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What is already known on this topic?

►► High-flow nasal cannula (HFNC) therapy has 
been rapidly adopted and is increasingly used in 
preterm infants.

►► Mechanisms of action of HFNC are poorly 
understood; previous studies have found 
conflicting results, used varied methodology 
and have included very few infants weighing 
<1000 g.

►► Reduction of dead space ventilation is thought 
to be one of the mechanisms of action of HFNC 
but this has not been demonstrated in preterm 
infants.

What this study adds?

►► We prospectively evaluated the physiological 
effects of a range of HFNC flow rates from 
2 to 8 L/min in preterm infants, including a 
substantial number weighing <1000 g.

►► The airway pressure generated during HFNC 
is dependent on multiple factors, including 
increasing with flow rate; considerable 
variability was demonstrated.

►► Physiological effects of HFNC include reduction 
in dead space ventilation, respiratory rate and 
improved oxygenation.

ABSTRACT
Objective  High-flow nasal cannula (HFNC) therapy is 
increasingly used in preterm infants despite a paucity of 
physiological studies. We aimed to investigate the effects 
of HFNC on respiratory physiology.
Study design  A prospective randomised crossover study 
was performed enrolling clinically stable preterm infants 
receiving either HFNC or nasal continuous positive airway 
pressure (nCPAP). Infants in three current weight groups 
were studied: <1000 g, 1000–1500 g and >1500 g. Infants 
were randomised to either first receive HFNC flows 8–2 L/
min and then nCPAP 6 cm H2O or nCPAP first and then 
HFNC flows 8–2 L/min. Nasopharyngeal end-expiratory 
airway pressure (pEEP), tidal volume, dead space washout 
by nasopharyngeal end-expiratory CO2 (pEECO2), oxygen 
saturation and vital signs were measured.
Results  A total of 44 preterm infants, birth weights 
500–1900 g, were studied. Increasing flows from 2 to 
8 L/min significantly increased pEEP (mean 2.3–6.1 cm 
H2O) and reduced pEECO2 (mean 2.3%–0.9%). Tidal 
volume and transcutaneous CO2 were unchanged. 
Significant differences were seen between pEEP 
generated in open and closed mouth states across 
all HFNC flows (difference 0.6–2.3 cm H2O). Infants 
weighing <1000 g received higher pEEP at the same 
HFNC flow than infants weighing >1000 g. Variability of 
pEEP generated at HFNC flows of 6–8 L/min was greater 
than nCPAP (2.4–13.5 vs 3.5–9.9 cm H2O).
Conclusions  HFNC therapy produces clinically significant 
pEEP with large variability at higher flow rates. Highest 
pressures were observed in infants weighing <1000 g. 
Flow, weight and mouth position are all important 
determinants of pressures generated. Reductions in pEECO2 
support HFNC’s role in dead space washout.

Introduction
High-flow nasal cannula (HFNC) therapy is increas-
ingly used in preterm infants; perceived benefits 
include ease of use, increased comfort and bonding.1 
Systematic reviews have concluded that HFNC has 
similar efficacy to other non-invasive respiratory 
support in preterm infants >28 weeks gestation.2 3 
However, as primary support in respiratory distress 
syndrome, two recent randomised controlled trials 
found HFNC to be inferior to nasal continuous 
positive airway pressure (nCPAP).4 5 There is wide 
variation in the clinical use of HFNC, for example, 
flow rates and weaning strategies.1 This may be 
partly explained by a lack of understanding of 
HFNC’s mechanisms of action in neonates.6 

The few physiological studies performed have 
involved differing flow rates and measurement 

techniques, small sample sizes and some only in 
vitro models.7 These have produced conflicting 
conclusions about pressures generated, relation-
ships with infant weight, mouth leak and compar-
isons with nCPAP.8–15 Furthermore, the ability of 
HFNC to wash out airway dead space in infants has 
been proposed as a major physiological mechanism 
but not demonstrated in preterm infants.6 16 There 
are minimal data on infants weighing <1000 g 
despite frequent use of flows of up to 8 L/min with 
uncertainty about airway pressures generated.8 9

In this study, we comprehensively evaluated the 
physiological effects of a range of HFNC flows 
including airway pressures, dead space washout, 
tidal volume, minute ventilation and gas exchange, 
compared with nCPAP 6 cm H2O.

