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ABSTRACT

Motivation: Several cancer types consist of multiple genetically and

phenotypically distinct subpopulations. The underlying mechanism for

this intra-tumoral heterogeneity can be explained by the clonal evolu-

tion model, whereby growth advantageous mutations cause the

expansion of cancer cell subclones. The recurrent phenotype of

many cancers may be a consequence of these coexisting subpopula-

tions responding unequally to therapies. Methods to computationally

infer tumor evolution and subpopulation diversity are emerging and

they hold the promise to improve the understanding of genetic and

molecular determinants of recurrence.

Results: To address cellular subpopulation dynamics within human

tumors, we developed a bioinformatic method, EXPANDS. It estimates

the proportion of cells harboring specific mutations in a tumor. By

modeling cellular frequencies as probability distributions, EXPANDS

predicts mutations that accumulate in a cell before its clonal expansion.

We assessed the performance of EXPANDS on one whole genome

sequenced breast cancer and performed SP analyses on 118 glioblast-

oma multiforme samples obtained from TCGA. Our results inform about

the extent of subclonal diversity in primary glioblastoma, subpopulation

dynamics during recurrence and provide a set of candidate genes

mutated in the most well-adapted subpopulations. In summary,

EXPANDS predicts tumor purity and subclonal composition from

sequencing data.

Availability and implementation: EXPANDS is available for down-

load at http://code.google.com/p/expands (matlab version - used in

this manuscript) and http://cran.r-project.org/web/packages/expands

(R version).

Contact: claudia.petritsch@ucsf.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The clonal evolution model initially proposed by Peter C. Nowell

posits that a single cell of origin or ‘clone’ that underwent

transformation from a normal to a cancerous state undergoes

clonal expansion and through successive acquisition of muta-

tions generates genetically diverse subclones (Nowell, 1976).

Subsequent pressure from the cancer microenvironment selects

the fittest subclone(s), driving their expansion into subpopula-

tions (SPs). As a consequence, the resulting neoplasm is com-

posed of multiple genetically diverse SPs that are best adapted to

their microenvironment.
Cancer therapies are hypothesized to eliminate some but not

all SPs within a tumor, resulting in altered SP composition of

tumors that recur post-treatment (Aktipis et al., 2011; Merlo

and Maley, 2010). A better understanding of the SP compos-

ition and dynamics of individual tumors is expected to have

significant clinical implications especially for highly recurrent

and therapy resistant tumors. Glioblastoma (GBM), a grade

IV astrocytoma, is the most common CNS tumor in adults.

Despite aggressive standard therapy, consisting of surgery, ra-

diation and adjuvant chemotherapy with the DNA alkylating

drug temozolomide (Stupp et al., 2009), GBM invariably recur

within months following initial diagnosis (Konishi et al., 2012)

and typically become resistant to the first line therapy they have

been exposed (Fan et al., 2010; Lomonaco et al., 2009). An SP

with stem-like properties, the cancer stem cells, is one potential

culprit for recurrence and therapy resistance in GBM (Chen

et al., 2012; Schonberg et al., 2013). GBM exhibit substantial

subclonal diversity as evidenced by previous comparative gen-

omic hybridization (CGH) analyses (Harada et al., 1998), fluor-

escence in situ hybridization studies (Little et al., 2012; Snuderl

et al., 2011; Szerlip et al., 2012) and areal sampling of surgical

tissue followed by molecular analyses (Sottoriva et al., 2013).

Moreover, heterogeneity within GBM is maintained by cross-

talk between genetically distinct tumor cell SPs (Inda et al.,

2010). However, genome-wide analyses of intra-tumoral*To whom correspondence should be addressed.
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heterogeneity and the clonal cellular SP dynamics within GBM
have yet to be performed.
Clonal architecture analyses as previously performed for acute

lymphoblastic leukemia single cells (Anderson et al., 2011; Navin
et al., 2011) are difficult to perform for solid tumors that are a
tight mix of distinct SPs and various fractions of non-neoplastic

cells. Knowing the purity of a tumor sample is important to
determine sample quality and to adjust parameters during
copy-number estimation and detection of somatic mutations.

The advances in next-generation sequencing (NGS) technologies
provide emerging tools for computational methods to overcome
those hurdles. ABSOLUTE for example is an analytic method

that predicts tumor purity and the distribution of mutations
within the tumor from exome sequencing data (Carter et al.,
2012). The inferences made by ABSOLUTE do not include the

number of tumor SPs and the size of each SP in the tumor bulk.
These are, however, desirable parameters when quantifying gen-
etic heterogeneity, an emerging biomarker for clinical outcome

(Merlo et al., 2010, Mroz et al., 2013).
Shah et al. have developed another bioinformatic approach to

predict the number and distribution of subclones from deep-

sequenced selected mutated genes and to infer the clonal evolu-
tion of triple negative breast cancer (Shah et al., 2012). By this
method, two SPs with the same mutation in the region that was

deep sequenced would be indistinguishable even if greatly diver-
gent in other areas of the genome. This approach further relies
on prior knowledge or hypotheses regarding genes of interest and

does not allow for unbiased exploration of the cancer genome.
Nik-Zainal et al. modeled the observed patterns of clonal and

subclonal mutations with a hierarchical Bayesian Dirichlet

process (Nik-Zainal et al., 2012). This approach was designed
specifically for the mutations detected in the whole genome
of a hypermutated breast cancer, sequenced at high coverage

(188-fold). The authors inferred a plethora of information
about the evolution and subclonal structure of this cancer
genome by using various ways to look at the data as described

in Nik-Zainal et al. (2012), yet their combined approaches are
not available as one automated method.
The resolution of the aforementioned approaches increases

with depth of coverage. We propose that the accuracy in the

identification of SPs is dependent not only on depth of coverage
but also on breadth of coverage, i.e. the fraction of nucleotides in

the genome sampled by the assay. Here we intend to complement
existing methods by pairing an unbiased genome-wide sequen-
cing approach with a robust analytic algorithm.
We present Expanding Ploidy and Allele-frequency on Nested

Subpopulations (EXPANDS), a method that characterizes coex-
isting SPs in a tumor using copy number and allele frequencies
derived from exome- or whole genome sequencing input data.

