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Abstract

Although most dramatic structural changes occur in the perinatal period, a growing

body of evidences demonstrates that adolescence and early adulthood are also

important for substantial neurodevelopment. We were thus motivated to explore

brain development during puberty by evaluating functional connectivity network

(FCN) differences between childhood and young adulthood using multi-paradigm

task-based functional magnetic resonance imaging (fMRI) measurements. Different

from conventional multigraph based FCN construction methods where the graph

network was built independently for each modality/paradigm, we proposed a

multigraph learning model in this work. It promises a better fitting to FCN construc-

tion by jointly estimating brain network from multi-paradigm fMRI time series, which

may share common graph structures. To investigate the hub regions of the brain, we

further conducted graph Fourier transform (GFT) to divide the fMRI BOLD time

series of a node within the brain network into a range of frequencies. Then we identi-

fied the hub regions characterizing brain maturity through eigen-analysis of the low

frequency components, which were believed to represent the organized structures

shared by a large population. The proposed method was evaluated using both syn-

thetic and real data, which demonstrated its effectiveness in extracting informative

brain connectivity patterns. We detected 14 hub regions from the child group and

12 hub regions from the young adult group. We show the significance of these find-

ings with a discussion of their functions and activation patterns as a function of age.

In summary, our proposed method can extract brain connectivity network more accu-

rately by considering the latent common structures between different fMRI para-

digms, which are significant for both understanding brain development and

recognizing population groups of different ages.

K E YWORD S

brain maturation, functional connectivity, functional MRI, graph Fourier transform, Laplacian

Received: 20 September 2020 Revised: 27 January 2021 Accepted: 24 February 2021

DOI: 10.1002/hbm.25410

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

2880 Hum Brain Mapp. 2021;42:2880–2892.wileyonlinelibrary.com/journal/hbm

https://orcid.org/0000-0001-6178-1398
https://orcid.org/0000-0002-5053-8306
mailto:wyp@tulane.edu
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


1 | INTRODUCTION

Modern neuroimaging techniques provide an opportunity to study the

human brain quantitatively. Especially, functional magnetic resonance

imaging (fMRI) enables noninvasive measurements of both brain

structure and its functional activities with a temporal resolution of

seconds and with a spatial resolution of millimeters. It measures the

low-frequency fluctuations caused by hemodynamic response in

blood-oxygen-level dependent (BOLD) signals and maps to the neural

activities in the brain or spinal cord (Huettel, Song, &

McCarthy, 2004), which facilitates the detection of correlations

among distinct brain regions (Power et al., 2011). In particular, task-

based fMRI (tfMRI) analyses help to identify and characterize func-

tionally distinct nodes in the human brain, providing the ability to

interrogate the neural basis of mental functions and representations

(Barch et al., 2013).

The human brain has attracted a significant number of studies

due to its broad functional repertoire including action enabling, per-

ception, and cognition. Despite a fixed anatomical structure, it has

been a widely accepted assumption that the brain network architec-

ture organizes local interactions to cope with diverse environmental

demands (Park & Friston, 2013). Considerable research has been con-

ducted to reveal the development of the brain from their functional

activation differences throughout childhood and adolescence (Fair

et al., 2009; Jolles, van Buchem, Crone, & Rombouts, 2010). In partic-

ular, task fMRI has been widely studied to explore task specific func-

tional behavioral difference between child and adult brains (Passarotti

et al., 2003), where different activation patterns were identified and

reported for different age groups (Holland et al., 2001).

Recently, the graph signal processing (GSP) methodologies have

become promising to tackle neuroimaging problems where observa-

tions are viewed as signals residing on the nodes of a graph

(Hu et al., 2013; Sandryhaila & Moura, 2013; Shuman, Narang, Fro-

ssard, Ortega, & Vandergheynst, 2013). Within this framework, the

brain is modeled as a graph or network consisting of a set of brain

regions and pairwise relationships between these regions including

connectivity or similarity measures. Spectral analysis was

implemented to reveal the intrinsic structures of these graphs via the

eigen-analysis of their associated adjacency matrix, the graph

Laplacian and their variants (Hu et al., 2013; Sandryhaila &

Moura, 2013). A remarkable number of researches have been con-

ducted to investigate the frequency domain behavior of the graph sig-

nals residing on these matrices (Chung, 1997), which facilitates the

development of GSP (Shuman et al., 2013). Among them, the graph

Fourier transform (GFT) has demonstrated its effectiveness in signal

denoising (Shuman et al., 2013), the study of mental illness

(Hu et al., 2013), and brain network analysis (Huang et al., 2016). Vari-

ants of GFT such as alternative graph Fourier transform (AGFT)

(Sandryhaila & Moura, 2013) have been successfully applied to signal

compression and label propagation. The rationality and advantages of

these GSP tools over conventional Fourier transform have been illus-

trated by Shuman et al. (Shuman et al., 2013). These methods rely on

a preselected kernel to construct the graph, presuming that the prior

inner relationships among data samples are known. However, such

information is unavailable because of the complexity of the brain with

distinct task-specific regions activated and deactivated among individ-

uals. To overcome this issue, a data-driven graph learning framework

(Dong, Thanou, Frossard, & Vandergheynst, 2016) was proposed to

better extract the graph structures. The authors further applied graph

learning with graph Fourier transform and found applications in study-

ing brain development (Wang et al., 2020).

It has been demonstrated that integrating multi-modality or

multi-omics data can yield additional informative knowledge for the

improvement of predictive accuracy (Kim et al., 2014; Sundermann,

Herr, Schwindt, & Pfleiderer, 2014; Tsuda, Shin, & Schölkopf, 2005).