Methods
Study design
Prospective randomised crossover study in 
a tertiary neonatal unit (clinical ​trials.​gov 
NCT02200900  pre-results). Written  informed 
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Figure 1  Study flow chart and pathway. Detailed study design and procedures including inclusion, exclusion and exit criteria. CPAP, 
continuous positive airway pressure; FiO2, oxygen concentration; HFNC, high-flow nasal annula; LPM, litres per minute; NIV, non-invasive ventilation; 
SpO2, oxygen saturation;TOSCA, transcutaneous CO2.

consent was obtained from parents. A volunteer sample 
of stable infants  <37 weeks gestation, aged  >3 days and 
receiving nCPAP or HFNC for the preceding 12 hours were 
randomised to group 1 (nCPAP then HFNC) or group 2 
(HFNC then nCPAP, see figure  1). The study design was 
developed with Newcastle and North Tyneside Research 
Ethics Committee (14/NE/0093) to balance acquisition of 
the best quality data against the potential for destabilisation 
in this vulnerable patient group. HFNC flows were adjusted 
and measurements repeated in a set sequence by 1 L/min to 
avoid large pressure changes and destabilisation (figure  1). 
Measurements during nCPAP were performed at a set pres-
sure of 6 cm H2O. The timing of studies was arranged to avoid 
feeds and were delayed  ≥30 min during transition between 

modes and at study entry (see online supplementary methods 
and figure S1).

Study size and statistical analysis
Sample size was calculated with airway pressure as the primary 
outcome using data from previous studies (Minitab V.17).8 11 
Infants were stratified into current weight groups <1000 g, 1000–
1500 g and  >1500 g. Twelve infants in each group provided 
adequate sample size to detect a pressure difference of 0.4 cm 
H2O between flow rates with 80% power and type 1 error of 
0.05. An additional three infants per group compensated for 
study dropouts. See online data supplement for statistical tests 
used.

https://dx.doi.org/10.1136/archdischild-2018-316773
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Table 1  Characteristics of infants in each weight category

Weight category

<1000 g (n=15) 1000–1500 g (n=15) >1500 g (n=14) All infants

Mean Median (range) Mean Median (range) Mean Median (range) Mean Median (range)

Birth gestation (weeks) 27.0 27.6 (23.1–30.4) 27.2 27.6 (23.6–31.1) 26.8 26.7 (23.3–31.6) 27.0 26.9 (23.1–31.6)

Current gestation (weeks) 30.4 30.1 (28.3–33.3) 31.7 31.6 (29.9–34.3) 35.6 34.3 (31.1–42.1) 32.5 31.8 (28.3–42.1)

Age (days) 26.9 15 (4–87) 32.9 36 (3–76) 61.6 58 (5–132) 40 35 (3–132)

Birth weight (g) 750 720 (500–1140) 970 920 (500–1440) 970 850 (520–1900) 890 850 (500–1900)

Current weight (g) 880 910 (610–1000) 1310 1250 (1140–1500) 2150 1870 (1520–4200) 1430 1250 (610–4200)

Table 2  pEEP at each respiratory support level including effect of mouth position

