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Abstract

Background

Atrial fibrillation (AF) is predicted to affect around 17.9 million individuals in Europe by 2060.

The disease is associated with severe electrical and structural remodelling of the heart, and

increased the risk of stroke and heart failure. In order to improve treatment and find new

drug targets, the field needs to better comprehend the exact molecular mechanisms in

these remodelling processes.

Objectives

This study aims to identify gene and miRNA networks involved in the remodelling of AF

hearts in AF patients with mitral valve regurgitation (MVR).

Methods

Total RNA was extracted from right atrial biopsies from patients undergoing surgery for

mitral valve replacement or repair with AF and without history of AF to test for differentially

expressed genes and miRNAs using RNA-sequencing and miRNA microarray. In silico pre-

dictions were used to construct a mRNA-miRNA network including differentially expressed

mRNAs and miRNAs. Gene and chromosome enrichment analysis were used to identify

molecular pathways and high-density AF loci.

Results

We found 644 genes and 43 miRNAs differentially expressed in AF patients compared to

controls. From these lists, we identified 905 pairs of putative miRNA-mRNA interactions,

including 37 miRNAs and 295 genes. Of particular note, AF-associated miR-130b-3p, miR-

338-5p and miR-208a-3p were differentially expressed in our AF tissue samples. These

miRNAs are predicted regulators of several differentially expressed genes associated with
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cardiac conduction and fibrosis. We identified two high-density AF loci in chromosomes

14q11.2 and 6p21.3.

Conclusions

AF in MVR patients is associated with down-regulation of ion channel genes and up-regula-

tion of extracellular matrix genes. Other AF related genes are dysregulated and several are

predicted to be targeted by miRNAs. Our novel miRNA-mRNA regulatory network provides

new insights into the mechanisms of AF.

Introduction

Atrial Fibrillation (AF) is the most common type of cardiac arrhythmia. The disease represents

a major economic burden and prevalence is predicted to increase over the next decades both

in Europe and the United States [1]. Genetic variants are well documented in cases of early-

onset and ‘lone’ AF [2,3]. Additionally, more than one hundred susceptibility loci were identi-

fied by population-based, genome-wide association studies (GWAS) [4,5].

The vast majority of AF patients are over 75 years old indicating that AF is an age-related

disease. The disease often starts by short self-terminating episodes originating from a trigger in

a vulnerable substrate that leads to rapid focal ectopic firing and re-entry of electrical signals in

the atria. In some cases, AF can gradually develop to a permanent condition through a process

called remodelling [6]. Electrical remodelling results from ion channel dysregulation while

structural remodelling is characterized by increased fibrosis, atrial dilation and conduction

abnormalities [7,8]. The available therapeutic options in clinical practice have limited effi-

ciency, especially in those patients with more progressed AF, likely due to higher severity of tis-

sue remodelling [9].

Valvular heart disease (VHD) is an established risk factor for AF [10]. However, not all

patients with valve disorders develop AF, suggesting that some VHD patients are more predis-

posed to develop AF. Differences in the remodelling of affected hearts might be a secondary

factor predisposing to AF in these patients.

MicroRNAs (miRNAs) are a class of highly conserved short non-protein-coding RNAs.

These 18–24 nucleotides RNA molecules are known to negatively regulate the expression of

complementary target genes by binding to the 3’-untranslated region (UTR) of messenger

RNAs (mRNAs) in the cytosol, promoting either mRNA degradation or inhibiting translation

[11]. MiRNAs can be classified as intergenic, intronic and exonic, and the expression of intro-

nic and exonic miRNAs is mainly controlled by the promoter of the host gene [12].

Original reports on the role of miR-1 in cardiogenesis have triggered a large body of

research dealing with the role of miRNAs in cardiac development and pathological processes

[13]. Following this report, abnormal expression of many other miRNAs has been described in

various types of cardiac disorders [14]. In the context of AF, different studies have shown a

role of miRNAs in the deregulation of ion channels based on gene expression analyses of tissue

samples from AF patients and additional functional studies [15–17]. Cardiac fibrosis was also

shown to be influenced by a number of miRNAs, such as miR-133a [18,19]. However, much is

yet to be learned about the complete role of miRNAs in arrhythmogenesis. Hence, the analysis

of miRNAs expression can give important insight into regulatory mechanisms involved in dis-

ease, especially when combined with gene expression profiling studies [20,21].
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The present study identifies several miRNAs and genes that may contribute to the develop-

ment of AF-associated with VHD and illustrates a miRNA-mRNA network with hundreds of

putative regulatory interactions from studying tissue samples from AF patients and controls

with mitral valve regurgitation (MVR).

Materials and methods

Patients and tissue samples

Right atrial (RA) posterior wall tissue biopsies were obtained from unrelated Caucasian

patients undergoing open-heart surgery for mitral valve replacement or repair at the Univer-

sity Hospital of Copenhagen (Rigshospitalet), as previously described [22]. From these, six

patients with AF sustained for at least two months were selected. The control group included

six patients in sinus rhythm (SR) and with no previous history of AF who were selected

according to age and gender match. Cardiac disease, hypertension and type 2 diabetes mellitus

were used as exclusion criteria.