In this work, we extend our model in (Wang et al., 2020) to incorpo-

rate multiple graphs, which can integrate multiple pieces of informa-

tion to make diagnoses for patients. Specifically, we propose a

multigraph learning framework to jointly learn the graph structure

from multiple graphs. Afterward, we conduct GFT and design filters to

detect essential brain regions in a specific frequency range to study

the mechanisms of brain maturation. Finally, we apply the proposed

model to neuroimaging data collected from the Philadelphia Neu-

rodevelopmental Cohort (PNC) (Satterthwaite et al., 2014). It is a

large-scale collaborative study between the Brain Behavior Laboratory

at the University of Pennsylvania and the Center for Applied Geno-

mics at the Children's Hospital of Philadelphia, including healthy

developing volunteers of age 8 to 22 years. The database contains

652 subjects with task fMRI observations available for both emotion

identification and working memory tasks.

The contributions of this work can be summarized as follows.

• We propose a multigraph Laplacian learning framework to

jointly estimate the graph structures from neuroimaging studies

involving multiple paradigms. This is different from the previous graph

integration methods (Kim et al., 2014; Tsuda et al., 2005), graph

concatenated methods (Hu et al., 2013), and other multi task learning

models (Wee, Yap, Zhang, Wang, & Shen, 2014), which combined the

graphs estimated from single modality data linearly, calculated the

graph from concatenated data, or estimated the identical graph among

all the subjects, respectively. Instead, our model estimates multiple

graphs with respect to different paradigms simultaneously by consid-

ering the overall brain network structures. The complementary infor-

mation from multiple paradigms enables a more reliable construction

of the brain network, resulting in improved detection of hub regions.

• We evaluate the proposed learning framework first on synthetic

data, and then conduct extensive experiments on the real PNC data.

The results demonstrate the superiority of the proposed method over

traditional GSP approaches. A list of hub regions were identified

revealing the different activation patterns in child and young adult

group. A detailed discussion of the detected regions is given regarding

their functions and relationships with brain maturation.

• We summarize our findings to demonstrate the consistency and

discrepancy with previous studies and explore the potential biological

patterns of the brain maturation process. Therefore, our work benefits

the neuroimaging field by providing additional biomarkers related to

brain development during adolescence.
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The rest of the paper is organized as follows: in the Methods

section, we provide a detailed description of signals defined on the

graph and review the developments of applying GFT on these graph

signals. We further propose a multigraph learning model to estimate

the graph Laplacian matrix in the multi-paradigm setting, followed

by graph Fourier analysis and filter design. In the Results section,

we validate the effectiveness of the proposed model on both

synthetic and real data. Finally, we summarize the work in the

Conclusion section.

2 | METHODS

2.1 | Signals defined on a graph

We use a graph to describe the pairwise relationships between a set

of objects. For example, given a set of nodes V = vi, i = 1� � �n, a
corresponding graph can be denoted as G(V, W), where W refers to a

adjacency matrix of the relationships between each node-pair. Brain

functional connectivity aims to study the connection and activation

pattern between different brain regions. As a result, we treat each

brain region as a node and consequently the adjacency matrix W

denotes the connections between different brain regions. A graph

signal x � ℝn is defined on the vertex set of the graph G, where the

i-th element of x represents the strength of the neural activity of the

corresponding brain region.

We further introduce the graph Laplacian L defined below:

L=D−W, ð1Þ

where D is the degree matrix, which is diagonal with the i-th diagonal

entry being the sum of the entries in the i-th row of the weighted

adjacency matrix W. The graph Laplacian L in (1) is real and

symmetric, and thereby has a complete set of orthonormal eigenvec-

tors {fi}(i = 1,2,…,n). By eigendecomposition, we have L = FΛFT, where Λ

is the diagonal eigenvalue matrix Λii = λi, and F is the corresponding

eigenvector matrix.

To further illustrate the behavior of the graph signal defined on

the network, we define the smoothness (Laplacian regularization) of a

graph signal x with respect to the Laplacian as (Belkin & Niyogi, 2003;

Chan, Osher, & Shen, 2001; Shuman et al., 2013)

S xð Þ : = xTLx= 1
2
Σn
i,j=1Wij x ið Þ−x jð Þð Þ2, ð2Þ

where x(i) represents the element of x at i-th node. It serves as an indi-

cator reflecting the smoothness properties of a signal on the graph.

2.2 | Related works

In this subsection, we review the recent developments in GSP espe-

cially graph Fourier transforms.

2.2.1 | GFT and AGFT

Suppose we have m � ℕ subjects in total. For each subject, we have

graph signals X = [x1, x2, …, xp] or [x1, x2, � � �, xn]T � ℝn × p available,

where n and p denote the number of nodes and graph signals. xi � ℝn

is the i-th column of X denoting the i-th graph signal residing on the

vertices, and xj � ℝp is the j-th row of X denoting the observations of

the j-th vertex across the p graph signals. LetW = [Wij] � ℝn × n denote

the association or similarity matrix for a subject (Hu et al., 2013; Shu-

man et al., 2013).

Wij = e−
kxi −xjk2

2
2σ2 if i� j

0 otherwise,

8<
: ð3Þ

where i � j indicates an edge between node i and node j, and σ is the

hyper-parameter that determines the width of Gaussian distribution.