HFNC nCPAP

Flow (L/min) 2 3 4 5 6 7 8 6 cm H2O

pEEP (cm H2O) 2.3±1.3 3.4±1.6 4.1±1.6 4.2±1.4 4.8±1.7 5.4±2.0 6.1±2.1 6.4±1.5

 � Mouth closed 2.7 4.0 4.8 5.1 5.7 6.4 7.3 n/a

 � Mouth open 2.1 2.9 3.3 3.5 4.2 4.5 5.1 n/a

 � Difference 0.6 1.1 1.5 1.6 1.4 1.9 2.3 n/a

 � P value* 0.002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 n/a

pEECO2 (%) 2.3±1.6 1.9±1.5 1.7±1.5 1.7±1.7 1.4±1.5 1.0±1.3 0.9±1.1 2.4±1.8

Vt/kg (mL/kg) 4.3±1.9 3.8±2.0 4.0±1.9 4.4±2.3 3.9±1.6 3.9±1.6 4.2±1.8 4.7±2.1

RR (bpm)† 70±17 64±15 66±18 64±17 63±18 61±16 62±15 66±17

MV (mL/kg/min) 309±162 235±122 258±128 269±157 247±133 239±99 268±148 315±176

TCCO2 (kPa) 6.2±1.1 6.2±0.8 6.1±0.9 6.1±1.1 6.1±1.0 6.3±1.0 6.3±0.9 6.5±1.1

SpO2 (%)‡ 92.0±4.4 93.5±3.8 94.2±4.0 94.8±3.5 95.3±3.0 95.9±3.2 96.4±3.3 95.1±3.8

HR (bpm) 156±13 158±12 159±12 160±12 160±10 162±12 164±12 165±13

Effects of HFNC therapy on pEECO2, tidal volume, ventilation, gas exchange and haemodynamics. 
Expressed as means±SD.
*Wilcoxon signed rank test (mouth position).
†Analysis of variance, p=0.047, when HFNC 8 L/min reduced to HFNC 2 L/min across all flows.
‡Friedman, p≤0.0001, when HFNC 8 L/min reduced to HFNC 2 L/min across all flows.
HR, heart rate; HFNC, high-flow nasal cannula; n/a, not available; nCPAP, nasal continuous positive airway pressure; MV, minute vol; pEEP, nasopharyngeal end-expiratory 
pressure; pEECO2, nasopharyngeal end-expiratory CO2; RR, respiratory rate; SpO2, oxygen saturation; TCCO2, transcutaneous CO2; Vt, tidal volume.

Data sources and measurement
The Fabian Therapy Evolution (Acutronic Medical) provided 
HFNC and nCPAP. Nasal prongs (NeoFlow, Armstrong Medical) 
were fitted and inserted as per manufacturer's recommendation 
to allow leak around prongs and connected to an AquaVent-Neo 
breathing circuit (Armstrong Medical) with standard humidifi-
cation (MR850, Fisher and Paykel). Nasal prongs and diameter 
of nares were ascertained using a measurement tape. The nCPAP 
interface used was the IHCA600 (Armstrong Medical) fitted to 
optimise seal. Humidification was provided during nCPAP using 
the same humidifier. Nasopharyngeal end-expiratory airway 
pressure (pEEP) was measured using a suction catheter with two 
distal side holes (Argyle Gentle Flow 6/8Fr, Covidien) connected 
to a pressure transducer (B&D Electromedical, range 0–30 cm 
H2O). A 50 mL/hour microinfuser airflow applied at the cath-
eter inlet avoided occlusion. For details of placement see online 
supplementary figure S2. Dead space washout was evaluated by 
measuring nasopharyngeal end-expiratory CO2 concentration 
(pEECO2) using an analyser (AD Instruments) and the same 
catheter.

As previously described, mouth position was recorded as ‘open 
naturally’ or ‘closed’ (pacifier inserted to create a seal, finger lift 
under chin or naturally closed) at each HFNC flow rate, but 
not during nCPAP as the primary focus was airway physiology 
during HFNC therapy.8

Tidal volume changes were measured by electromagnetic 
inductance plethysmography (VoluSense), previously validated 
in preterm infants (online supplementary methods).17

Transcutaneous CO2 (TOSCA 500 monitor, Radiometer 
Medical ApS), oxygen saturation and heart rate (Masimo pulse 
oximeter) were recorded.