The study was approved by the Ethics Committee of the Capital Region of Copenhagen

(protocol reference no. 16238), in accordance with the Declaration of Helsinki. Written

informed consent for the use of clinical information and biological samples was provided by

all participants. Clinical data from all subjects was obtained through questionnaires and clini-

cal records from the Danish health care system.

RNA preparation

Total RNA including small RNAs was extracted from RA biopsies of six AF patients and six

control patients using the miRNeasy kit (QIAGEN, Hilden, Germany) according to manufac-

turer’s instructions. RNA concentration was measured in a NanoDrop 2000 (ThermoScienti-

fic, Wilmington, USA) and quality was assessed in a 2100 Bioanalyzer (Agilent Technologies,

Santa Clara, CA, USA). RNA samples with a RIN> 6 were used in further experiments. For

details see Supplementary methods in S1 File.

RNA-sequencing

Libraries were prepared from ribosomal RNA depleted RNA samples using the TruSeq

Stranded Total RNA Library Prep Kit (Illumina, San Diego, California, USA). Libraries were

sequenced on an Illumina HiSeq 2500. The control sample HS24 was not used due to low

amount of input RNA. The raw sequencing data is available in the Electronic Research Data

Archive (University of Copenhagen), see Data Availability section.

Transcriptome sequencing analysis

Raw paired-end reads were aligned to the human GRCh38 reference transcriptome using the

Kallisto pseudoaligner with default options [23]. Kallisto quantifies the abundance of reads on

transcript level. The resulting quantification files were imported to R for downstream analysis.

Transcript counts were collapsed to gene level. Differentially expressed genes (DEGs) in AF

compared to controls were obtained using the Bioconductor package DEseq2 [24]. Genes with

false discovery rate< 0.05 and log2fold-change (FC) above 1 or below -1 were considered

DEGs. Principal component analysis (PCA) and unsupervised hierarchical clustering of sam-

ple-to-sample distance matrixes were used to analyse sample clustering according to transcrip-

tomic similarities.

DEGs were compared with genes of interest including 1) AF-associated genes from geno-

mic, transcriptomic and proteomic studies from a broad literature search and 2) genes
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involved in mechanisms of interest, such as fibrosis, cardiac contraction and ion channel cur-

rents, from GO terms and HUGO Gene Nomenclature Committee.

MiRNAs microarray

Microarrays were performed with the exact same RNA samples used for the RNA-seq experi-

ments. Mature miRNA transcripts were hybridized to the GeneChipS1 miRNA 4.0 Array

(Affymetrix, Santa Clara, USA). Raw CEL data files are available at the Electronic Research

Data Archive (University of Copenhagen), see Data Availability section.

Data generated by the Affymetrix’s miRNA array was normalized using the robust multi-

array average method [25]. Quality metrics showed one control sample (HS24) as an outlier

(S1 Fig in S1 File). FC values and p-values (p) of expression changes were calculated using the

Limma package in R/Bioconductor project [26]. A cut-off p< 0.01 was used for selection of

differentially expressed miRNAs. No FC cut-off was applied. Samples and differentially

expressed miRNAs were subjected to unsupervised hierarchical clustering and plotted as a

heat map.

Validation of RNA-seq and microarray by quantitative PCR

Qualitative polymerase chain reaction (qPCR) was performed to confirm the reliability of

RNA-seq and microarray data. cDNA was synthesized using the Precision nanoScript2

Reverse Transcription kit (PrimerDesign, Southampton, United Kingdom) for mRNAs and

the Universal cDNA Synthesis kit II (Exiqon, Wobrun, Massachusetts, USA) for miRNAs. The

expression of selected genes was measured using Taqman double dye probes and Precision-

PLUS MasterMix with ROX (PrimerDesign, Southampton, United Kingdom). The miRNAs

qPCR reactions were performed using commercial miRCURY LNA™ Universal RT microRNA

PCR primers and the ExiLENT SYBR1 Green master mix (Exiqon, Wobrun, Massachusetts,

USA). All experiments were performed in a light cycler CFX Connect Real-Time System

(BIO-RAD, Hertfordshire, UK). The following genes–KCNA4, ACTN2, KCNK3, NANOG,

TNNT2, KCNQ5, KCNJ5 and KCNB1, and miRNAs—miR-143-5p, miR-192-5p, miR-187-3p,

miR-208b-3p, miR-338-5p, miR-335-5p, miR-432-5p, miR-490-5p, miR-499a-5p, miR-503-5p

and miR-92b-3p, were investigated. YWHAZ and RPL13A were used as references to normal-

ize the results, while miRNA-16-5p and miR-103a-3p were used to normalize the miRNAs

results. Relative expression and FC values were calculated using the 2-ΔΔCt method.