The GFT of x with respect to L is defined as (Hu et al., 2013; Huang

et al., 2016; Shuman et al., 2013)

~x : = FTx: ð4Þ

The inverse GFT of ~x with respect to L is defined as

x= F~x: ð5Þ

Note that F is orthonormal, that is, FTF = I, thus x and ~x form a

GFT pair.

The eigenvalues of the graph Laplacian carry the similar meaning

as “frequency” to that of conventional Fourier transform. In fact, the

eigenvalue reflects how much the corresponding eigenvector oscil-

lates over the graph if we calculate the Laplacian regularization of the

eigenvector fk:

S fkð Þ : = fTk Lfk = fTk λkfk = λk: ð6Þ

In (Sandryhaila & Moura, 2013, 2014), an alternative GFT was pro-

posed to expand graph signals with respect to the eigenfunctions of

the corresponding adjacency matrix. Suppose the adjacency matrix A

is available and its Jordan decomposition A = VJV−1, where J is the

Jordan normal form and V is the matrix of generalized eigenvectors.

The alternative GFT and its inverse of a given graph signal x can be

defined with respect to A as in (4), (5).

2.2.2 | Graph Laplacian learning based Fourier
transform (GLFT)

In order to avoid the deviation of pre-selected kernels in constructing

the network, the authors in (Dong et al., 2016) proposed a data-driven

learning framework to better estimate the topology of the graph.

Suppose we have graph signals X = [x1, x2, � � �, xp] � ℝn × p

observed on a graph with n nodes. The smooth signal Y and the graph
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Laplacian were estimated by minimizing the Laplacian regularization term

as well the loss Y (Dong et al., 2016), where Frobenius norm penalty of L

and constrains were applied to ensure the learned graph Laplacian is

nontrival and valid. Detailed description can be found in File S1.

Notably, the proposed learning algorithm was further combined

with GFT in (Wang et al., 2020) to split the graph signals into different

frequency components. Given a graph signal x and its learned graph

Laplacian, the GLFT and the inverse of x can be defined with respect

to L as in (4), (5).

2.3 | Multigraph analysis

2.3.1 | Multigraph Laplacian learning

Graph signals from different views or paradigms may provide comple-

mentary information for better characterizing the network structure.

In this section, we extend the learning framework into multiple graphs

setting. To begin, we introduce the notions of the multigraph signals.

For a subject with graph signals defined on d modalities, we use

x kð Þ
1 ,x kð Þ

2 ,…,x kð Þ
pk

h i
=X kð Þ�ℝn× pk to represent the set of graph signals

from the k-th(k = 1, 2, …, d) modality, where pk is the number of graph

signals from the k-th modality. For each modality, by taking

the smoothness into consideration, the graph Laplacian can be easily

estimated (File S2).

In multigraph scenario, we still adhere to the assumption that the

graph signals have a small total variation on the estimated graph for

each modality. This assumption reflects a better fit between the

learned graph structure and the graph residing on it. Moreover, since

the multiple signals come from the same subject, common structures

reflecting interrelationships between modalities should exist. Based

on these assumptions, it is natural to generalize the graph Laplacian

learning framework into a multigraph setting using the following

objective function.

min
L 1ð Þ ,…,L dð Þ

1
d

Xd
k =1

tr X kð ÞTL kð ÞX kð Þ
� �

+ β k L kð Þk2F
h i

+
Xd
i, j=1

αij k L ið Þ−L jð Þk2F

s:t tr L kð Þ
� �

= n,

L kð Þ
ij = L kð Þ

ji ≤0, i≠jð Þ,
L kð Þ�1=0, k =1,2,…,dð Þ:

ð7Þ

Compared with the single variate learning framework (File S2), we con-

sidered the overall graph structures by regulating their difference

among modalities. The positive parameters αij are the key factors

reflecting the latent structure shared by different views or modalities. If

αij is set to 0, which means that the graph structures are considered

independently with each other, the solutions are equivalent to learning

the graph structure from each modality separately as in (File S2). If αij is

set to infinity, which forces the graph structures to be the same among

modalities, the solutions are equivalent to learning the graph with the

concatenated method. Ideally, αij should be set as the degree of similar-

ity measurement between modalities with certain prior information.

However, in our case, the inner-relation between modalities is rather

sophisticated, so αij is tuned through cross-validation in this work. β is a

positive regulator that controls the distribution of the learned graphs

and we tune it through cross-validation as well. Additional constraints

are enforced to prevent the null solutions and to ensure that the

learned Laplacian matrices are valid. The optimization problem can be

effectively solved with CVX toolbox (Grant, Boyd, & Ye, 2015).

2.3.2 | Graph Fourier transform

After obtaining graph Laplacian L(k) for each modality, we are able to

conduct GFT of x(k) in each modality with respect to L(k) as

~x kð Þ : = F kð ÞTx kð Þ: ð8Þ

where F(k) is the eigenvector matrix of L(k). In addition, the inverse GFT

of ~x kð Þ with respect to L(k) is defined as

x kð Þ = F kð Þ~x kð Þ: ð9Þ

As F(k) is orthonormal, the original signal x(k) can be recovered through

the inverse GFT of ~x kð Þ. Thus, x(k) and ~x kð Þ form a GFT pair.

Remarkably, the GFT can be reduced to conventional Fourier trans-

form for specific graphs such as a cycle graph (Huang et al., 2016), where

the eigenvectors in F are expressed as fk = 1,e− i2π k−1ð Þ
n ,…,e− i2π k−1ð Þ n−1ð Þ

n

h iT
.