Premeasurement transducer and analyser calibration were 
performed (online supplementary methods). A multichannel 
recorder (PowerLab, AD Instruments) allowed synchronised 
recording and graphical presentation of data, applied sampling 
frequency 100 Hz (online supplementary figure S3).

Data extraction and analysis
A 1 min stabilisation period without data extraction followed 
each respiratory support adjustment. All artefact-free breaths 
(each selected block containing ≥10 consecutive breaths, online 
supplementary figure S4) at each step were analysed.

Results
Participants
Forty-eight eligible infants were recruited. Data from the first 
three infants were not analysed due to technical problems with 
pEEP measurement technique; results from one infant were 
unanalysable due to missing data. Table 1 details the characteris-
tics of participants; 27 (61%) were male. For baseline respiratory 
support settings see online supplementary table S1.

Generated pEEP at different HFNC flow rates
Table 2 shows pEEP generated at each level of support. There was 
a positive correlation between pEEP and flow rate (rs=0.589, 

https://dx.doi.org/10.1136/archdischild-2018-316773
https://dx.doi.org/10.1136/archdischild-2018-316773
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https://dx.doi.org/10.1136/archdischild-2018-316773
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https://dx.doi.org/10.1136/archdischild-2018-316773
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Figure 2  Scatter plot of relationship between nasopharyngeal end-
expiratory positive pressure  (pEEP) and weight-adjusted flow rate. 
Figure demonstrates large variability of pEEP measured above 6 L/min/
kg, with some pEEP measured up to 8–13 cm H2O.

Table 3  Comparison of generated nasopharyngeal end-expiratory pressure (pEEP) and nasopharyngeal end-expiratory carbon dioxide 
concentration (pEECO2) in each weight group and flow rate

pEEP pEECO2

HFNC flow rate (L/min) Weight category (g) Mean±SD P value* Mean±SD P value†

2 <1000 3.0±1.6 0.021 1.6±1.3 0.014

1000–1500 2.3±1.2 2.2±1.7

>1500 1.8±0.7 3.2±1.5

3 <1000 4.2±1.9 0.005 1.10±0.99 0.003

1000–1500 3.2±1.5 1.73±1.54

>1500 2.6±0.6 2.96±1.41

4 <1000 5.0±1.9 0.005 0.6±0.6 0.001

1000–1500 3.6±1.3 2.0±1.6

>1500 3.4±0.9 2.5±1.4

5 <1000 4.6±1.5 NS 0.7±0.7 0.002

1000–1500 4.0±1.2 2.0±2.1

>1500 3.9±1.6 2.5±1.6

6 <1000 5.5±2.2 NS 0.5±0.8 <0.0001

1000–1500 4.4±1.2 1.3±1.5

>1500 4.5±1.3 2.2±1.5

7 <1000 5.9±2.5 NS 0.2±0.3 <0.0001

1000–1500 5.1±1.4 1.1±1.6

>1500 5.1±1.8 1.9±1.5

8 <1000 6.6±2.5 NS 0.2±0.4 <0.0001

1000–1500 6.0±2.0 1.2±2.1

>1500 5.8±1.8 1.8±1.5

Infants weighing <1000 g n=15, 1000–1500 g n=15, >1500 g n=14.
Expressed in means±SD. 
*Jonckheere-Terpstra test for ordered alternatives showed that there was a statistically significant trend of higher pEEP in infants weighing <1000 g compared with infants 
1000–1500 g and/or >1500 g at flows 2–4 L/min.
†Jonckheere-Terpstra test for ordered alternatives showed that there was a statistically significant trend of lower pEECO2 in infants weighing <1000 g compared with larger 
weight groups infants 1000–1500 g and/or >1500 g across all flows.
NS, non-significant.

p<0.0001). On average, pEEP increased by 0.6 cm H2O for each 
1 L/min flow rate increment in HFNC (R2=0.311, 95% CI 0.47 
to 0.61). Figure  2 shows variability in pEEP generated, espe-
cially at higher flows. The SD and range of pEEP generated 

at flows  >6 L/min was greater than nCPAP 6 cm H2O (range 
2.4–13.5 compared with 3.5–9.9 cm H2O).