Statistical analysis

Statistical analysis was performed on GraphPad Prism 7 (GraphPad Software Inc., San Diego,

USA). Mann-Whitney U-test and was applied for comparison of continuous variables. Patient

data is presented as mean ± standard deviation (SD) and percentage. P< 0.05 was considered

statistically significant.

miRNA target genes prediction

Candidate target genes of the differentially expressed miRNAs were obtained using the miR-

Walk3 target prediction database [27,28]. The programme output includes predictions from

miRWalk’s machine learning approach (TarPmiR) and experimentally validated interaction

from miRTarBase. The 3’-UTR of genes was selected as putative binding site and only predic-

tions with a binding probability above 0.95 were accepted. Afterwards, miRNA-gene interac-

tions in which the target gene was included in our DEGs list were kept and all the others were

filtered out. Normalized expression levels from microarray and RNA-seq were used to evaluate
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the correlation between each miRNA-gene pair using Spearman’s correlation coefficient in

order to find monotonic relations, rather than just linear, given the different magnitudes used

for the RNA-seq and microarray experiments. Subsequently, interaction with a negative corre-

lation below -0.5 were used to construct a miRNA-gene regulatory network in Cytoscape ver-

sion 3.6.1 [29]. Filtering criteria was applied to the networks in order to help visualize and

identify relevant interactions. Secondary miRNA-gene networks were built for up- and down-

regulated miRNAs previously association with AF in expression studies [30–32] and respective

predicted target genes.

Functional enrichment analysis

To better understand the functional role of differentially expressed miRNAs and target genes,

a functional enrichment analysis of the targeted genes after filtering was performed using the

Database for Annotation, Visualization and Integrated Discovery (DAVID) [33]. The same

analysis was performed with the full list of DEGs from RNA-seq experiments. Our enrichment

analysis was focused on gene ontology (GO) terms and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways using an enrichment cut-off of p< 0.05 after Benjamini-Hoch-

berg correction.

Positional enrichment of genetic elements

Up- and down-regulated genes and miRNAs were plotted together with AF-associated single

nucleotide polymorphisms (SNPs), according to chromosome position, to visualize possible

clusters of these genetic elements. AF SNPs were retrieved from published data and the

Human Short Variants dataset from Ensembl Variation 96 [34]. The location of the published

SNPs had to be converted from Hg19 assembly to Hg38 using the UCSC liftOver tool. For the

rest of the elements, genomic location and cytogenetic band information was retrieved from

Biomart (Bioconductor). The nearest gene(s) to each SNP genome coordinate were obtained

to plot together with the matching SNP. For 81 SNPs retrieved, no associated gene was found.

A cluster was defined as two or more consecutive elements overlapping or not further than 20

kbp. Clusters including five or more co-localized elements of any type were considered as

high-density regions. Subsequently, high-density regions comprising exclusively SNPs were

excluded from our analysis. The total number of elements per chromosome was normalized to

chromosome size and/or gene density. Lastly, the genomic location of DE miRNAs and genes

was used to assess co-expression patterns between intronic or exonic miRNAs and host genes.

Results

Patient characteristics

RA posterior wall biopsies were obtained from MVR patients with (n = 6) and without (n = 6)

AF undergoing surgery for valve replacement or repair. Clinical characteristics of all subjects

are listed in Table 1. There were no significant differences between the groups apart from AF

history. Left atrial (LA) size was increased in both groups. Ejection fraction (EF) was lower in

AF subjects but the difference was not significant. EF values were unavailable in one subject

from each group, while one LA size measurement was unavailable in the AF group.

Gene expression signature of AF tissues

We investigated differences in gene expression between AF and control patients using RNA-

sequencing. PCA showed that males and females in the AF group were separated by PC1 (Fig

1A). No other characteristics reported in Table 1 contribute to the clustering of samples. S2 Fig
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in S1 File represents clustering of samples according to sample-to-sample matrix distances.

From the 44,852 genes detected in our samples, 644 were differentially expressed in the AF atrial

samples with an adj.p< 0.05 and log2FC>1 or< -1 (Fig 1B). Of these, 265 genes were up-regu-

lated and 379 were down-regulated. A complete list of DEGs is provided in D1 in S1 Dataset.

Pathway and gene ontology enrichment analysis was performed separately in up- and

down-regulated genes (Fig 1C and 1D). We found that down-regulated genes were enriched

for “integral component of plasma membrane”, “regulation of ion transmembrane transport”

and “extracellular region”, while up-regulated genes were greatly involved in “extracellular

space”, “nucleosome” and “mitotic nuclear division”. A full list of GO terms and KEGG path-

ways enriched in up- and down-regulated genes is available in D2 in S1 Dataset. We validated

the RNA-seq results by testing the expression of eight genes in five AF and five control samples

using qPCR quantification (S3 Fig in S1 File). The correlation between qPCR and RNA-seq

results was high for all the genes tested.

We analysed the dataset to prioritize genes that may be involved in electrical remodelling,

structural remodelling or genetic variants associated with AF in GWAS and familial studies.

Comparative analysis of DEGs with AF-associated genes and genes involved in mechanisms of

interest resulted in 57 up-regulated and 94 down-regulated genes, marked in D1 in S1 Dataset.

Table 1. Clinical characteristics of the study population.