The model amplifies the statistical power to detect coexisting
genotypes, by fully exploiting run-specific tradeoffs between
depth of coverage and breadth of coverage. Our results indicate

that EXPANDS is superior to ABSOLUTE in predicting tumor
purity of highly heterogeneous tumor samples. In addition to
tumor purity, EXPANDS predicts the number of clonal expan-

sions, the size of the resulting SPs in the tumor bulk and the
mutations specific to each SP. This information can be useful
to identify candidate gene regulators of tumor growth and

recurrence.

The article outline is as follows: in Section 2.1–2.2, we formu-
late the problem and describe the EXPANDS model. Section 2.3

describes the performance of EXPANDS on a simulated dataset,

data obtained from one previously published whole genome

sequenced breast cancer case and 118 TCGA GBM exome-

sequenced samples. Section 3 shows how our approach results

inform about SP composition in primary GBM and SP changes
on recurrence and what genes are mutated in the most well-

adapted SPs. Finally, in Section 4, we discuss limitations to

our method and propose future directions for the approach of

tumor mixture separation.

2 SYSTEM AND METHODS

2.1 Problem formulation

Given a set of somatic point mutations, SNVtumor
somatic, detected in a

tumor sample and the copy number of the genomic segments in

which the mutations are located, we aim to identify the number

N of clonal expansions within the tumor, the relative size fi of the

resulting SPs in the tumor bulk and the mutations habitant in
each SPi, i¼ {1. . .N}. We assume that both, technical artifacts

(sequencing errors, mapping errors) and germline polymorph-

isms, have been adequately filtered. First, we identify the

number and size of SPs. Finally, we assign each

snv 2 SNVtumor
somatic to an SP, SPi. The set of somatic mutations

can be extended to contain loss of heterozygosity (LOH) sites
for which the non-reference allele is overrepresented in the cancer

cell relative to a normal cell. For tumors with a low number of

somatic point mutations, the inclusion of LOH sites can provide

a sufficient number of somatic events for the subsequent

procedure.

2.2 EXPANDS model

Tumor cells acquire novel mutations that distinguish them from

other cells within the same tumor. With respect to the whole

genome, there is no limit to how diverse a tumor cell population

can become. However, with respect to a specific locus l, only a

limited number of possible states exist, each characterized by

PB
l —the ploidy of the non-reference allele (B allele) and Pl—the

total ploidy of locus l. Given the stochastic nature of somatic

events and the size of the human genome, it is unlikely that two

independent driver-events of the same type will target the same

genomic position in two different cells. Therefore, we assume

that no more than two distinct cell types exist with respect to a

specific locus l: cells in which the locus is in its mutated state

and cells in which the locus is in its normal state, further
denoted mutated cells and normal cells, respectively.

Furthermore, we assume that multiple passenger mutations ac-

cumulate in a cell before a driver mutation causes a clonal

expansion and thus, that each clonal expansion is marked by

multiple mutations. These two assumptions are translated into

the EXPANDS model in four main steps: cell frequency esti-
mation, clustering, filtering and assignment of mutations to

clusters (Fig. 1).

2.2.1 Cell frequency estimation We consider two types of mo-
lecular mechanisms that convert a locus into its mutated state:

copy number variation (CNV) inducing events and single
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nucleotide variation (SNV) inducing events. We assume that a

normal state is defined by a total ploidy of two and B allele

ploidy below two, whereas a mutated state has an increased frac-

tion of B alleles. The conditions defining these states for each

locus l are formulated below:

PMB
l ,PN

B
l ,PMl,PNl 2 N

PMB
l � 1;PNB

l � 1;PNl ¼ 2

PMB
l

PMl
4

PNB
l

PNl
; 1 � PMl � cmax; PMB

l � PMl,

ð1Þ

PMB
l and PNB

l denote the ploidy of the B allele in each cell type:

mutated cells and normal cells, respectively. The value of PNB
l is

one if lhas a germline variant, zero otherwise.PMl andPNl are the

total ploidyofmutated cells andnormal cells.PMl is required tobe

between one and cmax, that is, we exclude solutions for which the

maximum number of amplicons per cell exceeds the user-defined

constant cmax. The choice of cmax should dependon genomic depth

of coverage and on the fraction of the genome sequenced: the

higher the quality and abundance of data, the higher cmax.
For each locus l, the equations below contrast the measured

total ploidy (2) and B allele ploidy (3) of all cells in the sample

to the sum of cell type-specific ploidies:

cnvðflÞ : PMl � flþPNl �ð1� flÞ ¼ CNlþ ecn ð2Þ

snvðflÞ :PM
B
l � fl þ PNB

l � ð1� flÞ¼ðAF
B
l þ eafÞ � ðCNl þ ecnÞ, ð3Þ

Where CNl and AFB
l denote the copy number and B allele

frequency measured for l and ecn, eaf 2 Nð0, �2Þ is normally

distributed noise that reflects the uncertainties in copy number

and allele frequency measurements, respectively. We calculate

the fraction fl 2 �0, 1� of mutated cells with respect to locus l

from the aforementioned equations for all ploidy combinations

(PMB
l , PMl) that satisfy 1. For each solution, we calculate an

error-term " as the deviation of the measured from the expected

allele frequency and copy number:

"ðflÞ ¼ K � cnvðflÞ
�� ��þ snvðflÞ

�� ��þ ecnj j þ eaf
�� �� ð4Þ

where K :¼ ðPMl� jjCNl jjÞ
2
þ 1 is a penalty factor in favor of

ploidies that are close to the measured copy number. The prob-

ability PlðfÞ that the mutation at locus l is present in a fraction f

of cells is obtained by fitting a Gaussian mixture model on "lðfÞ
(Fig. 1A). As the equation system given by (2) and (3) is under-

determined, we obtain multiple solutions for the same locus

(Supplementary Fig. S1). For example, in a copy neutral

region, the allele frequency of a heterozygous mutation present

in 100% of the cells should be the same as that of a homozygous

mutation present in only 50% of the cells. The ambiguity of the

solutions depends on the measured allele frequency: low or high

allele frequencies have a constricting effect on
PMB

l

PMl
, increasing the

kurtosis of PlðfÞ. In contrast, moderate allele frequencies result in

more uniformly distributed solutions.