Effect of mouth position on HFNC
Generated pEEP was influenced by mouth position, being signifi-
cantly higher (difference 0.6–2.3 cm H2O, p<0.05) with mouth 
closed, across all flow rates (table 2).

Effect of weight
Weight was negatively correlated (rs=−0.247, p<0.0001) with 
pEEP; on average decreasing by 0.7 cm H2O (95% CI −0.9 to 
−0.3, p<0.0001) for each kg increase. Table 3 demonstrates the 
pEEP received by infants in each weight category. Overall, pEEP 
generated was higher in smaller infants at all flows compared 
with larger infants (pEEP received in 1000 g group  >1000–
1500 g>1500 g). Generated pEEP reached 8–13 cm H2O at 
higher flows in some infants (figure 2).

Effect of prong-to-nares ratio
pEEP and prong-to-nares ratio were positively correlated 
(rs=0.165, p<0.0001). These ratios were further divided into 
high-leak and low-leak groups (<0.7 and >0.7). Generated pEEP 
was statistically significantly higher in the low-leak compared 
with the high-leak group at flows 2–4 L/min (p<0.05, online 
supplementary  figure S5). We consistently observed a drop in 
pEEP generated if the nasal prongs became partially dislodged 
during measurements.

https://dx.doi.org/10.1136/archdischild-2018-316773
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Analysis of factors that affect pEEP generated
On multiple linear regression flow rate, mouth position, current 
weight and gestation but not prong-to-nares ratio significantly 
predicted pEEP and account for a significant amount of its 
variance (F(4431)=143.768, p<0.0001), R2=0.572, R2=ad-
justed 0.568). Flow rate was the most significant independent 
variable, followed by mouth position, weight and current 
gestation. Predicted pEEP generated=−6.373+0.525×(-
flow rate, L/min)+1.454×(mouth position, 0=open and 
1=closed)−1.856×(weight (kg))+0.307×(current gestation 
(weeks)).

Comparison of pEEP generated by HFNC versus nCPAP
Mean pEEP with nCPAP 6 cm H2O across all weight groups was 
6.4 cm H2O (95% CI 6.0 to 6.7); higher than HFNC 2–7 L/min 
(p<0.05) and comparable to HFNC 8 L/min. However, specifi-
cally in infants weighing <1000 g, the mean pEEP with nCPAP 
6 cm H2O was 5.4 cm H2O, similar to that generated by HFNC 
in the 4–6 L/min range but statistically higher than with HFNC 
at flows of 2–3 L/min. Importantly, in infants weighing <1000 g 
pEEP generated by HFNC 7–8 L/min was higher than nCPAP 
6 cm H2O.

Dead space washout effect
Despite a clear pressure respiratory waveform, confirmed cath-
eter patency and satisfactory position, pEECO2 was often mark-
edly attenuated at higher flows, supporting a significant washout 
effect. There was a strong, negative correlation between pEECO2 
and weight-corrected flow rate (rs=−0.323, p<0.0001). Open 
mouth state was associated with greater washout effect (lowered 
pEECO2 measured during mouth open), especially at high flow 
rates though was not statistically significant (online supplemen-
tary  table S2). Current weight and pEECO2 were positively 
correlated (rs=0.484, p<0.0001). The reduction of pEECO2 
was greatest in infants weighing <1000 g, and was statistically 
significant compared with the other 2 weight groups (table 3). 
The mean nCPAP pEECO2 was 2.4% and was higher than 
HFNC across all flows, but only achieved significance at 6–8 L/
min (p<0.05).