AF patients (N = 6) Controls (N = 6)

Gender 3 males (50) 3 males (50)

Age (years) 59.3 ± 9.2 59.3 ± 8.7

BMI (kg/m2) 24.6 ± 1.6 22.5 ± 3.3

AF Type: Paroxysmal 0 (0) NA

2 (33.3) NA

4 (66.7) NA

AF duration (months) 2–14 NA

Smoking 3 (50) 2 (33.3)

Alcohol consumption (units/week)

�7 4 (66.7) 2 (33.3)

8–14 1 (16.7) 2 (33.3)

15–21 1 (16.7) 2 (33.3)

>21 0 (0) 0 (0)

Hypertension 0 (0) 0 (0)

Type II diabetes mellitus 0 (0) 0 (0)

Heart failure symptoms (NYHA):

I 1 (16.7) 1 (16.7)

II 3 (50) 4 (66.7)

III 2 (33.3) 1 (16.7)

IV 0 (0) 0 (0)

Left atrial dilation1,2 [35]:

Normal 0 (0) 0 (0)

Moderate 1 (16.7) 1 (16.7)

Severe 4 (66.7) 5 (83.3)

Ejection Fraction1 56 ± 6.5 67 ± 9.7

1 One or two unavailable values
2 Determined using biplane Simpson model; AF = atrial fibrillation; BMI = body mass index; NA–not applicable;

NYHA = New York Heart Association classification; Values are shown as n (%) or mean ± SD.

https://doi.org/10.1371/journal.pone.0232719.t001
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Specifically, the analysis showed nine genes affected by AF-associated genetic variants, 14

down-regulated and three up-regulated ion channels/subunits, and nine upregulated genes

associated with cardiac fibrosis and extracellular matrix components. Genes are listed in

Table 2, including reference to published data reporting similar changes in AF patients.

miRNAs are involved in remodelling of the right atrium

Microarray experiments allowed us to investigate miRNAs expression profiles in RA biopsies.

Different factors were expected to contribute to sample variability due to the heterogeneous

Fig 1. Transcriptome analysis of right atrial biopsies from AF patients compared to controls (SR). A. Principal component analysis (PCA) showing the overall

effect of variances between the transcriptome of samples analysed by RNA-sequencing. B. Volcano plot comparing expression of 44,852 genes in the right atrium of AF

patients in relation to SR. Red dots represent genes with adjusted-p< 0.05 and log2FC> 2 or< -2. C-D. Gene set enrichment analysis of differentially expressed genes.

Top 10 enriched gene ontology terms and pathways with an enrichment p-value< 0.05 after Benjamini-Hochberg correction from up- (C) and down-regulated (D)

genes were plotted. AF–atrial fibrillation; BP–biological processes; CC–cellular component; KEGG–Kyoto Encyclopedia of Genes and Genomes; MF–molecular

function; NS–non-significant; FC—fold change.

https://doi.org/10.1371/journal.pone.0232719.g001
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profile of the study participants (AF duration, gender, age, alcohol consumption). We used

PCA and sample-to-sample distance matrix to evaluate miRNAs expression variations between

samples (S4 Fig in S1 File). We were able to identify a total of 43 miRNAs differentially

expressed between AF and control subjects following a cut-off p< 0.01. Of those, 21 were

down-regulated and 22 were up-regulated in AF patients, as shown in Fig 2. We validated the

microarray experiments by qPCR quantification of eleven miRNAs in three AF and three

Table 2. DEGs associated with AF and potentially involved in electrical and structural remodelling.

