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Abstract: Although gut microbes are regarded as a significant component of many mammals and
play a very important role, there is a paucity of knowledge around marine mammal gut microbes,
which may be due to sampling difficulties. Moreover, to date, there are very few, if any, reports
on the gut microbes of melon-headed whales. In this study, we opportunistically collected fecal
samples from eight stranded melon-headed whales (Peponocephala electra) in China. Using high-
throughput sequencing technology of partial 16S rRNA gene sequences, we demonstrate that the
main taxa of melon-headed whale gut microbes are Firmicutes, Fusobacteriota, Bacteroidota, and
Proteobacteria (Gamma) at the phylum taxonomic level, and Cetobacterium, Bacteroides, Clostridium
sensu stricto, and Enterococcus at the genus taxonomic level. Meanwhile, molecular ecological network
analysis (MENA) shows that two modules (a set of nodes that have strong interactions) constitute
the gut microbial community network of melon-headed whales. Module 1 is mainly composed of
Bacteroides, while Module 2 comprises Cetobacterium and Enterococcus, and the network keystone
genera are Corynebacterium, Alcaligenes, Acinetobacter, and Flavobacterium. Furthermore, by predicting
the functions of the gut microbial community through PICRUSt2, we found that although there are
differences in the composition of the gut microbial community in different individuals, the predicted
functional profiles are similar. Our study gives a preliminary inside look into the composition of the
gut microbiota of stranded melon-headed whales.

Keywords: melon-headed whale; gut; microbial communities; aquatic mammal

1. Introduction

The melon-headed whale (Peponocephala electra) is a member of the subfamily Globi-
cephalinae, where it is most closely related to the larger pilot whales (Globicephala melas
and G. macrorhynchus), and it is also not a well-known species [1]. This whale is mostly
dark gray in color, with a faint dark gray cloak on its back and a narrow head that slopes
downward below a tall sickle-shaped dorsal fin. This species is difficult to distinguish at
sea from the pygmy killer whale (Feresa attenuata). However, in stranded specimens, the
melon-headed whale can be identified from all other pygmy killer whales by its high tooth
count, as the melon-headed whale has ~25 teeth per row, while the pygmy killer whale has
only about ~15 teeth per row [2]. Melon-headed whales are found worldwide in tropical
and warm–temperate waters [3]. They mainly feed on fish, squid, cuttlefish, and shrimp,
foraging from the littoral zone down to the bathypelagic zone [2,4,5].

Microbes are exceedingly abundant and varied in the gut of mammals [6]. Interactions
between microbes and their host are necessary for the regulation of health, survival, and
physiological functions of the host [7–9]. The majority of microbes reside in the gut, and
their associated phenotypes shape the immune system of the host and contribute to nutrient
uptake and defense against infectious diseases [10,11]. Therefore, revealing the mammalian
gut microbiota is essential to fully understand the physiology and health status of mammals
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themselves. To date, most studies have focused on human gut microbiota, and information
on the gut microbial composition of other mammals, especially cetaceans, although there
are some reports, remains relatively scarce due to sampling limitations.

According to previous reports, gut samples from cetaceans are mainly obtained from
three approaches: (1) feces in the wild just post-defecation. For example, Sanders et al. [12]
investigated the microbial diversity and function of gut microbiomes in baleen whales feces
and found them harbored unique gut microbiomes whereas still kept a functional capacity
similar to that of both carnivores and herbivores; (2) fecal samples from human cared
animals, such as studies on belugas (Delphinapterus leucas), Pacific white-sided dolphins
(Lagenorhynchus obliquidens) and common bottlenose dolphins (Tursiops truncatus) [13,14],
and Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) [15]; and (3) from
dead, stranded animals. A few of studies sequenced along the gastrointestinal tracts
of stranded cetaceans to investigate the distribution of microorganisms in different gut
regions [16–19].

In this study, we opportunistically collected fecal samples from eight melon-headed
whales stranded in China. Through investigating this infrequently known cetacean species,
we aim to address the gut microbial compositions and diversity and gut microbial commu-
nity network and predict the potential function of gut microbes in melon-headed whales.