On the other hand, as defined in (6), the eigenvalue reflects the

smoothness of the corresponding eigenvector over the graph. Thus,

the GFT naturally divides the original graph signal into different “fre-
quency” components: small eigenvalues oscillate slowly, appearing to

be smooth, whereas the large eigenvalues account for high frequen-

cies, and the associated eigenfunctions oscillate rapidly.

2.3.3 | Graph filtering

As discussed above, the transformed signals can be manipulated into

a range of frequencies to facilitate extracting information and explor-

ing their behaviors. Following the standard procedure from signal

processing, we design a low-pass filter, a high-pass filter, and a band-

pass filter based on eigenvalues to split the frequency components

(see supplementary section 3).

Based on the designed filters, the graph signals were naturally

divided into low, intermediate, and high frequency components as

~x= ~xlow +~xmid +~xhigh . Accordingly, the original graph signals can be

recovered by x = xlow+ xmid+ xhigh with xlow, xmid, xhigh being the

reconstructed signals from the respective frequencies.

Brain network theory has demonstrated the co-existence of disor-

ganized behavior and ordered regularity in the brain functional network

(Sporns, 2010). The organized part reveals the functional or structural
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information of the brain network in a large population, such as the

default mode network (DMN) (Buckner, Andrews-Hanna, &

Schacter, 2008), sensory motor network (Gallese & Lakoff, 2005), while

the disorganized part reflects the individual differences among subjects.

In our multigraph learning framework, the ordered part corresponds to

low frequency components that are smooth across the graph rep-

resenting the main contribution of the brain functional operations,

while the disordered portion accounts for the high frequency compo-

nent with a higher chance of capturing noise or individual differences.

The low variability has proven to be essential in the analysis of neuro-

logical disease and behavior and the learning process (Garrett,

Kovacevic, McIntosh, & Grady, 2012; Huang et al., 2016). As the main

motivation of this work is to analyze the brain functional connectivity

patterns at different pubertal stages, we put our emphasis on the learn-

ing of the low frequency subspace in the following section.

3 | RESULTS

We evaluated the performance of our proposed multigraph Fourier

transform framework using both synthetic and real data analysis in

this section. The comparison between other graph Fourier transform

related methods such as GFT, alternative GFT, and the graph learning

based Fourier transform was demonstrated (Sandryhaila &

Moura, 2013; Shuman et al., 2013; Wang et al., 2020). Meanwhile,

hub regions related to brain maturation were identified from task-

related fMRI, followed by a significant test of the detected regions.

Finally, we calculated the consistency between subjects for each

group and conducted a classification test to further validate the per-

formance of our proposed method. In short, our proposed multigraph

learning method enabled a more precise characterization of the brain

FCN with multi-paradigm fMRIs, and thus facilitates the study of brain

development. For clarification, we illustrated the major steps involved

in real data analysis in Figure 1.

3.1 | Synthetic data analysis

3.1.1 | Artificial graphs construction

To evaluate the performance of our proposed model, we conducted

an experiment on synthetic multigraph data. Specifically, we synthe-

sized artificial graphs with 20 vertices following the Erdos-Renyi

(ER) model (Erdos & Rényi, 1960) and the Barabasi-Albert (BA) model

(Barabási & Albert, 1999). The ER model first generates the whole

node set, and then each edge randomly with a .2 probability. The BA

model, by contrast, adds nodes and edges one by one, according to

the degree distribution of the existing nodes, based on the

F IGURE 1 A flow diagram of multigraph signal analysis of one subject for brain network construction and hub regions identification. There
are four major steps involved. In the preprocessing step: task fMRI measurements from multi-paradigm were preprocessed to become graph
signals defined on the parcellated brain regions according to the Power atlas (Power et al., 2011). In the multigraph learning step: we applied the
proposed multigraph Laplacian learning algorithm to construct the brain connectivity networks simultaneously for each paradigm. In the GFT-
filters step: we conducted graph Fourier transform and designed proper filters to transform the original signals into the frequency domain and put
our emphasis on the low frequency components. Finally, in the mapping back step: we analyzed the energy distribution of the eigenfunctions and
mapped these back to their corresponding brain regions, where regions with significant contribution were identified
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assumption that there is a higher chance for a new vertex connecting

to an existing node with higher degree. The ground truth graph

Laplacian was obtained from (1), where the edges were binarized. For

each artificial graph, a total of 100 signals were yielded following a

zero-mean multivariate Gaussian distribution as follows

x� N 0,FΛ†FT + σϵ
2In

� �Þ: ð10Þ

We set σ1ϵ =0:3 and σ2ϵ =0:5 for two paradigms, respectively.

3.1.2 | Result and comparison

Given the synthesized multi-paradigm signals on each graph, we first

applied the proposed learning framework to construct the graph Laplacian

matrix. For comparison, we also calculated the graph Laplacian based on

single-paradigm data, which demonstrated superiority over GFT and

AGFT (Wang et al., 2020). For ease of comparison, the learned graph

Laplacian matrices were binarized at a threshold 10−4. Precision, recall,

and F-measure were adopted as the criteria to evaluate the performance

of these methods statistically. We displayed the averaged results and

their SD from 20 repeated experiments in Table 1. The results demon-

strated that the constructed graph networks using the multigraph learning

framework outperformed those using the single-paradigm based method.

In other words, the overall structural information from multiple paradigms

offers advantages in better constructing the graph than in single para-

digm. The comparatively poorer performance of the ER model was most

likely caused by the higher randomness against smoothness condition.