2.2.2 Clustering Next we find overrepresented cell frequencies
using a two-step clustering procedure. Based on the assumption

that passenger mutations occur within a cell before the driver

Fig. 1. Graphical summary of the four major steps (A–D) of EXPANDS. Given a set of SNVs, EXPANDS predicts the number of clonal expansions in a

tumor, the size of the resulting SPs in the tumor bulk and which SNVs accumulate in a cell before its clonal expansion. The copy number and allele

frequency assigned to a SNV are measures of aggregate signals from many cells. (A) Cell frequency estimation. EXPANDS combines these two

measurements to estimate what fraction of cells harbor the SNV. In this example, the observed AF (0.3) and copy number (2.1) can be explained

either by a homozygous mutation, present in 30% of the cells or a heterozygous mutation, present in 60% of the cells. The cell-frequency probability P(f)

is computed for each mutated locus separately. (B) Clustering. All SNVs are clustered based on their cell-frequency probability distributions. Each cluster

is extended by members with similar distributions in an interval around the cluster-maxima. (C) Filtering. Clusters are pruned based on statistics within

and outside the core region (interval around the cluster-maxima: highlighted in red). The blue cluster is pruned as peaks within the core region are low

and do not significantly exceed peaks observed outside the core region. In contrast, the green cluster is kept as it has high and abundant peaks within and

only a few peaks outside the core region. The number of remaining clusters denotes the number of predicted clonal expansions. Cell frequencies at

cluster-maxima denote the predicted size of an SP in the tumor bulk. (D) Assignment of SNVs to clusters. Each SNV is assigned to one of the predicted

clonal expansions, based on the cell frequency estimation computed in (A)
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event that initiates the expansion, each clonal expansion should
be marked by multiple mutations.

Thus SNVs and CNVs that took place in a cell before a clonal

expansion should be present in a similar fraction of cells and
leave a similar trace in the subsequent clonal expansion. The

aim is to find common peaks in the distribution of PlðfÞ for

multiple mutated loci l. In the first step, mutations with similar

PlðfÞ are grouped together by hierarchical cluster analysis of the

probability distributions PlðfÞ using the Kullback–Leibler diver-

gence as a distance measure (Fig. 1B). The joint probability dis-

tribution of cell frequencies is computed for each cluster C as

follows:

PCðfÞ ¼
1

jCj
�
X

l2C
PlðfÞ

The cell frequency f C :¼ argmaxf PCðfÞ at each cluster-maxima

denotes the size of the SP that harbors the clustered mutations.
In the second step, each cluster C is extended by members with

similar distributions in an interval around the cluster-maxima

IC :¼ ½f C � 0:05, f C þ 0:05� (highlighted in red in Fig. 1C).

2.2.3 Filtering Next, we keep only those clusters for which

maxf2IC PCð f Þ � maxf =2I C PCð f Þ is rejected at a user-defined P-

value (underlying statistical test: paired t-test). A rejection indi-

cates that mutations clustered in C are all present in the same

fraction of cells f C (Fig. 1C). The number of remaining clusters

denotes the number of predicted clonal expansions. Tumor

purity is inferred as the size of the largest SP.

2.2.4 Assignment of SNVs to clusters Finally, we assign

each locus l to C :¼ argminC j argmaxfPlð f Þ � f Cj (Fig. 1D).

The mutated loci assigned to each cluster represent the genetic

profile of each predicted SP.

2.3 Validation and performance

We tested the performance of EXPANDS on a simulated and

two real datasets: 118 GBM exome sequencing samples from

TCGA (Supplementary Table S2) and one whole genome

sequenced breast cancer. Somatic point mutations and LOH

for each GBM sample were obtained by applying Mutect

(Cibulskis et al., 2013) on the tumor-derived BAM file and
the patient-matched normal BAM file. Copy-number segments

were calculated using an approach similar to ExomeCNV

(Sathirapongsasuti et al., 2011). SNVs outlying autosomes or

that cannot be explained by an SP present in 10% or more of

the sample (i.e. AF�CN50.1) were excluded.

2.3.1 Simulation To investigate how the abundance of muta-

tions in a sample and the noise in their measurement affect the
accuracy of SP predictions, a simulated dataset was generated,

consisting of n¼ 350 samples. In each sample, we simulate

N 2 Nð4, 3Þ, 2 � N � 14 clonal expansions, each marked by a

variable number t of mutations, t 2 Nðxt, 0:3 � xtÞ. Each muta-

tion was simulated as a triplet ðfi , AF
B
l þ eaf , CNlþ ecnÞ, where

i ¼ f1::Ng, fi is the size of SPi and eaf , ecn 2 Nð0, xeÞ are

normally distributed noise in allele frequency measurements

and in the estimation of local copy number, respectively. We

choose xe 2 ½0:02, 0:1� to reflect distinct ranges of genomic

depth of coverage (as described in Supplementary Information:
the effect of genomic depth of coverage on allele frequency

noise). Allele frequency and copy number were calculated

according to Equations 1–3 from fi and PMB
l , PN

B
l , PMl, simu-

lated as Poisson distributions (see Supplementary Table S1).