Effects of HFNC on tidal volume, ventilation and gas 
exchange
Reduction of HFNC from 8 to 2 L/min did not result in a change 
of weight-corrected tidal volume despite significant reduction in 
pEEP (table 2). Minute volume increased when flows reduced. 
Reducing flows from 8 to 2 L/min statistically significantly 
increased respiratory rate (p=0.047) and significantly lowered 
SpO2 by 4.4% (p<0.0001). Each 1 L/min flow rate increment 
improved SpO2 by 0.6%. Importantly, 13 subjects (30%) required 
FiO2 increased by 2%–9% when flows reduced from 8 to 2 L/
min (eight were <1000 g, three were 1000–1500 g and two were 
>1500 g). TCCO2 was unchanged. Comparing nCPAP 6 cm H2O 
with HFNC 8 L/min at equal generated pEEP, HFNC 8 L/min 
resulted in similar weight-corrected tidal volume, TCCO2, SpO2 
and heart rate (all p>0.05).

Discussion
Key findings of our study were that flow rate was linearly related 
to pressure delivered, as suggested previously,8–11 14 15 18 and that 
weight, age, mouth position and prong-to-nares ratio are signif-
icant factors in determining pressure delivered. A substantial 
number of infants weighing <1000 g, in whom there is a paucity 
of previous data, were included. Furthermore, unlike previous 

studies,8–12 14 15 19 we included flow rates of 2–8 L/min that are 
commonly prescribed clinically.1 Previous data on pressures 
generated during HFNC are conflicting, likely due to different 
measurement techniques, small sample sizes and narrow flow 
rate protocols.8–12 14 15 19

Across all infants studied HFNC 8 L/min was comparable to 
6 cm H2O nCPAP but average pEEP generated by HFNC of 6 L/
min was lower than that generated by CPAP 6 cm H2O, which 
may be relevant to the recent finding in randomised studies that 
HFNC is inferior to nCPAP when used as primary support for 
preterm infants with respiratory distress syndrome.4 5 We also 
found considerable variability in pEEP generated at higher 
HFNC flows and at any given flow rate, the smallest infants 
received significantly higher pressures. Increased understanding 
of the mechanisms of action of HFNC in preterm infants should 
inform the design of future high-quality clinical studies.20 21

In our study, pEEP with the mouth closed was significantly 
higher than mouth open across all flow rates, similar to the find-
ings of Arora et al in older infants with bronchiolitis.14 Previous 
neonatal studies have varied in results from no pressure gener-
ated when mouth open9 to no effect8 with work in an in vitro 
model10 showing that a leak as low as 30% leads to a dramatic 
reduction in pressure. Although not part of the study protocol, 
we observed that pEEP measurements were consistently lower 
when prongs were accidentally loosened highlighting the impor-
tance of correct positioning as per manufacturer's instructions.

Generated pEEP correlated negatively with infants’ weight, 
a finding similar to some studies8 9 18 22 but not all.13–15 Impor-
tantly, 30 of our subjects were  <1500 g, with 15  <1000 g. 
Some of the generated pEEPs (8–13 cm H2O) at higher flow 
rates were higher than those generated by 6 cm H2O nCPAP, 
contrasting with observations by Lavizzari et al,19 where only 
75% of infants reached pEEP of 4 cm H2O and rarely >5 cm 
H2O. This may be due to our larger number of small infants and 
higher flow rates (>6 L/min). In infants  weighing <1000 g, we 
found that flows as low as 4–6 L/min generate average pEEP 
similar to nCPAP 6 cm H2O and flows of 7–8 L/min delivered 
pEEP higher than nCPAP 6 cm H2O. Although rare, HFNC-
related complications have been reported.23 24 Awareness of 
pressures delivered to vulnerable infants is important and may 
aid clinicians in prescribing flow rates. A recent survey found 
that 66% of clinicians adjusted flow in increments of 0.5–1 L/
min when weaning: our data suggest that flow changes of 
0.5 L/min are unlikely to have a major impact on respiratory 
parameters.1