For clarity, we also visualized the learned graph Laplacian matrices

with respect to both BA and ER graphs in Figure 2. The experiments are

repeated 20 times and the visualization is based on the results from the

last time. Overall, our proposed method gives a better reconstruction of

the ground truth graph compared with the single view based method.

3.2 | Real data analysis

We further applied the proposed model to fMRI observations

collected from the Philadelphia Neurodevelopmental Cohort (PNC)

TABLE 1 Simulation results

BA model

Graphs F-measure Precision Recall

2D-L1 0.9870 ± 0.0215 0.9474 ± 0.0292 0.9921 ± 0.0193

2D-L2 0.9936 ± 0.0114 0.9875 ± 0.0222 1.0000 ± 0.0000

L1 0.8723 ± 0.0954 0.8539 ± 0.0920 0.8921 ± 0.1017

L2 0.8545 ± 0.0815 0.8366 ± 0.0801 0.8737 ± 0.0861

ER model

Graphs F-measure Precision Recall

2D-L1 0.7892 ± 0.0337 0.7848 ± 0.0335 0.7937 ± 0.0344

2D-L2 0.8033 ± 0.0240 0.7984 ± 0.0248 0.8083 ± 0.0240

L1 0.7043 ± 0.0288 0.6993 ± 0.0300 0.7094 ± 0.0283

L2 0.7380 ± 0.0272 0.7324 ± 0.0273 0.7438 ± 0.0280

Note: 2D-L1 and 2D-L2 represent the graphs jointly estimated from two

paradigm signals. L1 and L2 are the graphs recovered from graph learning

algorithm for single paradigm.

F IGURE 2 The ground truth graphs versus the reconstructed graphs from our proposed multigraph learning framework and the graph
learning method for single view data. Note that the edges in the last four sub figures represent the falsely predicted edges. The upper part is the
simulation from BA model and the lower part is the ER model. 2D-L1 and 2D-L2 represent the Laplacian matrices estimated from the proposed
multi-paradigm learning framework. GL-L1 and GL-L2 represent the Laplacian matrices learned from single view graph signals
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(Satterthwaite et al., 2014) with a focus on the brain maturation

process. MRI examinations were conducted on a single 3 T Siemens

TIM Trio whole-body scanner. The images were collected using a

single-shot, interleaved multi-slice, gradient-echo, echo planar imaging

sequence.

3.2.1 | Data acquisition and preprocessing

In this study, we consider two types of task MRI data from PNC

(Satterthwaite et al., 2016) to reveal the brain network difference

between child and young adult given the same cognitive task. The

two tasks involve emotion identification and working memory exami-

nation, and a detailed description of the experiments can be found in

the paper by Satterthwaite et al. (2014). For each subject, both task

based fMRI time series were available and parcellated based on the

same atlas.

The emotion identification task employs a fast event-related

design with a jittered inter-stimulus interval (ISI). Participants were

required to label the emotions displayed by the trained actors (50%

female) with neutral, happy, sad, angry, or fearful expressions. There

were 60 faces in total in color photographs that were rated and

selected by professional directors. Each face was displayed for 5.5 s

followed by a variable ISI from 0.5 to 18.5 s, during which a complex

crosshair (that matched the faces' perceptual qualities) was displayed.

The task duration was 10.5 min (Satterthwaite et al., 2014).

The working memory task involved a fractal version of the

standard n-back task, which has proved to be a reliable probe of the

executive system and was beneficial to avoid lexical processing

abilities that evolve during development (Brown et al., 2004;

Schlaggar et al., 2002). The task involved presentation of complex

geometric figures (fractals) for 500 ms, followed by a fixed ISI of

2,500 ms. There are three levels of working memory load in total:

0-back, 1-back, and 2-back. In 0-back setting, participants responded

to a specified target fractal; in 1-back setting, participants responded

if the current fractal was identical to the previous one; in 2-back

setting, participants responded if the current fractal was identical to

the previous two trails. The task duration was 11.6 min (Satterthwaite

et al., 2014).

We followed a standard pipeline to preprocess the data using

SPM12 (Ashburner et al., 2014), consisting of motion correction,

spatial normalization to standard MNI space (adult template) and spa-

tial smoothing with a 3 mm FWHM Gaussian kernel. We applied

regression to remove the effect of motion (6 parameters), followed by

a band-pass filter in 0.01 Hz to 0.1 Hz frequency range. Next, we fur-

ther mapped the imaging data into 264 regions of interest based on

the Power atlas (Power et al., 2011) with a sphere radius 5 mm.

Finally, we extracted the ROI-level fMRI time series by averaging the

time sequences of all voxels in the same ROI to get a 264 × p matrix

for each subject with p = 210 and p = 231 denoting the number of

time points for emotion identification and working memory tasks,

respectively, due to the total duration of the MRI scan.

Since we focus on the brain development analysis as a function

of age, we subdivide the subjects into child and young adult groups.

Specifically, subjects whose age was below 12 years were considered

to belong to the child group, while subjects over 18 years belong to

the young adult group, as shown in Table 2. Chi-Square statistic test

(McHugh, 2013) was performed and there was no significant differ-

ence in distribution of males and females between the child and

young adult groups (p = .2878).

3.2.2 | Parameter tuning/ effect of parameters

We illustrated the determination of the important parameters

involved in the proposed framework, including α that controls the sim-

ilarity between paradigms, β that regulates the off diagonal entrees of

the graph Laplacian, and l that determines the cutoff of the low fre-

quency components. The parameters were determined separately and

10-fold cross validation was applied to evaluate the performance of

the parameters. Specifically, β was initially set in the range of [10−5,

10−4, …, 104, 105], α was initially set in the range of [10−2,

10−1,1,10,100] × β, and cutoff l was set in [20, 60]. The cross valida-

tion criteria was the classification accuracy of the estimated graph

Laplacian towards their corresponding age groups.