AF genes from GWAS and familial studies

Symbol Gene ID log2FC p-value p-adjusted Reference Samples

PHLDA1 ENSG00000139289 2,94 5,79E-19 5,43E-16 [34] -

MYH7 ENSG00000092054 1,97 6,01E-06 3,28E-04 [34] -

NAV2 ENSG00000166833 1,18 2,68E-13 1,23E-10 [34] -

RPL3L ENSG00000140986 1,16 2,48E-15 1,70E-12 EV -

REC114 ENSG00000183324 -3,01 5,71E-24 1,31E-20 [34] -

HCN4 ENSG00000138622 -1,71 5,15E-11 1,50E-08 [34] -

KCNJ5 ENSG00000120457 -1,10 1,85E-12 7,56E-10 [34] -

KCNN2 ENSG00000080709 -1,06 1,86E-10 4,62E-08 [34] -

MYH6 ENSG00000197616 -1,06 3,89E-05 0,0015 EV -

Ion Channel genes

KCNQ4 ENSG00000117013 1,09 0,0021 0,0343 - -

KCNQ3 ENSG00000184156 1,36 1,58E-05 7,49E-04 - -

KCNA4 ENSG00000182255 1,63 2,49E-09 4,50E-07 - -

KCNH7 ENSG00000184611 -2,71 2,29E-07 2,16E-05 - -

KCNQ5 ENSG00000185760 -1,79 1,24E-05 6,13E-04 - -

HCN4 ENSG00000138622 -1,71 5,15E-11 1,50E-08 - -

CACNA2D2 ENSG00000007402 -1,34 3,74E-11 1,13E-08 [36] RA

CACNA1G ENSG00000006283 -1,33 1,71E-07 1,67E-05 [36] RA

KCNK5 ENSG00000164626 -1,32 2,45E-04 0,0066 - -

KCNK17 ENSG00000124780 -1,30 5,34E-04 0,0120 - -

SCN2A ENSG00000136531 -1,29 8,71E-04 0,0174 - -

KCNB1 ENSG00000158445 -1,20 3,96E-04 0,0096 - -

CACNA1D ENSG00000157388 -1,16 3,29E-05 0,0013 [36] RA

KCNJ5 ENSG00000120457 -1,10 1,85E-12 7,56E-10 [36,37] RA, LAA

SCN1A ENSG00000144285 -1,10 0,0029 0,0429 - -

KCNN2 ENSG00000080709 -1,06 1,86E-10 4,62E-08 [37] LAA

SCN3A ENSG00000153253 -1,05 0,0029 0,0423 - -

Extracellular Matrix/Cardiac Fibrosis

NPPB ENSG00000120937 6,61 1,07E-49 8,98E-46 [36,38] RA

COLQ ENSG00000206561 2,90 2,30E-42 1,46E-38 [36–38] RA, LAA

NPPA ENSG00000175206 2,00 4,37E-24 1,10E-20 - -

TNC ENSG00000041982 1,87 0,0014 0,0245 [36,38] RA

COL21A1 ENSG00000124749 1,66 9,52E-12 3,39E-09 - -

COL3A1 ENSG00000168542 1,57 2,57E-06 1,62E-04 - -

COL12A1 ENSG00000111799 1,53 3,01E-07 2,76E-05 [36] RA

COL1A1 ENSG00000108821 1,52 1,11E-04 0,0036 [36,39] RA, RAA

ANGPTL2 ENSG00000136859 1,09 5,47E-11 1,57E-08 [36,37,40] RA, LAA

EV—Ensembl Variation 96; RAA–Right atrial appendage; LAA–left atrial appendage

https://doi.org/10.1371/journal.pone.0232719.t002
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control tissue samples (S5 Fig in S1 File). Altogether, qPCR results were in accordance with

the microarray results. Average expression data from all subjects revealed that amongst the top

20 abundant miRNAs were miR-26a, miR-125b, let-7a/c and miR-23b-3p, thereby confirming

the high expression levels in RA previously shown by others [41].

Amongst the differentially expressed miRNAs identified in this study, ten were reported

previously as abnormally expressed in AF atrial tissues. miR-338-5, miR-10a-5p and miR-

200b-5p were down-regulated in our AF patients with similar results reported in RA free wall

and RA appendage (RAA) tissue samples of AF patients [30,31]. The same was observed with

up-regulated miRNAs, namely miR-30d-5p, miR-216a-5p, miR-106b-3p, miR-130b-3p, miR-

574-5p, miR187-5p and miR-187-3p, which were found to be up-regulated in the same human

AF studies [30,31]. Increasing the p-value cut-off to 0.05, the number of miRNAs dysregulated

in AF increased drastically to a total of 223 (D3 in S1 Dataset), including other commonly AF-

associated miRNAs such as miR-15b, miR-26a-5p, miR-24-3p, miR-208a-5p and miR-193a-5p

[15,30–32,42–44]. Nonetheless, some of the miRNAs most commonly reported dysregulated

in AF, such as miR-1, miR-21 and miR-143, were unchanged in our study [45].

Novel putative miRNA-gene interactions in AF

The 43 dysregulated miRNAs were predicted to bind 166,790 3’-UTR sites of 15,213 unique

target genes. Interaction with genes outside our DEGs list were excluded. miRNAs are

expected to negatively regulate mRNA expression and therefore, expected to have opposite

Fig 2. Micro RNAs expression analysis of right atrial biopsies from AF patients compared to controls (SR). Heatmap

shows the 43 differentially expressed miRNAs in AF hearts. Columns represent samples and rows represent miRNAs. Red

indicates increased expression, blue indicates decreased expression and yellow indicates low variation in relation to the mean

expression.

https://doi.org/10.1371/journal.pone.0232719.g002
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expression results. We analysed the expression correlation in all miRNA-mRNA interaction

pairs using Spearman’s correlation coefficient. Negative correlation ranged -1 to -0.5 were

selected. A total of 905 miRNA-mRNA pairs, including 37 miRNAs and 295 genes, passed the

filtering (D4 in S1 Dataset). Fourteen of the miRNA-mRNA interactions were experimentally

validated according to miRTarBase. We used Cytoscape to visualize the predicted regulatory

networks [29]. Two networks were created, one with up-regulated miRNAs and corresponding

down-regulated target genes (Fig 3) and a second network with down-regulated miRNAs and

corresponding up-regulated target genes (S6 Fig in S1 File).