Mutations that are fixed in the tumor cell population are present

in the same fraction of cells, regardless whether they emerged

during one or during multiple clonal expansions (see Supplemen-

tary Fig. S2). To account for the fact that we cannot see past

the last fixation event, we further require that the first clonal

expansion harbors the majority of mutations among all

simulated expansions and that it gives rise to an SP present in

450% of the tumor (i.e. simulated samples have450% tumor

purity).
We predict the SP sizes xi from the simulated allele frequencies

and copy numbers using EXPANDS and obtain a P-value for

each predicted SP, reflecting the confidence with which the SP

has been detected. We vary the upper threshold for the P-value

below which we accept an SP and denote predictions for which

the deviation between true and predicted SP size: d ¼ jxi � fij

is below 0.03 as true predictions. Figure 2A and B shows the
results of the validation experiment for varying xt and xe. As

expected, we observe an increase in the precision of EXPANDS

with increasing xt and decreasing xe. The numbers of simulated

and predicted SPs are mostly consistent (Fig. 2C). However,

EXPANDS underestimates the true number of distinct SPs

in samples with many coexisting SPs. Because SPs are detected

by their relative size in the tumor bulk, we expect more false-

negative (FN) predictions in samples with many SPs, as SPs

are more likely to have similar sizes. Furthermore, we observe

an enrichment of SP size 50% among FNs. This effect is a direct

consequence of the decreased kurtosis of cell frequency probabil-

ity distributions derived from moderate allele frequencies. Both

sources for FNs are illustrated in Supplementary Figure S3.
We conclude that EXPANDS predicts the number and size

of SPs with 50–80% accuracy given enough genomic depth of

coverage and fraction of the genome sequenced. On data of

lower depth and breadth of coverage, the number of SPs pre-
dicted by EXPANDS should not be considered absolute values,

but can provide a qualitative comparison among samples.

2.3.2 Dependence of EXPANDS prediction sensitivity on mutation
count The results of the simulation experiment described pre-
viously indicate that the prediction accuracy of EXPANDS

increases with the number of mutations that mark an SP

(Fig. 2A), which in turn depends on the genomic breadth of

coverage. We estimated the prediction accuracy of EXPANDS

on mutations detected in a hypermutated ER-positive breast
cancer genome—PD4120a (Nik-Zainal et al., 2012). The whole

genome of this breast cancer has been sequenced at 188-fold

coverage, providing high-quality data to investigate how repre-

sentative different areas of the genome are of coexisting SPs.

We applied EXPANDS to 7175 mutations scattered across

the exome and additional surrounding regions (total 300MB).

The predicted SPs were compared with SPs inferred by Nik-

Zainal et al. from mutations found in the whole genome.

The sizes of the SPs inferred by Nik-Zainal et al. were multiplied

by tumor purity (0.7), to make them comparable with our

predictions.
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We found considerable overlap between our predictions and

the observations by Nik-Zainal et al. For example, EXPANDS

inferred the same pattern of mutations and copy number alter-

ation in the two dominating SPs that were detected in the foun-

der clone inferred by Nik–Zainal. The details of the overlap are

described in Supplementary Figure S4. In addition to the four

mutation clusters identified by Nik-Zainal et al., EXPANDS

detected yet another two SPs present in 27 and 19% of the

sample, respectively, both marked by increasing genomic

instability. These observations confirm substantial subclonal

copy number variations that occur rather late in tumor develop-

ment, as reported by Nik-Zainal et al. Importantly, the analysis

shows that �10% of the mutations detected in the hypermutated

breast cancer genome are sufficient to predict the SP composition

of this tumor at a resolution comparable with that obtained from

the whole genome.
To estimate how breadth of coverage affects the prediction

sensitivity of EXPANDS, we approximate the dependence of

prediction sensitivity on mutation abundance. We applied

EXPANDS on mutations found in 123 non-overlapping genomic

regions of variable length and compared the predicted SPs

with the consensus SPs described previously. We calculated the

deviation of the predicted SP size from the size of the consensus

SP (see Fig. 3). A deviation of 100% marked the absence of

the corresponding consensus SP from the predictions. As sug-

gested by the simulated dataset, SPs present in �50% of the

sample are more difficult to detect and require a higher

number of marker mutations. The 19% SP was marked by a

lower fraction of mutations such that a higher fraction of the gen-

ome was required to observe enough mutations that are specific

to this SP. In contrast, SP-specific SNVs for the 11% SP were

overrepresented among all SNVs due to its tetraploid genome

(Supplementary Fig. S4). The high fraction of the genome

mutated in this SP allowed for its detection even at low mutation

count.
Our results indicate that mutations found in a region twice as

large as the cancer exome are sufficient to identify at least 50% of

the SPs with 90% probability. We conclude that EXPANDS can

identify genetically distinct SPs that coexist in a tumor sample

based on only a fraction of the mutations present in that sample.

However, mutation rate and size distribution of SPs in the tumor

impact the sensitivity of the method. By modeling cellular muta-

tion frequencies as probability distributions, EXPANDS post-

pones having to decide on fixed cellular mutation frequencies

and can thereby resolve the clonal composition of this complex

genome that harbors many copy number variations.

2.3.3 Robustness and specificity of subpopulation predictions We
tested the robustness of SP size predictions among independent

Fig. 2. EXPANDS—validation experiment on simulated dataset. SP prediction accuracy is shown for variable simulation parameters. A total of 1621

clonal expansions were simulated among 350 tumors. (A and B) Receiver Operating Curve (ROC) of SP size prediction accuracy. (A) Each clonal

expansion was represented by varying number of mutations t 2 Nðxt, 0:3 � xtÞ at a constant noise rate xe¼ 0.05. (B) A variable noise term e 2 Nð0,xeÞ

was added to the copy number and allele frequency of simulated mutations at a constant number of mutations per clonal expansion xt¼ 60.