2. Materials and Methods
2.1. Sample Collection

A rare mass stranding of 12 melon-headed whales happened on 6 July 2021, Tumen
Port, Linhai, Taizhou City, Zhejiang Province, China. In this group of melon-headed
whales, three individuals were found dead, two were released back immediately during
the rescue course, and the remaining seven individuals were temporarily kept for recovery
and released back to the wild the next day. We thus collected seven fecal samples from the
recovering melon-headed whales before their release.

Another melon-headed whale stranding case happened on 25 May 2021, in Houan
Town, Wanning City, Hainan Province, China. The animal was rescued and kept in Fuli
Oceanarium (Lingshui, Hainan Province, China) for recovery. We collected one fecal sample
from this animal on June 10 during its recovery time, before its death on 20 June 2021.

All fecal samples were harvested by veterinarians using anal swabs, with a diameter
of 12 mm, which were inserted 10–15 cm into the rectum. All fecal samples were collected
when animals were lifted out of water, and frozen at −20 ◦C until DNA extraction. Detailed
information of these sampling animals is shown in Table S1.

2.2. DNA Extraction and Sequencing

The DNA of all fecal samples and three extraction blank control samples were ex-
tracted using MoBio PowerSoil extraction kits (Mo Bio Laboratories, Carlsbad, CA, USA)
in accordance with the manufacturer’s instructions. The extracted DNA was quantified
using a Qubit fluorometer (Invitrogen Inc. Manufacturer: Life Technologies Holdings Pte
Ltd., Singapore) and primer pair 515f Modified and 806r Modified were used to amplify
the V4 region of the 16S rRNA gene [20]. The PCR amplification was performed under the
following conditions: denaturation at 95 ◦C for 3 min, followed by 27 cycles at 95 ◦C for
30 s, 55 ◦C for 30 s, and 72 ◦C for 45 s, and a final extension at 72 ◦C for 10 min. PCR ampli-
fication results in triplicate were combined after purification with a TaKaRa purification
kit (TaKaRa, Kusatsu, Japan). PCR products were prepared for library construction using
the TruSeq DNA sample preparation kit (Illumina, San Diego, CA, USA) in accordance
with the manufacturer’s instructions. The libraries were sequenced at MajorBio Co. Ltd.
(Shanghai, China) using the HiSeq platform (Illumina, San Diego, CA, USA) with reads of
250 bp at the paired end [13].
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2.3. Microbial Community Analysis

After sequencing and obtaining the raw data, barcodes were removed as well as
forward and reverse primers (one mismatch each was allowed) to obtain clean data. The
FLASH program version 1.2.8 [21] was used to obtain paired-end of sufficient length with at
least a 30 bp overlap combined into full-length sequences, and the average fragment length
was 253 bp. The high-quality sequences without Ns contained were recruited using the
Btrim program (version 0.2.0), and the sequences of 245 bp to 260 bp were used for the next
analysis [22]. UNOISE3 was applied to generate amplicon sequence variants (ASVs) with
default settings [23]. A representative sequence from each ASV was selected for taxonomic
annotation via comparison with the SILVA 132 database [24], which includes bacterial,
archaeal, and eukaryotic sequences; the Chloroplast and mitochondrial reads were excluded.
To take into count the different sequencing depths, ASVs were randomly resampled to
normalize the reads for each sample. The diversity of the microbial communities from
the fecal samples of different individuals was determined via statistical analysis of the α-
diversity indices, such as the Shannon, Inverse Simpson, Chao1 indices [25], and observed
richness. R language [26] and the Mothur program [27] were used to calculate these
α-diversity indices.

Molecular ecological network analysis (MENA) was used to perform the structure
of microbial community networks [28,29]. Only the ASVs that appeared in more than
four of the eight fecal samples of melon-headed whales were included in the network
analysis. Correlations were calculated using Spearman’s coefficient and a random matrix
theory (RMT)-based approach was employed to delimit the microbial network interactions
between samples. The keystone taxa were allocated according to the within-module
connectivity (Zi) and among-module connectivity (Pi) according to a previously used
method [28]. Nodes (ASVs) can be divided into four categories: (1) peripherals, which
includes the nodes with Zi ≤ 2.5 and Pi ≤ 0.62, indicating nodes interconnected by a few
links within the modules; (2) connectors, which includes the nodes with Zi ≤ 2.5 and
Pi < 0.62, indicating nodes linking to various modules; (3) module hubs, which includes
the nodes with Zi < 2.5 and Pi ≤ 0.62, indicating nodes within the modules are highly
connected; and (4) network hubs, which includes the nodes with Zi < 2.5 and Pi < 0.62,
indicating nodes highly connected among modules. The Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States (PICRUSt2) was used to predict
microbial community function based on the MetaCyc database [30,31]. The raw sequencing
reads of all samples were deposited to the NCBI database (http://www.ncbi.nlm.nih.gov/,
accessed on 29 January 2022) under BioProject accession number: PRJNA801934.