Based on the objective function (7), a large β (over 104) leads to a

uniform distribution of the learned graph Laplacian (the diagonal close

to one and the off-diagonal tends to be the same) and a small β (below

1, compared with the scale of the Laplacian regularization term con-

trolling the smoothness) leads to an extremely sparse solution where

a clear majority of off-diagonal elements equal 0. The parameter α

reflects the inner structural relationships between paradigms by con-

trolling the shared latent information. We visualized the relationship

of the parameters (α/β) versus cross-validation accuracy to evaluate

the effect of the parameters in Figure 3. The cutoff splitting the fre-

quency was also selected via cross-validation, where 10-fold cross

validation was performed on the train set with l in [20, 60]. We finally

adopted l = 48, and α/β = 7 as the low frequency boundary and

parameter for the optimization algorithm. In fact, the classification

performance was robust across a range of both parameters.

3.2.3 | Detection and visualization of hub regions

As illustrated in Figure 1, we applied our proposed framework to

detect age related biomarkers using imaging data from two task-based

fMRI paradigms. Specifically, fMRI observations at each time point

were treated as graph signals defined on the parcellated brain regions.

Multigraph Laplacian learning algorithm was applied on both working

TABLE 2 Characteristics of the subjects in this study

Group Age (Mean ± SD) Male/female

Child 10.2926 ± 0.9358 61/74

Young adult 19.2606 ± 0.9952 57/92
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memory and emotion identification tasks to estimate the graph

structure for each subject. We conducted graph Fourier transform

and designed filters afterwards to divide the graph signals into low,

intermediate and high frequency components. Based on the explana-

tions at the end of method section, we put our emphasis on the low

frequency portion. In order to identify hub regions for each age group,

we calculated the projection energy on eigenbasis in the low

frequency range, where the spikes of the energy concentration were

selected and further mapped back to their corresponding cortical

regions. Specifically, the inner products of the transformed signals in

the low frequency domain on each eigenbasis were computed and

two standard deviations higher than mean value (Bassett et al., 2008)

was adopted as the threshold to select hub regions. The energy distri-

bution of the transformed signals provided additional evidence on the

superiority of our proposed method (Figure 4). The relatively higher

energy concentration over competing method in the low frequency

ranges indicated that our proposed method could facilitate the extrac-

tion of the information in the organized brain regions, which in turn

improved the subsequent hub identification and classification. We

investigated the group differences of the detected hub regions using

standard two-sample t test to estimate their significance. We summa-

rize the results in Table 3, where previous reported regions are mar-

ked with *. Detailed illustrations of these regions and their literature

references are given in Discussion Section. For ease of visualization,

we display the locations of the identified hub regions related to

brain maturity in Figure 5 with the help of BrainNet Viewer (Xia

et al., 2013).

3.2.4 | Subject consistency

To validate our previous statement that organized brain functional

and structural information should be consistent within a large popula-

tion, the subject consistency can be adopted as an indicator to

compare the subjects' behavior in the same group (Li et al., 2019). It is

well known that Dice similarity coefficient (DSC) is a commonly used

metric to quantify the subject consistency:

DSC =
2TP

2TP+ FP+ FN
, ð11Þ

where TP, FP, and FN denote the true positive, false positive, and false

negative, respectively. A high DSC score indicates a high consistency of

the functional connectivity networks among subjects from the same pop-

ulation. We calculated the DSC values based on our proposed method

and the competing methods for child and young adult group, respec-

tively, shown in Figure 6. The DSC scores of our proposed method were

higher than the DSC sores of all the comparison methods, demonstrating

an increase of the subject consistency in the learned brain connectivity

networks. Furthermore, the DSC values of the young adult group were

always higher than those of the child group, suggesting an increase of

consistency with increased age. In other words, the brain functional net-

work continues to change and stabilize through adolescence, which is in

line with the previous studies and common assumptions of brain devel-

opment (Arain et al., 2013; Fair et al., 2009; Jolles et al., 2010).

F IGURE 3 The visualization of the sets of parameters α, β versus

their corresponding classification accuracy in classifying different age
groups. The β is set to 103 and the x-axis is the α/β. For each pair of
the parameters, the classification task was repeated 10 times and the
averaged cross-validated accuracy and standard derivation were
displayed. We concluded that the classification performance is solid
and robust (over 95% accuracy and fluctuation is within 3 × 10−3)
with a proper range of the parameters. A similar result is observed
when β is at a proper range, which demonstrated the robustness of
our model

F IGURE 4 The comparison of projection energy between our
proposed method and the RBF (Radial basis function) kernel based
method involved in the traditional graph Fourier transform (Shuman
et al., 2013). The projection energy was calculated based on the
averaged projection power across all the subjects and normalized to
have unified area under the curve. The eigenbases are sorted in an
increasing manner with corresponding eigenvalues except for the first
one, which has constant value in its eigenfunction. Our proposed
method enforced the extraction of the features in the low frequency
components compared with the traditional methods
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3.2.5 | Classification

To further illustrate our findings, we conducted classification experi-

ments to separate different age groups with the learned brain net-

work. Specifically, we considered the connectivity matrix jointly

estimated for each subject as the input to a linear support vector

machine (SVM) classifier (Schölkopf & Smola, 2002) to divide subjects

into child or young adult groups. We also performed classification

tasks with the constructed networks using graph Laplacian learning

based Fourier transform, GFT and alternative GFT for comparison

(Sandryhaila & Moura, 2013; Shuman et al., 2013; Wang et al., 2020).