(C) Deviation between simulated and predicted number of SPs is shown for various numbers of simulated SPs for all 350 tumors

Fig. 3. EXPANDS prediction accuracy depends on mutation abundance.

Six consensus SPs were identified based on the allele frequency and copy

number of 7175 mutations detected within a hypermutated ER-positive

breast cancer genome (x-axis). The size of the consensus SPs was com-

pared with the size of SPs predicted based on mutations found in non-

overlapping regions of variable length. Mean deviation of predicted SP

size from each consensus SP size (y-axis) decreases with increasing

number of SNVs
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sets of non-overlapping SNVs detected in the same exome
sample. As this approach required splitting the SNVs detected

in one sample, we required that at least 290 SNVs (somatic mu-
tations and LOH) have been detected in total in that sample.

This criterion applied to 53 of the 118 GBM exome sequencing

samples from TCGA (Supplementary Table S2). For each
sample k, we split the detected somatic SNVs and LOH, in

two non-overlapping sets of similar size (SOM1þLOH1 and
SOM2þLOH2). For each SNV set (number of SNVs in each

set: 128–3897), we predict the SPs for sample k:

SPk
1  SOM1þ LOH1; SPk

2  SOM2þ LOH2

We choose a P-value of 0.005 to accept a SP. No SPs could be

detected in nine cases at this P-value. We then compare the con-
sistency between predictions within the same sample SPk

1 \ SP
k
2

to that between predictions of pairwise distinct samples:

SPi
n \ SP

j
m, where i 6¼ j;m, n 2 f1, 2g. To exclude run-specific

effects as the cause of robust predictions, we required that

sample i and j were processed on the same plate and that a
similar number of SNVs (max. deviation: 50 SNVs) were

detected in each member of the sample pair. Two SPs were con-

sidered overlapping if their size was50.03 apart. The fraction of
overlapping SPs among the matching pairs (mean¼ 0.59) was

significantly increased (t-test: P¼ 5.3E-12) compared with the
random pairs (mean¼ 0.23), indicating that two mutually exclu-

sive sets of SNVs from the same sample reveal similar SPs

(Supplementary Fig. S5).
Here we used the predicted SP size to validate the robustness of

SP predictions. The size of a SP correlates almost exactly with its

SNV content as shown in Supplementary Figure S6, and can

therefore be used as a measure of SP identity. We conclude that
EXPANDS can identify tumor-specific clonal expansions and the

size of the resulting SPs in the tumor bulk in a robust manner.

2.3.4 Tumor purity predictions Next we compared tumor purity
predictions by EXPANDS with those performed by

ABSOLUTE (Carter et al., 2012) and to histological purity

estimates.
We applied EXPANDS to allele frequency and copy number

measurements obtained from exome sequences. We assumed that
the largest SP predicted by EXPANDS is a product of the first

or multiple early clonal expansion(s). Therefore, we expected
the size of the largest SP to predict the percentage of tumor

cells in the sample, i.e. tumor purity. In addition, we predicted

tumor purity using ABSOLUTE from copy number measure-
ments obtained from SNP6 array data. Both approaches were

applied to identical areal samples of 66 GBM, which are a subset
of the samples introduced in Section 2.3.

We found that tumor purities predicted by ABSOLUTE and
EXPANDS were largely consistent (Fig. 4), with a median devi-

ation of 0.11. One possible explanation for the deviation between

the predictions by the two approaches is that high numbers
of subclonal SNVs and CNVs interfere with purity estimations.

It is noteworthy that ABSOLUTE detects subclonal mutations
by allowing for deviations in copy number from the discrete

levels. However, this strategy supports only a moderate fraction

of subclonal events (Carter et al., 2012). To determine whether
high subclonality impedes tumor purity predictions by

ABSOLUTE, we quantified tumor heterogeneity. To do this,

we took the number and size of SP predictions made by

EXPANDS and computed the Shannon index for each sample.

The Shannon index is a common measure of species diversity in

ecology and has recently been adopted to quantify diversity in

tumor samples (Merlo et al., 2010).

For samples with a low to moderate Shannon index (lower

0.75 quantile), EXPANDS and ABSOLUTE performed simi-

larly with respect to histology purity predictions. Notably,

EXPANDS tumor purity predictions were closer to histological

purity estimates than ABSOLUTE in samples with high intra-

tumoral heterogeneity (upper 0.25 quantile) (Fig. 4). Thus, we

conclude that ABSOLUTE underestimates purity for tumors

with high subclonality and that EXPANDS is the preferred

approach for tumor purity predictions in highly heterogeneous

samples.

3 RESULTS

3.1 Predicting GBM subpopulation dynamics

EXPANDS complements tumor purity estimations with predic-

tions of the size and clonal composition of SPs and the identifi-

cation of mutations that mark these SPs within a single tumor.

To predict the SP composition of GBM at diagnosis, we

applied EXPANDS to somatic mutation and LOH detected in

the tumors of 108 GBM patients available at TCGA. Our results

indicate that each GBM at the time of surgery consists of

between 1 and 16 SPs (median¼ 7). Not only did the number

of SPs differ, but also the genetic profiles of individual SPs were

Fig. 4. Comparison of tumor purity prediction approaches. The fraction

of tumor cells in each of 66 GBM samples were predicted by EXPANDS

(ExP) and ABSOLUTE (ABS). The deviation between predicted tumor

purity and histological purity estimates was compared between samples

of low and high subclonality. Note that ABSOLUTE and EXPANDS

performed similarly on samples of low to moderate subclonality.