GO enrichment analysis revealed that our miRNA-gene interactions were enriched in eight

categories (D5 in S1 Dataset). Down-regulated miRNAs were predicted to target genes

Fig 3. miRNA-gene regulatory networks build using Cytoscape. Network includes up-regulated miRNAs and candidate gene targets that were down-regulated in

right atrial biopsies of AF patients compared to control subjects. The network helps to identify miRNAs targeting multiple DEGs and genes targeted by multiple

miRNAs. Triangle nodes represent up-regulated miRNAs with red colour intensity according to FC. Rectangle nodes represent down-regulated genes with blue

colouring according to FC. The darkness of the node to node edges correlates with the expression correlation value between a miRNA and its target gene. The darker the

line, the closer to -1 is the correlation. All miRNA-gene pairs with correlation above -0.5 were excluded from the network. AF–atrial fibrillation; FC–fold-change.

https://doi.org/10.1371/journal.pone.0232719.g003
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enriched for “extracellular space” and “extracellular region” cellular components (Fig 4A). In

up-regulated miRNAs, the most significant enrichments of target down-regulated genes were

related to plasma membrane components, “regulation of ion transmembrane transport” and

“calcium ion binding”. KEGG analysis showed enrichment in the “cAMP signalling pathway”

(Fig 4B).

Amongst the up-regulated miRNAs targeting the most DEGs, we identified miR-4436b-3p,

miR-4728-5p and miR-6124 as putative regulators of 57, 56 and 67 down-regulated genes.

These miRNAs are poorly characterized. Enrichment analysis of the target genes of each

miRNA, revealed that down-regulated genes targeted by miR-6124 are enriched for “calcium

ion binding”. Considering the importance of calcium dysregulation in the triggering of AF

and disease progression of AF [46], it renders miRNA-6124 a potential role in AF. Conversely,

AQP4 and RGS6 were the down-regulated genes predicted to be regulated by the higher num-

ber of overexpressed miRNAs, ten and thirteen respectively.

Lastly, we selected a subset of interactions including exclusively miRNAs that were previ-

ously shown to be dysregulated in AF tissues. The AF related regulatory networks are shown

in Fig 5.

Fig 4. Gene enrichment analysis of micro RNA target genes using GO terms and KEGG. A. Analysis of up-

regulated genes predicted to be targeted by down-regulated miRNAs. B. Analysis of down-regulated genes predicted to

be targeted by up-regulated miRNAs. Enrichment cut-off was p<0.05 after Benjamini-Hochberg correction. BP–

biological processes; CC–cellular component; GO–gene ontology; KEGG—Kyoto Encyclopedia of Genes and

Genomes; MF–molecular function.

https://doi.org/10.1371/journal.pone.0232719.g004
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AF genomic elements co-localize in high-density regions

Genetics factors contributing to AF involve mono- and polygenic mutations and/or dysregulation

of genes and non-coding RNAs, resulting in disrupted protein expression. Additionally, expres-

sion regulators, such as methylation and chromatin modifications, can regulate expression of

entire sets of genes located in proximal genomic regions. To assess a possible chromosomal clus-

tering of our dysregulated miRNAs and DEGs with previously reported AF-associated genetic

variants, we analysed their relative genomic localisation. A total of 1008 genetic components were

integrated in the analysis, including 43 DE miRNAs, 644 DE genes and 321 SNPs. Fig 6A illus-

trates a chromosome plot with the location of all genetic components included in our study.

Chromosomes 1 and 6 show the highest density of genetic elements after normalization, with 107

and 78 elements respectively. Zooming into clusters with five or more genetic elements, we have

identified seven high-density clusters located in chromosomes 2, 6, 11, 14, 15, 16 and 17. For a full

list of clusters, genetics elements and genomic locations, see D6 in S1 Dataset.

An example locus is shown in Fig 6B. The figure represents cluster 580 located in chromo-

some 14 which includes rs422068, rs28631169, MYH6, MYH7, miR-208b and miR-208a.

Another cluster, number 298, is located in the p arm of chromosome 6 and includes the high-

est number of novel genes associated with AF (S7 Fig in S1 File). This cluster is part of the

major histocompatibility complex (MHC) class III gene cluster and contains five up-regulated

Fig 5. AF related miRNA-gene regulatory networks build using Cytoscape. MiRNAs previously associated with AF were selected to create a subset of the regulatory

networks. A. Up-regulated miRNAs and candidate gene targets down-regulated in right atrial biopsies of AF patients compared to control subjects. B. Down-regulated

miRNAs and candidate gene targets up-regulated in AF patients. Triangle nodes represent miRNAs and rectangle nodes represent target genes. Red colour intensity varies

according to expression increase in FC and blue colouring according to decrease in FC. Edges connecting miRNA and genes are coloured according to Spearman

correlation of expression data. The darker the line, the closer to -1 is the correlation. AF–atrial fibrillation; FC–fold-change.

https://doi.org/10.1371/journal.pone.0232719.g005
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genes from our RNA-seq experiments. The MHC III cluster is heterogeneous and poorly char-

acterized. The MHC III region is composed by more than 60 genes encoding signalling mole-

cules involved in inflammatory response and a variety of different cell communication

processes [47].

Furthermore, we analysed the genomic location of dysregulated miRNAs and genes to

assess possible co-expression patterns. 22 of our 42 differentially expressed miRNAs were

located in either intronic or exonic regions. The expression of both miRNA and host genes

was changed in the same direction in ten of the 22 miRNAs. In four of those cases, changes

were significant for both the miRNA and the gene. These findings support previous studies

showing that transcription of intronic and exonic miRNAs is regulated by the same promoter

as their host genes [48,49].