Washout of nasopharyngeal dead space thereby increasing 
alveolar ventilation and improving CO2 elimination has been 
suggested as a mechanism of action of HFNC.6 This has been 
investigated in in vitro models,25 26 an animal study16 and 
adults27 28 but not in preterm infants. We found that increasing 
flows from 2 to 8 L/min led to significant reductions in pEECO2 
and decreases in minute ventilation probably due to reductions 
in dead space ventilation, with the greatest effects seen in the 
smallest infants but without a significant change in TCCO2. 
Möller et al also demonstrated that dead space washout was 
flow-dependent,26 and reduction of CO2 rebreathing occurred 
during HFNC in tracheostomised adults.27 The pEECO2 was 
higher with nCPAP 6 cm H2O compared with all flow rates of 
HFNC supporting the hypothesis that HFNC reduces dead 
space better than nCPAP, similar to recent in vitro findings that 
washout times for nCPAP were significantly longer than HFNC 
by 16.2%.25 Our observation that mouth open was associated 
with lower pEECO2 measured compared with mouth closed 
was similar to previous work,25 suggesting that the shorter oral 
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pathway surpasses the nasal route by providing the majority of 
the washout effect.

We acknowledge that the design of our study in vulner-
able infants balanced patient safety as our overriding concern 
against acquisition of the best quality data possible in terms 
of invasiveness of measurements and timing at each level of 
respiratory support. There are significant limitations to the use 
of TCCO2 in premature infants,29 but it is non-invasive and 
arterial blood gas measurements would have been impractical. 
Our finding of a lack of change of TCCO2, which was within 
the normal range, during HFNC was similar to previous 
reports.28 30 31 We have also only investigated one HFNC and 
nCPAP delivery system.

The weight-corrected tidal volume measured across 2–8 L/
min of flow and on nCPAP did not differ significantly, similar 
to previous reports.19 30 32 Explanations could be variability 
of sleep state in our infants as ventilatory responses to HFNC 
are different during wakefulness and sleep,33 and variability 
in infants’ need for non-invasive support at the time of study 
and age range. Increases in pEEP result in increases in func-
tional residual capacity while tidal volume in infants may be 
more dependent on the degree of lung disease and work of 
breathing. Mauri et al recently demonstrated in adults that 
HFNC increases end-expiratory lung volume, but tidal volume 
was unchanged.32

We demonstrated that reducing flows from 8 to 2 L/min 
led to a significant increase in respiratory rate, in agreement 
with previous studies.10 15 19 Interestingly, we found that both 
respiratory and heart rate were generally higher during nCPAP 
therapy, possibly explained by better tolerance of HFNC. 
Increasing flows improved oxygenation saturation, as demon-
strated previously.18

Although all infants tolerated the study protocol well, with 
no adverse events, 30% of participants (highest in the <1000 g 
group) required an oxygen increment to maintain their SaO2 
within set parameters, which could have mitigated changes in 
some parameters but was essential to ensure safety. Without 
simultaneous oesophageal pressure measurement, we could not 
investigate compliance and work of breathing. However, adding 
this would have entailed significant additional handling, and 
an oesophageal pressure probe may have impacted on airway 
physiology and caused discomfort. Although the nasopharyngeal 
catheter used to measure pressure was similar to a nasogastric 
feeding tube, it is conceivable that it generated a degree of leak. 
However, HFNC apparatus are designed as ‘leaky systems’ to 
prevent barotrauma and the CPAP system used compensates 
automatically to maintain a set pressure.

In summary, multiple factors impact the pEEP delivered by 
HFNC in preterm infants, which leads to considerable vari-
ability. Extremely small infants are at greatest risk of receiving 
high pEEP. Physiological effects of increasing HFNC flow rate 
include raised airway pressure, improved oxygenation, lower 
respiratory rate and improved effective alveolar ventilation by 
reducing dead space ventilation.
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