EXPANDS provided estimates of tumor purity that were closer to histo-

logical purity estimates in samples of high subclonality than ABSOLUTE

(t-test: P¼ 9.3E-4)
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highly diverse among patients. The predicted size of the SPs

ranged between 10 and 100% of the total cells in the sample,

with a median of 42 SNVs per SP (Supplementary Table S2). The

data show feasibility that EXPANDS can be applied to a sizeable

patient group to predict the clonal evolution individually for

each tumor patient.
For 10 of the 108 patients, exome data from patient-matched

primary and recurrent GBM were available (Supplementary

Fig. S7) and were analyzed for SP changes on recurrence, in

the context of clinical information.
In patient TCGA-14-1034, 8 SPs were detected in the primary

tumor and 12 SPs in the recurrent tumor. Strikingly, dominant

SPs detected in the recurrent tumor shared no significant pro-

portion of SNVs with SPs from the primary tumor (Fig. 5A).

In contrast, in patient TCGA-06-0125, eight SPs were detected

in the primary tumor and four in the recurrent tumor. Two of

these SPs shared a significant fraction of SNVs between primary

and recurrent tumor (Fig. 5B) suggesting that these recurrent SPs

descend from primary SPs that have presumably survived treat-

ment. Genes mutated in the treatment-surviving SPs include

those with brain-specific tissue expression: NPBWR2, NEFH,

GLRA3, CHAT and NDRG4 and those with a function

in cell growth, differentiation, mitotic cycle and oncogenic trans-

formation, such as PTPN11—a member of the protein tyrosine

phosphatase family (Pruitt et al., 2012).

In contrast, the other two SPs in this recurrent tumor could

not be assigned to any SP in the primary GBM. These new SPs

were marked by 30 non-silent mutations, including missense mu-

tations in MAP2K3 (a member of the MAP kinase kinase

family) and PLXNC1 (a member of the plexin family). These

two cases thus showed different SP composition dynamics with

recurrence. Analyses of eight additional cases further confirmed

Fig. 5. Genetic changes in primary and recurrent GBM SPs. The predicted clonal composition of matched primary and recurrent GBM is shown for two

patients: (A) TCGA-14-1034 and (B) TCGA-06-0125. Genetically unique clones emerge as a consequence of accumulating beneficial mutations and

expand into SPs (represented by different colors). The lower x-axis shows the relative timing of clonal expansions by indicating the fraction of mutations

that have accumulated in the entire tumor before the onset of each expansion. The upper box indicates timing of clinical events relative to the time from

tumor initiation to first surgery (set to 237 days—the mean time between the first and the second surgery among the 10 matched patients). The y-axis

indicates the percent (%) representation of each SP in the sequenced tumor bulk at the time of the first and second surgery. EXPANDS infers the

presence of multiple SPs that coexist in the primary tumor at first surgery. After the first surgery, (sometimes followed by radiation, chemotherapy), the

tumor recurs and EXPANDS infers the evolution of the recurrent tumor SPs. Each SP in the recurrent tumor is colored based on its predicted ancestor in

the primary tumor. New SPs that were absent or undetectable in the primary GBM and emerged only on recurrence remain white. Note that the SP

composition and dynamics in the two patients are different. Both patients start out with eight SPs in the primary tumors. The recurrent tumor of TCGA-

14-1034 harbors 12 coexisting SPs that share little similarity to the primary SPs. In contrast the recurrent tumor of TCGA-06-0125 has only four SPs, two

of which could be assigned to primary SPs. (C) Candidate driver genes mutated in fittest GBM SPs. Significantly mutated genes in selected SPs of 69

primary and 10 recurrent GBM samples as predicted by MutSig. The x-axis indicates the number of non-silent somatic mutations detected in the genes

listed on the y-axis. Genes were mutated either in the dominant SPs of primary tumors (black) or in the surviving SPs of recurrent tumors (white)
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that SP compositions invariably change with recurrence and that

SP dynamics during recurrence are highly individualized. One

scenario observed was that none of the SPs detected in the pri-

mary tumor was dominant on recurrence (TCGA-14-1034;

TCGA-06-0152; TCGA-06-0171). In the second scenario, some

SPs survive whereby in 4 of 10 cases one of the dominant SPs in

the primary tumor persisted as dominant SP in the recurrent

tumor (TCGA-06-0190, TCGA-06-0211, TCGA-06-0221 and

TCGA-06-0125). In the remaining cases, smaller SPs of the pri-

mary tumor became dominant on recurrence (TCGA-19-4065;

TCGA-06-0210; TCGA-14-0736) (Fig. 5 and Supplementary

Fig. S8).
Notably, for patients who received standard treatment (radi-

ation and temozolomide) between the first and second surgery,

we observed a by trend elevated numbers of mutations in the

recurrent as compared with the primary tumor (t-test: P¼ 0.12,

data not shown). Moreover, we observed that temozolomide

treatment before recurrence shows a tendency to co-occur with

a decreased number of SPs in the recurrent tumor as compared

with the primary GBM. In contrast, patients who did not receive

chemotherapy and radiation therapy had an elevated number of

SPs in the recurrent tumor as compared with the primary GBM

(t-test: P¼ 0.08, Supplementary Fig. S9).
Taken together based on data from a small sample set, we

provide evidence that tumor recurrence significantly changes

the SP composition of tumors and is highly individualized.

Data from this limited sample set can be used in conjunction

with clinical information to formulate a hypothesis on the effects

of temozolomide treatment on intra-tumoral heterogeneity and

test it on a large dataset using EXPANDS.

3.2 Identification of candidate genes affecting

subpopulation fitness

Next, we aimed to identify genes that when mutated provide a

substantial selective advantage to SPs in primary and recurrent

GBM. To this end, we first identified the SPs present in at least

60% of the sample (SP size �0.6) as the dominant SPs in the

primary tumors, further denoted as SPD. We rationalized that

SNVs that mark these SPD are of interest as they might contrib-

ute to the successful growth of SPDs and thus to overall tumor

growth and recurrence. We then applied MutSig (Lawrence

et al., 2013) on 5173 somatic SNVs assigned to 136 SPD from

69 primary GBM patients whereby we identified genes that were

mutated in SPD more often than expected by chance. Not sur-

prisingly, the top 20 significant hits identified by MutSig were

enriched for genes previously known to be involved in glioma-

genesis: TP53, PTEN, PIK3R1 and TGFA (Pruitt et al., 2012).