Fig 6. Chromosome enrichment of AF related genetic elements. Enrichment includes AF related SNPs and

differentially expresses genes and miRNAs in right atrium biopsies of AF patients compared to control subjects. A.

Chromosome plots showing the genomic location of all 1008 elements included in the study. B. High-density cluster

identified in the q arm of chromosome 14 including genes MYH6 and MYH7, miR-208a/b and two AF-associated

SNPs. AF–atrial fibrillation; SNPs–single nucleotide polymorphisms; Mbp–million base pairs.

https://doi.org/10.1371/journal.pone.0232719.g006
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Discussion

Transcriptome analysis is a powerful tool to help identify new molecules and pathways of dis-

ease as it allows the simultaneous analysis of coding and non-coding RNAs. To date, few stud-

ies have applied RNA-sequencing to study transcriptome changes in tissue samples from AF

patients [50,51]. In this study, we analyse the expression of genes and miRNAs in RA biopsies

to investigate differences between in MVR patients with and without AF. The strength of our

study is that we assessed miRNA and gene expression from the exact same tissue samples and

pool of extracted RNA, thereby increasing the likelihood of selecting relevant miRNA-mRNA

pairs.

We detected changes of expression in 14 cardiac ion channels that can generate electrical

conductance disturbances. Notably, genes KCNJ5, KCNN2 and HCN4, encoding the inward

rectifier K+-channel subunit Kir3.4 (GIRK4), the small conductance calcium activated potas-

sium channel member 2 KCa2.2 (SK2) and the hyperpolarization activated cyclic nucleotide

gated potassium channel 4 (HCN4), respectively, were down-regulated in AF. These findings

are in line with other transcriptional studies in different atrial samples [36,37]. The three chan-

nels have also been reported in AF GWAS studies. Down-regulation of KCNJ5 is believed to

represent a compensatory mechanism to counteract shortening of the atrial effective refractory

period seen in persistent AF [37]. In the heart, KCNN2 is predominantly expressed in the atria.

Our findings of reduced KCNN2 expression in AF are consistent with Skibsbye et al. who

reported KCNN2 down-regulation and reduced functional importance of the channel in

chronic AF [52].

Genes associated with increased cardiac fibrosis and extracellular matrix were upregulated

in AF patients. This is an indicator of structural remodelling in hearts of AF patients mediated

by interstitial fibrosis due to accumulation of collagen fibres and fibroblasts in the extracellular

matrix. The fibrotic processes can be induced via activation of the TGF-ß1/Smad3 signalling

pathway with increase COL1A1 and COL3A1 expression [53]. Unfortunately, we were unable

to investigate interstitial fibrosis in our AF patients, due to limited tissue availability. Lastly, we

found NPPB to be up-regulated by almost 7-fold in our AF patients. NPPB encodes the natri-

uretic peptide B protein secreted by cardiac myocytes. We hypothesize that its up-regulation

might be a response to cardiac fibrosis due to its anti-fibrotic function [54]. Overall, the

changes in genes expression described here are in line with the electrical, contractile, and

structural remodelling characteristic of AF hearts. We hypothesize that the more severe

remodelling of the heart in certain MVR patients can be the key factor to create the trigger and

subtract for development and maintenance of AF. The contribution of structural remodelling

to AF susceptibility was also described by in two previous studies [55,56], both showing that

more severe fibrosis in RA and LA was associated with increased susceptibility to develop AF

in patients with concomitant heart disease and after cardiac surgery.

As negative regulator of gene expression, miRNAs bind to the 3’-UTR of target genes to

inhibit protein production, by preventing translation by ribosomes and promoting mRNA

degradation [11]. Importantly, a gene simultaneously targeted by multiple miRNAs is more

likely to be regulated by miRNAs. Likewise, overexpressed miRNAs that target multiple genes

are more likely to have an important role in a specific tissue [57]. Hence, it is important to

study the collective action of miRNAs in disease. In the present study, differentially expressed

miRNAs include ten miRNAs previously reported as changed in AF tissues, but with little

known about their functional role. We built an AF related regulatory network including 905

miRNA-target gene pairs that can play a role in the development of AF in MVR patients.

Aquaporin 4 (AQP4) and regulator of G-protein signalling 6 (RGS6) were the down-regu-

lated genes predicted to be targeted by the highest number of DE miRNAs. AQP4 contributes
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to maintenance of water and electrolyte balance in aging hearts and its decreased expression

might compromise homeostasis in cardiac cells [58]. RGS6 is involved in modulation of para-

sympathetic regulation of heart rate. Down-regulation of RGS6 can contribute to electrical

remodelling and shortening of the action potential by increasing the activation time of the G

protein-coupled inwardly rectifying K+ Kir3.1/3.4 (GIRK) channel, resulting in a large K+ cur-

rent and membrane hyperpolarization [59,60].