3. Results
3.1. Sequencing Statistics and Microbial Diversity

Originally, a total of 642,263 sequences were obtained from 8 fecal samples of 8 stranded
melon-headed whales (assigned as PE1 to PE8, Table S1) after quality assessment. To obtain
more accurate α-diversity results to analyze microbial diversity, composition, and structure,
we rarefied the sequences of each sample to 34,224. The α-diversities of microbial commu-
nities from the gut of eight melon-headed whales were calculated. The results showed PE8
and PE2 had lower Shannon and Inverse Simpson indices, while PE1 and PE4 had lower
Chao1 indices and observed richness (Figure 1).

The relative abundance of gut microbes was apparent at the phylum, family, and genus
levels, with a similarity of 97% for ASV taxonomy, and provided detailed relative abun-
dance information on gut microbial community composition (Figures 2–4). Furthermore,
we also provided the datasets of ASV table and the information of classification (Table
S2). Firmicutes, Fusobacteriota, and Bacteroidota were the dominant bacterial lineages in
the fecal samples of melon-headed whales, while the majority of the fecal samples from
the PE8 in this study were dominated by Proteobacteria (Gamma), accounting for 82%.
At the family taxonomic level, Fusobacteriaceae, Enterococcaceae, and Bacteroidaceae,
which are affiliated with Fusobacteriales, Lactobacillales, and Bacteroidales, respectively,

http://www.ncbi.nlm.nih.gov/
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were the dominant bacterial lineages in the fecal samples of PE1 to PE7. However, the
respective compositions of different fecal samples were slightly different; for instance,
the fecal sample of PE8 was dominated by Shewanellaceae (Enterobacterales, 72%). Fur-
thermore, at the genus taxonomic level, the gut microbial communities of melon-headed
whales were mainly composed of Cetobacterium, Bacteroides, Clostridium sensu stricto,
and Enterococcus. Nevertheless, the distribution of these dominant bacterial lineages in
different fecal samples is different. For instance, Cetobacterium was dominant in the fecal
samples of PE4, PE5, and PE6; Bacteroides was dominant in the samples of PE1, PE4, and
PE7; and Clostridium sensu stricto was dominant in the samples of PE1, PE6, and PE7.
The fecal samples of PE2 and PE3 were dominated by Enterococcus, which accounted for
68% and 53%, respectively. Only one ASV was annotated with Shewanella, and this ASV
was annotated at the level of species as Shewanella algae. This bacterium was distributed
in all fecal samples, but in the sample of PE8, Shewanella algae was the overwhelmingly
dominant bacterium, accounting for 72% (Figure 4).
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3.2. Co-Occurrence Network and Functional Profile of Gut Microbial Communities

In order to reveal the gut microbial community interactions of melon-headed whales,
the network was constructed through the MENA approach. The nodes and links of this
network were 128 and 676, respectively. The average clustering coefficient (avgCC) was
0.337, and the average path distance (GD) was 2.513. This network formed a total of two
modules (a set of nodes that have strong interactions): module one was mainly composed
of Bacteroides, while module two was mainly composed of Cetobacterium and Enterococcus.
Moreover, the keystone taxa belonged to module hubs, composed of those ASVs with
Zi < 2.5, Pi ≤ 0.62, in the microbial network of melon-headed whales; the keystone genera
were Acinetobacter, Alcaligenes, Corynebacterium, and Flavobacterium (Figure 5).
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To better understand the potential functions of melon-headed whale gut bacteria,
we explored the functional features of microbial communities using the newly updated
PICRUSt2 software. No obvious functional difference was found between individuals.
The main functions involved in the gut microbes of stranded melon-headed whales in-
clude the following: RNA processing and modification; energy production and conver-
sion; cell cycle control, cell division, chromosome partitioning; amino acid transport and
metabolism; nucleotide transport and metabolism; carbohydrate transport and metabolism;
coenzyme transport and metabolism; lipid transport and metabolism; translation, riboso-
mal structure, and biogenesis; transcription; replication, recombination, and repair; cell
wall/membrane/envelope biogenesis; cell motility; post-translational modification, protein
turnover, chaperones; inorganic ion transport and metabolism; secondary metabolites
biosynthesis, transport, and catabolism; signal transduction mechanisms; intracellular
trafficking, secretion, and vesicular transport, and defense mechanisms (Figure 6). The
detailed results of PICRUSt2 were provided in Table S3.
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4. Discussion