The enrichment of these gene alterations in SPD suggests that

they are highly prevalent in individual tumors and further cor-

roborate their role as GBM driver mutations. A detailed view of

the intra-tumoral prevalence of known GBM driver mutations is

provided in Supplementary Figure S10. In addition to known

GBM drivers, the top hits list contained genes previously not

associated with GBM, such as DLK2, CEACAM7 and RPL37

(Fig. 5C and Supplementary Table S3)—novel candidate genes

to be tested for their role in tumorigenesis.
Next, we aimed to identify those genes that when mutated

provide SPs with a selective growth advantage on treatment and

are thus important for recurrence. SPs found in the recurrent

tumor, could either have survived treatment and stem from

an ancestral SP in the primary tumor or could have emerged

de novo perhaps due to treatment. We identified the ancestral

SP for each SP in the recurrent tumor by taking into account

size and shared mutation frequency: We hypothesize that

two SPs that share many of their mutations are likely to be

closely related clones. Second, SPs that were small in the

primary tumors and became large (dominant) on recurrence

potentially carry a genetic signature that is relevant for recur-

rence (Supplementary Fig. S2). Based on this hypothesis, we

assume that the ancestral SP is the smallest SP in the primary

tumor that shares a minimum of 10% of the mutations assigned

to the SP in the recurrent tumor. SPs found in the recurrent

tumor for which we could identify an ancestral SP are further

denoted SPR.
We found 887 SNVs assigned to 26 SPR detected in eight re-

current GBM patients. Among the 20 most significantly mutated

genes were regulators of transforming growth factor beta signal-

ing (RBBP9 and DPT) and regulators of AKT signaling

(TCL1B) (Pruitt et al., 2012) as well as other genes that have

not been tested specifically for their role in GBM recurrence

(Supplementary Table S3).
Taken together, these findings show that EXPANDS can

guide the analysis of SP dynamics on recurrence and can be

used in combination with clinical data to correlate treatment

effects with tumor heterogeneity. EXPANDS generates muta-

tional profiles of dominant SPs in primary and recurrent

tumors that can be used to find novel candidate genes with po-

tential functions in GBM growth and recurrence, respectively.

4 DISCUSSION

4.1.1 Tumor heterogeneity and purity predictions by
EXPANDS We present EXPANDS, a method to systematic-
ally identify and characterize tumor heterogeneity and clonal SP

dynamics. To our knowledge, it is the first automated method

that predicts intra-tumoral genetic heterogeneity from sequen-

cing data of moderate coverage by assessing clonal composition

of tumors using allele fractions of single nucleotide variants and

copy number changes.

EXPANDS presents several useful features that provide an

improvement over existing approaches: it can be applied to

single tumor samples and is amenable to analyze differences in

tumor heterogeneity within large datasets. Our approach detects

differences in the number, distribution and content of SPs among

GBM and led us to conclude that individual and independent

tumor profiles need to be generated to properly describe intra-

tumoral heterogeneity in GBM. It will be interesting to apply

EXPANDS to other tumor types to determine the extent and

pattern of heterogeneity. Our method is informative for tumor

purity estimation, even for samples of high subclonality, where

EXPANDS purity predictions were closer to histological esti-

mates than tumor purity predictions by ABSOLUTE.
Another feature of EXPANDS is that it predicts SPs that can

share a subset of their mutations/CNVs and thus can be nested

within each other. In contrast, Tolliver et al. describes tumor

mixture separation from gene expression or aCGH data but
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requires convex combinations of SP sizes—that is, the approach

detects SPs with mutually exclusive properties (Tolliver et al.,

2010). This is achieved based on the assumptions that genes/

probes with similar patterns across multiple subpopulations are

eliminated in a principal component analysis step. In addition,

the number of SPs is required as an input. Finally, the method by

Tolliver et al. requires multiple tumor-samples (distinct patients)

as an input, whereas EXPANDS predicts SPs independently,

from sequencing data obtained from individual patients.
The validation of SP content, i.e. the accuracy with which

SNVs are assigned to individual SPs, is not feasible in the ab-

sence of geographical sampling. However, EXPANDS assigns

SNVs to SPs based on the fraction of cells that harbor the

SNV. The SNVs assigned to a SP in turn determine the size of

the SP. Therefore, SP size is highly correlated to SP content and

can be used as a measure of SP similarity (Supplementary Fig.

S6). In future experiments, SP sizes estimated by EXPANDS will

be validated by other methods such as fluorescence in situ

hybridization.

4.1.2 Clinical information and EXPANDS The genetic and
phenotypic cellular heterogeneity is a hallmark of many cancers

that obscures the contribution of individual cancer cells to tumor

progression and therapy resistance. Studies in Barrett’s esopha-

gus (Merlo et al., 2010) and head and neck squamous cell car-

cinoma (Mroz et al., 2013) showed that high genetic

heterogeneity estimated from geographical studies predicts

poor prognosis. This intra-tumor heterogeneity can explain the

incomplete response of tumors to therapeutic intervention and

tumor recurrence. The number of coexisting SPs predicted by

EXPANDS and their size provide a quantitative measure of

tumor heterogeneity and can be translated into common meas-

ures of diversity, such as the Simpsons and Shannon indices.