MiR-338-5p targeted 14 of our DEGs, including IGFBP2, LBH and NPPA. IGFBP2 and

LBH have both been reported as up-regulated in three different AF studies and they are

increased by 8 and 3 FC in our RA samples, respectively [36–38,40]. Mutations in NPPA have

been associated with familial AF [61]. NPPA encodes the natriuretic peptide A protein, a circu-

latory hormone released from atrial cardiomyocytes upon stretching. The NPPA protein plays

a role in cardiac electrophysiological function, where it shortens the atrial effective refractory

period and conduction velocity in human hearts by inhibiting sympathetic and parasympa-

thetic activity or through direct regulation of cardiac ion channels [62–64]. MiR-338-5p was

also reported as down-regulated in RAA of AF patients with mitral stenosis [30]. This miRNA

has also been implicated in tumor progression and reported to alleviate lung fibrosis [65,66].

MiR-130b-3p was upregulated in RA samples in line with a previous study [31]. MiR-130b-

3p is predicted to bind 15 of our down-regulated genes, amongst those there are CACNA2D2
and SLC7A11 which have been reported as down-regulated in AF transcriptomics studies

[36,38,67]. CACNA2D2 is a subunit of the voltage-gated calcium channel that modulates the

calcium signalling response in cardiomyocytes and induces arrhythmia when down-regulated

[68].

Genomic co-localization analysis helped mark regions of interest in the long list of DE

genes and miRNAs. A high-density cluster in chromosome 14q11.2 marked a genetic locus

that includes genes MYH6, MYH7, miR-208a, miR-208b and SNPs rs422068 and rs28631169

within 20 kbp of distance. We find miR-208a down-regulated in AF patients by increasing the

array analysis p threshold to 0.05. The same was reported in RAA from AF patients and atria

of ventricular tachypaced dogs [30,32,69]. MiR-208a-3p was described by Li et al. to regulate

the expression of connexin 40 in the heart, resulting in electrical impulse propagation defects

between adjacent cardiac myocytes [70]. Furthermore, miR-208a-3p is believed to generate

protective effects in myocardial infarction and it could become a potential treatment for struc-

tural remodelling in AF [71]. Genetic deletion of miR-208a in mouse hearts interferes with

cardiac conduction, with lack of P waves in ECG recordings and an AF like phenotype [72].

MiR-208a is encoded by an intron of the MYH6, which is also down-regulated in our samples,

therefore suggesting that miR-208a is co-expressed with its host gene. MYH6 is an important

protein in cardiac muscle fibre composition, involved in muscle contraction mechanisms.

Both miR-208a and MYH6 are expressed predominantly in the atrial chambers. MYH7 and

miR-208b are up-regulated in our RNA-seq studies by 4 and 3.5 FC, suggesting once again co-

expression. MYH7 is mainly expressed in the ventricular chambers and is part of sarcomere

formation, therefore involved in cardiac contraction mechanisms. Several MYH7 mutations

have been reported in cardiac muscle disorders, including AF [73]. MiR-208b was reported

up-regulated in isolated myocytes from chronic AF patients and is involved in calcium homeo-

stasis and contractile remodelling [74]. In conclusion, our study emphasizes the significance of

chr14q11.2 as a AF susceptibility locus.

Study limitations

The study cohort size is modest and challenges the assessment of the effect of confounding fac-

tors in the results. Furthermore, it is important to mention that different studies investigating
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miRNA and gene expression in atrial samples from AF patients overlap poorly [45]. These

inconsistencies might reflect 1) heterogeneity between tissue samples (location and collection

method), 2) AF type and duration, 3) variation in patient cohorts (comorbidities, life-style,

age, medication), and 4) the experimental technique selected to study transcript changes. In

fact, our RNA-seq results overlap best with gene expression profiling studies from Jiang et al.

using similar tissue samples and experiments [38]. A continuous effort from experts to study

larger cohorts and collect similar datasets will allow a combined analysis of multiple samples

from AF patients and help on accurate selection of target genes and regulatory networks

involving miRNAs.

The in silico miRNA-target gene predictions provide qualified results which are generally

accepted by research. However, these interactions require further validation and functional

studies to clarify the pathophysiological role of such interactions, such as luciferase assays and

in vitro miRNA transfections.

Lastly, the functional role of each DEG in AF is difficult to estimate since many genes are

not yet characterized and we miss information on cell type specificity. For instance, we see

down-regulation of KCNQ5 in our AF samples, a gene known for being mainly expressed in

neuronal, skeletal and smooth muscle cells and therefore, not expected to interfere with car-

diac electrical conductance [75]. Single-cell gene expression studies would allow us to detect

the cell population creating the change, giving a better idea of the mechanism in which each

DEG is involved.

Conclusions

By combining miRNA and gene expression data from RA of MVR patients with AF, we were

able to create a novel miRNA-mRNA regulatory network, providing new insights into the

mechanism predisposing certain MVR patients to develop and maintain AF. Down-regulation

of ion channel genes and up-regulation of extracellular matrix genes summarize the major

changes creating a subtract for AF. Lastly, we identified a high-density AF loci in chromosome

14q11.2.
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