationship, energetics has
received much less attention. Therefore, the differential power (DP) caused by the complex-
ation of the micelles to STAT3-siRNAs was measured and integrated to obtain the binding
isotherm (Figure 3A). As such, important information on the interaction of the siRNA with
copolymers could be obtained by characterizing in situ their binding thermodynamics.
The interaction of one siRNA molecule to multiple copolymeric branches was simulated
by molecular modeling (Figure 3B). Asymptotical values of stoichiometry and binding
enthalpy energy were extrapolated.
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The stoichiometric number of charge (N) was determined experimentally to be (5.71± 0.15
copolymers per siRNA). The experimental value of change in free energy (∆G, Equation (3))
is negative (−42.3 kJ mol−1) and confirms a spontaneous phenomenon of non-covalent
interactions associated with a strong binding (Kd = 38.5 nM). The entropy gain (∆S > 0, low
yet still positive), an enthalpy loss (∆H = −16.5 kJ mol−1), (exothermic; <0) and high values
for Ka (Ka = 2.6 × 107 M−1) were obtained. Experimental work has provided a wealth of
data for micelleplex formation with attempts to discern the electrostatic contribution from
the hydrophobic Van der Waals interaction, hydrogen bonding and hydration force [32].
Due to the complicated processes of the structure formation related to the specific charac-
teristics of two oppositely charged polyelectrolytes, ITC measurements were performed
in salt-free water, in order to limit competitive binding. Although, a counterion cloud
(CF3COO−; Na+) cannot be completely removed, due to the synthetic procedures, NaCl
ions were not added to depict the level of the electrostatic contributions and properly
estimate the binding constant. This is consistent with other studies that report that non-
covalent interactions are entropy-driven bindings, which proves that the lysine present
on the positively charged surface of the micelles interacts primarily with the phosphate
backbone of the STAT3-siRNA, which is negatively charged [33], thus suggesting that the
H-bonds contribute to the increased stability of these complexes. The inference of the
entropic effects from salt dependence has been previously described in the literature [34].
As the incoming copolymers have to displace the salt counterions, this should normally
lead to an increase in entropy gain [35].

In parallel, this value was estimated in silico considering only the PLL segment of
each copolymer, since they are the predominant interacting subunit of the copolymers, as
highlighted in (Figure 2). A rational procedure was followed, considering that the siRNA
interacting sites would at a certain point be saturated in the solution, as the oligonucleotides
will be completely enshrouded by the triblock copolymers. A promising computational
strategy is highlighted here by searching the saturation point of the siRNA sites. This
was achieved by extracting the asymptotical values of a polynomial function created by
interpolating the stoichiometry data. In this connection, the following polynomial function
(f(x) = −0.05x2 + 1.07x + 0.01) was used to interpolate the data. The extremum value of the
function is located at the saddle point, determined by derivation (f’(x) = 1.07 − 0.1x = 0
⇔ f(10.7) = 5.73). The average N value of 5.73 was therefore reached at 10.7 copolymers.
This value is highly consistent with the experimental one. Regarding the enthalpy profile, a
value of −132.2 kJ mol−1 reached at 10 copolymers was extracted by the same approach
(g(x) = −0.36x2 + 10x − 95.6). These data are summarized in Table 1.

Table 1. Summary of the energetics parameters involved in the molecular interactions.

N
(sites)

Ka
(M−1)

Kd
(nM)

∆H
(kJ mol−1)

∆S
(kJ K−1 mol−1)

∆G
(kJ mol−1)

Experimental 5.71 ± 0.15 2.6 · 107 38.5 −16.5 0.087 −42.3
Computational 5.73 N/A N/A −132.2 N/A N/A

Stoichiometry number (N) values were completely consistent. However, inconsistent
negative enthalpy values were observed. This seems reasonable and can be explained by
different representations of the systems. Indeed, the enthalpic contribution is estimated
based on the addition of the copolymeric branches binding to a single siRNA, which
is a simplified version of a complete micelle containing several siRNAs used for the
experimental measurements.

4. Discussion

The characterization methods described in this paper were deliberately limited to easy-
to-use techniques. The aim was to provide information on physicochemical characterization
based on relatively inexpensive instruments and reduced computational costs (except for
electron microscopy). The cheap electrophoresis conditions described in this article could
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also be implemented using a budget device [36] for quality control of these products in
low-income countries, which often struggle to keep pace with technological advances [37].