Using EXPANDS data on a small number of cases, we observed

a tendency of primary GBM treated with temozolomide to recur

with a reduced number of SPs. Temozolomide treatment has

previously been shown to provide a survival benefit for GBM

patients. A larger dataset is needed to confirm or refute that

temozolomide consistently decreases SP heterogeneity on recur-

rence. If confirmed it will be interesting to determine whether

reduced SP heterogeneity is predictive of a survival benefit for

treatments in general.

4.1.3 Candidate gene predictions derived from EXPANDS

data EXPANDS predicts what mutations mark coexisting
SPs at the time of tumor detection and can thereby help guide

therapeutic choices such that multiple SPs can be targeted and

eliminated simultaneously. We have identified a list of genes sig-

nificantly mutated in dominant SPs in the primary tumors. These

include genes previously implicated in GBM such as PTEN and

TP53. Importantly, the list also includes novel genes without a

previously demonstrated function in gliomagenesis. These genes

may be tested by molecular functional experiments for their role

in tumor formation.

In addition, our analyses provided a list of genes mutated in

SPs that survived in the recurrent tumors. In future experiments,

our method will be applied on a large number of samples to

identify SPs that survived therapy and recurrent mutations

within these SPs as candidates with a testable role in

promoting recurrence. In combination with clinical information,

EXPANDS will be useful to test for genetic determinants of

therapy response and could be of predictive value.

4.2 The role of CNV in the detection of subpopulation size

EXPANDS uses the copy number and the B allele frequency of

mutated loci to infer the frequency of cells that harbor these

mutations. The advantage of clustering the inferred cell frequen-

cies over allele frequency clustering lies in the dependence of

allele frequencies on copy number. Copy number changes

within any cell in the sequenced sample affect the measured

allele frequency. As an example, we consider a diploid locus l2
and a haploid locus l1, where each locus has exactly one mutated

allele ðBl2 ,Bl1 Þ and both mutations co-occur in an SP of size 0.6

(60% of the cells have both, 40% have neither mutation). Owing

to different underlying copy numbers, the expected allele fre-

quency of Bl2 is 0.3 and that of Bl1 is 0.6, despite their

common SP-origin. We conclude that copy number has to be

included to accurately estimate the fraction of cells that harbor

specific mutations, especially in cancer-genomes with high gen-

etic instability, where CNVs are abundant.
Allele frequency distributions show a similar pattern across

tumor samples in general. A perfectly pure tumor sample, with

no normal cell contamination and one homogeneous tumor cell

population is expected to have a few homozygous mutations with

a peak at 1.0 and heterozygous mutations visible at a peak

around 0.5. However, because tumor samples are often contami-

nated with normal cells, both peaks are typically shifted to the

left, on average around 0.7 and 0.35. In addition, peaks below

0.2 indicate the presence of subclonal mutations (Supplementary

Fig. S11). SNVs within LOH are visible as one peak above 0.8.

The increased allele frequency of SNVs within LOH regions

is caused by the presence of the germline variant in at least one

copy of all cells.

In contrast to allele frequency distributions, the distributions

of cell frequencies are distinct among tumor samples and increase

the resolution on the SPs present in that sample. The adjustment

of allele frequencies by copy numbers allows the inclusion of

germline variants within LOH regions in the SP size predictions.

As prediction accuracy increases with the number of passenger

mutations that occur in a cell before its expansion, the abun-

dance of LOH makes these events a valuable resource in the

SP size prediction, especially in tumor types with low numbers

of somatic point mutations.

4.3 Limitations and outlook

An underlying assumption of our model is that SP-specific mu-

tations are present in a fraction of cells that is specific to the SP

in which these mutations reside. As a consequence, two or more

distinct SPs that coexist in the same tumor at equal proportions

will be identified as just one SP. The sensitivity with which

EXPANDS distinguishes individual SPs, that is, how much

two SPs have to differ in their size for them to be recognized

as two distinct SPs, depends on the noise in copy number and

allele frequency measures, the number of SNVs that mark each

of these SPs and the size of the SPs itself. In the case of NGS

data, this translates to a dependence on coverage, base- and
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mapping qualities as well as consistent experimental conditions
for tumor and control samples.
A limitation of this current study is the sample size used in the

analysis of matched primary and recurrent GBM. Providing
answers to the question of how therapy affects SP composition
on recurrence and what genetic changes provide SPs from the

recurrent tumor with the ability to survive therapy will require a
larger set of trios and a larger proportion of the cancer genomes
sequenced (e.g. whole genome sequencing) to increase the reso-

lution on SP content.
EXPANDS allows for quantification of tumor purity and of

heterogeneity via Shannon index, Simpsons index and genetic

divergence (Merlo et al., 2010). In the future, EXPANDS will
be applied to a larger patient group for which sequencing data
are available to determine tumor purity and SP composition.

EXPANDS will be useful in the context of clinical information
to reveal possible associations between the extent of intra-
tumoral heterogeneity, the genetic profile of individual SPs and

clinical outcome. Studies will be extended to investigate possible
relationships between therapeutic intervention and specific
patterns of SP dynamics in GBM and other cancer types.

Moreover, longitudinal studies of SPs predicted by
EXPANDS can help determine whether SP-specific gene muta-
tions pre-existed in the primary tumor or were acquired de novo

during recurrence and thus are expected to provide new insights
into the mechanisms for recurrence.

5 CONCLUSIONS

We present an approach that predicts the number of SPs that
coexist in a tumor, the size of the SPs in the tumor bulk, the
mutations that mark each SP and the extent of normal cell

contamination. This information will be useful to complement
geographical sampling, especially in the case of intermixed tumor
cell populations. EXPANDS can be applied on SNVs and CNVs

derived from sequencing data of various depth and breadth of
coverage including exome and whole genome sequencing data
and is unique in that it takes an unbiased approach to provide

an unprecedented extent of individualized predictions. It can be
applied to all types of cancer for which NGS data are available,

to address crucial questions about tumor heterogeneity and
recurrence mechanisms.
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