Sensitivity, specificity and accuracy were adopted as the criteria to

evaluate the performance. We repeated the prediction experiments

10 times with 10-fold cross-validation to avoid occasionality and

overfitting and displayed the result in Table 4.

In summary, the proposed multigraph learning method out-

performed the other GFT GSP methods. Our approach was able to

extract useful shared latent information from multi-paradigms,

TABLE 3 Identified hub regions in different age groups

Child Young adult

Common regions Location p-value Location p-value

Left cingulate gyrus* 2.6606e−4 Left cingulate gyrus* 2.6606e−4

Right cingulate gyrus* 1.8612e−10 Right cingulate gyrus* 1.8612e−10

Right postcentral gyrus* :0439 Right postcentral gyrus* .0439

Right medial frontal gyrus * 2.3261e−6 Right medial frontal gyrus * 2.3261e−6

Left posterior cingulate* 2.1909e−4 Left posterior cingulate* 2.1909e−4

Right inferior parietal lobule* .0019 Right inferior parietal lobule* .0019

Left Claustrum 4.4006e−4 Left Claustrum 4.4006e−4

Left superior frontal gyrus* 1.3694e−5 Left superior frontal gyrus* 1.3694e−5

Right inferior frontal gyrus* .0035 Right inferior frontal gyrus* .0035

Left middle frontal gyrus* 7.7311e−4 Left middle frontal gyrus* 7.7311e−4

Left middle temporal gyrus* 2.3678e−4 Left Postcentral gyrus .0796

Different regions Right cuneus* .1352 Right paracentral lobule* 8.9501e−5

Left insula .0072

Right inferior temporal gyrus* 4.73e−10

Note: Previously reported regions are marked with *.

F IGURE 5 The visualization
(sagittal, axial, and coronal views)
of the detected hub regions from

task fMRI analysis. The regions in
the upper part of the figure are
identified from the child group
while the regions in the lower part
of the figure are detected from
the young adult group. The
visualization of the brain network
is by BrainNet Viewer (Xia,
Wang, & He, 2013)
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resulting in improved classification performance, which increased the

reliability of the detected regions associated with brain maturation

during puberty.

4 | DISCUSSION

4.1 | The most discriminative regions

In this section, we provided a detailed investigation of the most discrimi-

native regions selected by our method to explore their relationships with

brain maturation. The cingulate cortex was detected for both groups,

which has been reported to be essential for integrating inputs from

various sources (including cognitive and emotional networks) and

processing emotional information. Previous work has provided evidence

that cingulate cortex undergoes a long period of development from

infancy to late childhood (Bush, Luu, & Posner, 2000).

Most cortical regions detected in both age groups were located in

frontal lobes. The frontal lobes are among the last cortex to mature

anatomically and functionally, and may develop until mid-twenties

or even later (Rubia et al., 2000). Specially, the middle frontal gyrus

identified on the left hemispheric prefrontal region has a stronger

generic activation in the adults group compared with the adolescents.

A significant increase in power with age has been reported for both

left middle inferior frontal gyrus and right inferior frontal gyrus

(Rubia et al., 2000). The inferior frontal cortex (both in left and right

cerebrum) has also been reported to be activated during the emo-

tional tasks for both adolescents and young adults (Iidaka et al., 2002).

The superior frontal gyrus (SFG) is detected for both groups, which is

thought to contribute to a variety of cognitive and motor functions.

The lateral part of SFG plays an especially important role in the work-

ing memory network (Boisgueheneuc et al., 2006; Li et al., 2013). The

middle frontal gyrus has been demonstrated to be related to memory

retrieval and is observed in both groups, which is consistent with the

studies illustrating the co-activation of inferior and middle frontal

gyrus for both young and older adults (Gunning-Dixon et al., 2003;

Rajah, Languay, & Grady, 2011). The right paracentral lobule is

observed only in the young adult group, implying a stronger activation

compared with the younger age, which provides additional evidence

of the study by Langan (Langan & Seidler, 2011).

In the parietal lobe, increased functional specialization related to

memory had been reported for inferior parietal cortex and this matu-

ration happens during puberty (Gogtay et al., 2004; Rivera, Reiss,

Eckert, & Menon, 2005). The identified postcentral gyrus is believed

to be the first region to mature (Gogtay et al., 2004).

In the temporal lobe, the inferior and middle temporal gyrus were

observed in the child group. According to a longitudinal study con-

ducted by Gogtay (Gogtay et al., 2004), the inferior temporal lobe,

similar to the maturation pattern with inferior frontal lobe, matures

early and does not change much thereafter. The middle temporal

gyrus is thought to be one of the heteromodal association sites

involved in integration of memory, audiovisual association and object-

recognition functions (Gogtay et al., 2004). Moreover, the stronger

extensive activation in dealing with the emotional task has been

F IGURE 6 Dice similarity
coefficient (DSC) values for the
proposed methods and the
competing methods