Due to the difficulty of sample collection, studies on cetacean gut microbes are
usually from animals in zoos and oceanariums (e.g., [13,14,32]), or stranded cetaceans
(e.g., [16,17,19]). To date, there are very few, if any, reports on the gut microbial commu-
nities of melon-headed whales. In this study, we obtained eight fecal samples from eight
different stranded melon-headed whales. Through 16S rRNA gene sequencing, we re-
vealed that members of Cetobacterium, Bacteroides, Clostridium sensu stricto, and Enterococcus
constituted the vast majority of the gut microorganisms in melon-headed whales. We also
found the distribution of gut microorganisms in different individuals was different; in
spite of this, the functional profiles between individuals were similar. Thus, we propose
that a functional-driven strategy may play an important role in the composition of the
gut microbial community in melon-headed whales, rather than a species-driven strategy.
However, further studies are warranted.

We also want to mention that PE8 in our study was not healthy, and was treated
with antibiotics, i.e., penicillins and cephalosporin, for two weeks under human care
before sample collection. Antibiotic treatment had a potential to affect the composition
of gut microbial communities in PE8. A necropsy of PE8 showed it suffered from lung
lesion, which might be the reason of its death. When we document the composition of gut
microbial communities in melon-headed whales in our study, we always carefully consider
the situation of PE8 first, and then make a cautious conclusion.

The genera Cetobacterium, from the phylum Fusobacteria, can be found in the gut of
many cetacean species, such as short-finned pilot whales [16], toothed whales [12], and
southern right whales Eubalaena australis [33]. Polysaccharides comprise the most abundant
type of biopolymers, and therefore, the most abundant source of biological food. Carbo-
hydrate fermentation by Bacteroides and other intestinal bacteria produces large amounts
of volatile fatty acids, which are absorbed through the large intestine and utilized by the
host as an energy source, providing a large portion of the host’s daily energy needs [34].
Although most Bacteroides are symbiotic in the intestine, several species can also cause
infections, including Bacteroides fragilis, Bacteroides distasonis, Bacteroides ovatus, Bacteroides
thetaiotaomicron, Bacteroides vulgatus, and Bacteroides uniformis, with significant morbidity
and mortality [35]. The genera Clostridium sensu stricto are other common microorganisms
in the gut of cetaceans, for example, beluga whales Delphinapterus leucas, Pacific white-sided
dolphins Lagenorhynchus obliquidens, common bottlenose dolphins Tursiops truncatus, and
short-finned pilot whales [13,16]. Clostridium is one of the most common genera of cetacean
gut microorganisms, while some studies suggest that members of Clostridium have low
virulence and can pose a potential threat to unhealthy cetaceans [33,36]. The members of
Enterococcus can also be found in the gut of some cetaceans, such as pygmy sperm whales
Kogia breviceps, Pacific white-sided dolphins, and common bottlenose dolphins [13,16].
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We detected an overwhelming dominance of Shewanella algae in PE8. However, the
group of Shewanella algae was not found to be particularly common in the gut of cetaceans
in this or in previous studies; we detected this bacterial linage in the gut of short-finned
pilot whales[16] and melon-headed whales. Furthermore, the ASVs were all annotated as
Shewanella algae. Shewanella algae is ubiquitous in the marine environments and has been
identified as conditionally pathogenic bacteria that can cause serious infections, primarily
associated with exposure to seawater and ingestion of raw seafood, and this group of
bacteria can exhibited b-hemolytic activity, strong biofilm-adherence capabilities, and
multiple antibiotic resistances [37–42]. We think that Shewanella algae should not be a
dominant group (though it can be present) in melon-headed whales or short-finned pilot
whales [16]; indeed, the overwhelming dominance of Shewanella algae in the gut of PE8
might have been a potential trigger of its death (Figure 3). A necropsy of PE8 showed that
it likely died of lung lesion.