The use of both DLS and NTA orthogonal sizing techniques is preferable for the
robustness of size determination. One can determine size at a broader concentration range
and PDI measurements, while the other can give an accurate distribution of size at more
diluted concentrations. DLS analysis normally reveals aggregates, whereas herein the
more the proportion of copolymeric micelles increases, the more size decreases, showing
empty micelles (devoid of siRNAs). This observation does not correlate with NTA, as
smaller micelle sizes cannot be detected with this technique; they are shadowed and the
system compensates by overestimating micelles of the same size. This limitation by NTA
measurement is related to a conversion to a number-weighted distribution.

Among the various size characterization techniques that are available, asymmetric
flow field flow fractionation coupled with multiangle light scattering and dynamic light
scattering detector (AF4-MALS-DLS) has the potential to become a powerful and very
robust method for particle size distribution measurement [38,39]. However, AF4 frac-
tionation requires trained personnel with expertise. This instrument is difficult to use
as it is difficult to properly set ideal elution conditions, as shown by the procedure de-
scribed by Caputo et al. [40], with unsatisfactory measurement of complex structures of the
RNA-loaded lipid-based nanoparticles (LNP-RNA) [41]. In a recent article, Mildner et al.
explored the use of a frit-inlet channel omitting a focusing step to minimize the contact of
LNP-RNA particles with membranes reducing sample loss and particle aggregation [41].
Indeed, sample mass recovery is a key indicator for the evaluation of configuration tests dur-
ing method optimization and material loss can be more significant for positively charged
nanoparticles [41]. Therefore, determining the nucleic acid content per size fraction re-
mains a major challenge. This research is useful, as computational simulations showed
convergence with complexation efficacy data, providing conformational elements for a
mechanistic description of complex formation.

Regarding complexation efficacy, capillary electrophoresis is a powerful technique
that can compete with the commonly used HPLC [42]. Although often referred to as
the separation of different oligonucleotides [43], this technique has also been described
for the evaluation of the complexation of siRNA to cationic liposomes [12] and by DNA
oligomers to polycationic cyclodextrins by hyphenation to mass spectrometry (MS) [44].
Hyphenation of CE to MS opens perspectives by improving the sensitivity within nM range
and can also be performed using bare fused silica capillaries for the detection of small
RNA oligonucleotides [45,46]. Similar complexation behaviors have been demonstrated
using different techniques. In addition, the resulting complexation curves describe a
phenomenon of isotherm sorption of STAT3-siRNA, which fits with a Langmuir adsorption
model consistent with the uncooperative 1-site model used for ITC. This suggests that
adsorbate/adsorbate interactions can be ignored.

The MM-GBSA method faces certain limitations in adapting the ∆H value to the
experimental data [16,29,47]. Simulation studies describe molecular conformations, which
add further evidence of complexing behavior. Moreover, decreasing ∆H values with
increasing copolymers are particularly interesting. By an increase of the standard deviation,
due to the increment of copolymers, it is reasonable to hypothesize that the presence of
several polycations leads to competition phenomena to bind to the interaction sites. When
copolymers are present, (i.e., N/P ratio > 1), competition mechanisms can change certain
thermodynamic parameters [17], including the stoichiometric number and the enthalpy,
thus explaining a visible decrease in ∆H. These competition phenomena suggest a greater
instability of the system and a challenge to maintaining a point of charge-neutralization,
which may ultimately hinder efficient cell transfection.

5. Conclusions

In this study, we presented cross-cutting techniques that bridge experimental and
computational methods to gain knowledge of how electrostatic interaction will affect
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complexation behavior and stability. This interdisciplinary research area helps ensure
an optimized physicochemical characterization of siRNA-loaded micelleplexes. With
respect to translational research, this approach might help limit the number of cell-based
assays. An alternative approach by combinatorial library of polymers is suggested to be
especially consuming. Although this work is limited to characterization without a direct
relationship to biological fate, the approach could be further considered for a better design
of novel cationic polymers. Further studies are needed to shed light on toxicity and efficacy
implications. The thermodynamics of interaction help understand the molecular basis.

We have used different techniques to characterize the binding formation, which has
significant advantages as compared to the classical gel retardation assay. Moreover, an N/P
ratio of 1.5 should be selected to provide a high complexation efficacy of 85%, resulting
in slight positively charged micelleplexes. The ratio of N/P = 1.5, slightly higher than
the theoretical value of N/P = 1, was demonstrated in connection with the molecular
orientation of the triblock copolymers complexed around the double-stranded siRNA.
By describing a variety of easy-to-implement methods, we showed how to determine an
appropriate range of N/P ratios. Suitable and reliable analytical techniques were offered to
screen important physicochemical parameters such as size, ZP, morphology, which may be
regarded as critical quality attributes (CQAs). In the future, an important feature should
be developed to correct drift and limit discrepancies in enthalpy values. We recommend
normalizing values against a calibration material.
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