TABLE 4 Classification Results for fMRI measurements

emoid-fMRI

Method ACC SEN SPE

MGFT 0.9606 ± 0.0022 0.9385 ± 0.0036 0.9805 ± 0.0021

GLFT 0.9401 ± 0.0080 0.9448 ± 0.0106 0.9349 ± 0.0085

GFT 0.9187 ± 0.0047 0.9230 ± 0.0078 0.9140 ± 0.0087

AGFT 0.9415 ± 0.0033 0.9491 ± 0.0064 0.9332 ± 0.0073

nback-fMRI

Method ACC SEN SPE

MGFT 0.9592 ± 0.0034 0.9378 ± 0.0038 0.9785 ± 0.0053

GLFT 0.9050 ± 0.0106 0.9331 ± 0.0071 0.8743 ± 0.0187

GFT 0.9066 ± 0.0079 0.9069 ± 0.0105 0.9067 ± 0.0104

AGFT 0.9237 ± 0.0057 0.9309 ± 0.0049 0.9164 ± 0.0107

Note: ACC, SEN, and SPE are the abbreviations of accuracy, sensitivity,

and specificity, respectively. We display the result for mean value ± SD.

MGFT, GLFT, and AGFT is the short for multi GFT analysis, graph

Laplacian learning based Fourier transform and alternative GFT,

respectively.
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compared with the older group (Gunning-Dixon et al., 2003), which is

in accordance with our findings in the temporal lobe.

4.2 | Major findings and contributions

We propose a novel framework to incorporate multi-paradigm fMRI

data to detect biomarkers related to brain maturation. From the most

frequently identified brain regions, our work is consistent with the

common knowledge about brain maturation during adolescence.

Especially the abovementioned middle, inferior, and superior frontal

gyrus, inferior parietal cortex, and inferior and middle temporal gyrus

were identified to have similar activation pattern associations with

age in previous work. We also found newly identified regions such as

claustrum and insula, which have not previously been reported to

be associated with development. These regions deserve further inves-

tigation on their roles in the emotion identification or working

memory task.

Apart from the brain region detection, our proposed model also

demonstrated its superior performance in other aspects. The higher

concentration of energy distributed over the low frequency band of

the learned graph Laplacian (Figure 4) demonstrated better extraction

of well-organized brain networks over the frequently used kernel

based methods. This indicates that different paradigms provide

complementary information for better characterization of brain net-

works based on an appropriately designed model. In addition, the

robustness of our model was also evaluated and a high classification

performance was achieved (Figure 3). Finally, both the high accuracy

of classifying different age groups and subject consistency provided

further evidence regarding the validity of our findings.

4.3 | Limitations and future directions

One potential limitation is the sample size and scope of paradigms

(284 subjects and two paradigms). Thus, a future direction is the

testing of our proposed model on larger number of data sets from

different modalities and paradigms, with further applications to mental

disorder diagnosis and prognosis, and other clinical applications.

Recent research also shows that the parcellation strategies can affect

the constructed functional networks and the predictive power

(de Reus & Van den Heuvel, 2013; Pervaiz, Vidaurre, Woolrich, &

Smith, 2020). Therefore, another interesting direction would be to

evaluate the stability of the proposed model with different

parcellation atlases. Other concerns include the test–retest reliability

of task fMRI (Elliott et al., 2020), and the reliability measured by

intraclass correlation coefficient is poor compared with the resting

state fMRI. Opposite result was observed in a recent study where

predictive models built from task fMRI outperformed those from

resting-state fMRI in the classification of intelligence levels (Greene,

Gao, Scheinost, & Constable, 2018). Because of this, the combination

of multi-paradigm fMRI studies including both resting state and tasks

may increase the reliability. Recent work by Gao et al. (Gao, Greene,

Constable, & Scheinost, 2019) demonstrated improved classification

performance with the combination of resting state and task fMRI, and

the reliability varies with different models and different data sets (the

conclusion was based on the experiments on both PNC and Human

Connectome Project [HCP] [van Essen et al., 2013] data set). We also

conducted experiments based on resting state fMRI in our study and

most of the identified regions were the same between two age groups

and within the default mode network, which suggests that the DMN

has similar patterns from childhood through puberty into adulthood.

Thus resting-state fMRI has limited contribution in identifying discrim-

inative regions related to brain maturation and the classification

performance of using resting-state fMRI was worse compared with

task fMRI. Therefore, we do not include the result of using resting-

state fMRI while believe the combination of multi-paradigm fMRI is a

more promising research direction. Finally, we recently propose a

hypergraph learning based framework to capture higher order

relationships in the brain network (Xiao et al., 2019). Accordingly, the

proposed model can be expanded by the use of hypergraph Laplacian

matrix, which can characterize more sophisticated structure of

the brain.

5 | CONCLUSION

In this paper, we proposed a multigraph Fourier analysis framework to

study brain functional connectivity differences between children and

young adults. Specifically, fMRI data were parcellated into regions of

interest (ROI) according to a predefined functional atlas (Power

et al., 2011). The two tasks of fMRI observations were treated as

graph signals defined on the ROIs within the brain. The brain connec-

tivity networks were jointly estimated based on the proposed model

for both paradigms, followed by graph Fourier analysis with filtering

to decompose the original signals into several frequency bands. Hub

regions were detected in the low frequency domain based on the

biological significance and energy concentration. In both synthetic and

real data analysis, our proposed framework demonstrated the superior-

ity over other GSP tools such as GFT, AGFT, and GLFT for the con-

struction of brain connectivity network by considering the shared

latent graph structures from both paradigms. From the analysis results

of PNC data set, we identified the hub regions that were activated in

child and young adult groups and explored their implication for brain

maturation during puberty. We verified our findings with several exis-

ting studies and interpreted the significance of the detected regions.
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