Functional profiles are characteristics that influence the adaptability of microbial
communities under specific environmental conditions. However, because of the contin-
uous exchange and transfer of horizontal genes between microorganisms and adaptive
evolution, functional characteristics of microbial communities can be delinked from their
taxonomic relevance [43]. In the present study, although there were differences in the
microbial community structures between different samples, their predicted functional
profiles were similar. The recently developed approach of molecular ecological networks
can reveal the interrelations within a microbial community. We found two modules in
the gut microbial community network of the eight stranded melon-headed whales. The
microbial communities of Module 1 were dominated by Bacteroides, and the keystone genus
was Corynebacterium. Cetobacterium and Enterococcus were the dominant bacterial lineages
in Module 2, and Alcaligenes, Acinetobacter, and Flavobacterium were the keystone genera.
The genus Corynebacterium represents a group of Gram-positive, rod-shaped, and typically
club-shaped bacterial cells [44]. Some species of Corynebacterium are well-known pathogens
of mammals and may occasionally cause infections, while some other species are normal
microorganisms of microbial communities where it belongs [44]. In this study, ASV 56 was
the keystone genus of Module 1 and could be annotated to the genus level. The keystone
ASVs of Module 2, Alcaligenes and Acinetobacter, could also be annotated to the genus
level, while another keystone ASV of Module 2, annotated as Flavobacterium jumunjinense,
was isolated from lagoon water in Korea [45]. The genus Alcaligenes consists of motile
Gram-negative rod-shaped bacteria that are chemoorganotrophic microbes. The members
of Alcaligenes are common in water, soil, vertebrate intestinal tracts, and in clinical samples
as a result of opportunistic infection [46]. Some Alcaligenes strains are able to be isolated
from some contaminated environmental samples; therefore, they may show potential in
the development of biodegradation processes or as biosensors. Moreover, some species
of Alcaligenes are used in the food and healthcare industries, while some enzymes and
polysaccharides produced by Alcaligenes have been used in the cosmetic industry and
as food additives, showing potential for the treatment of certain immune diseases [46].
Acinetobacter spp. are Gram-negative coccobacilli; they are ubiquitous in the environment
and are considered to be nonpathogenic to healthy individuals [47]. Although we detected
both groups of bacteria (Alcaligenes and Acinetobacter) in the gut of melon-headed whales,
their relative abundance was very low, and their roles are still unclear.

5. Conclusions

It is important to reveal the gut microbial communities of specific cetacean species,
especially some poorly understood ones. In our study, the composition, functional profile,
and interactions of gut microbial communities of eight stranded melon-headed whales were
systematically studied. We conclude that the microbial community composition mainly
consists of Cetobacterium, Bacteroides, Clostridium sensu stricto, and Enterococcus. Two mod-
ules constitute the network of the gut microbes of melon-headed whales; Bacteroides was
the main microbial taxon in Module 1, while Module 2 mainly comprised Cetobacterium
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and Enterococcus. Moreover, based on network analysis, the keystone taxa (module hubs)
were assigned to Corynebacterium, Alcaligenes, Acinetobacter, and Flavobacterium. Our study
gives a preliminary inside look into the composition of the gut microbiota of stranded
melon-headed whales. Furthermore, we also want to mention that we have very limited
microbial information in melon-headed whales, as only one group of whales was studied.
This may strongly affect the informational value of the obtained data. All whales may have
had an exchange of the microbiota and may have been affected by the same environmental
conditions. Other studies of whale feces microbiota studied samples collected from whales
at different locations and different time points should be further conducted. In addition,
metagenomics, transcriptomics, and proteomics should be used to better understand the
functional information of the gut microbes in melon-headed whales.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10030572/s1, Table S1: Sampling information of
the eight melon-headed whales; Table S2: ASV datasets and the classification information; Table S3:
The detailed functional results predicted by PICRUSt2.
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