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Principal Components Analysis 
Based Unsupervised Feature 
Extraction Applied to Gene 
Expression Analysis of Blood from 
Dengue Haemorrhagic Fever 
Patients
Y-h. Taguchi

Dengue haemorrhagic fever (DHF) sometimes occurs after recovery from the disease caused by Dengue 
virus (DENV), and is often fatal. However, the mechanism of DHF has not been determined, possibly 
because no suitable methodologies are available to analyse this disease. Therefore, more innovative 
methods are required to analyse the gene expression profiles of DENV-infected patients. Principal 
components analysis (PCA)-based unsupervised feature extraction (FE) was applied to the gene 
expression profiles of DENV-infected patients, and an integrated analysis of two independent data sets 
identified 46 genes as critical for DHF progression. PCA using only these 46 genes rendered the two 
data sets highly consistent. The application of PCA to the 46 genes of an independent third data set 
successfully predicted the progression of DHF. A fourth in vitro data set confirmed the identification of 
the 46 genes. These 46 genes included interferon- and heme-biosynthesis-related genes. The former 
are enriched in binding sites for STAT1, STAT2, and IRF1, which are associated with DHF-promoting 
antibody-dependent enhancement, whereas the latter are considered to be related to the dysfunction 
of spliceosomes, which may mediate haemorrhage. These results are outcomes that other type of 
bioinformatic analysis could hardly achieve.

Dengue fever (DF) is a common mosquito-mediated infectious disease in tropical regions. Although it is typ-
ically non-fatal, it sometimes develops into life-threatening dengue haemorrhagic fever (DHF), which is asso-
ciated with systemic haemorrhage1. Because DHF typically occurs after defervescence, DHF is not considered 
a symptom directly caused by the Dengue virus (DENV), which causes DF, but is thought to originate from the 
complex reaction of the host’s body to DF. However, how DHF develops from DF is not well understood. The 
exhaustive analysis of omics data is a useful strategy for resolving these kinds of problems, because a data-driven 
approach allows us to identify mechanisms that are difficult to predict with a rational knowledge-based dis-
cussion. Although it is not difficult to obtain various omics data for DF, they are not easy to analyse because 
they often include information for more than several tens of thousands of genes. In this case, the feature extrac-
tion (FE) and feature selection (FS) techniques are useful in determining what is happening within the data set 
obtained. FE tries to reconstruct a limited number of new features by combining given features, whereas FS tries 
to select a limited number of features from all the given features. The FE and FS techniques are divided into two 
categories: supervised and unsupervised. Most FSs are supervised and include huge numbers of implementations, 
ranging from simple FSs based on statistical tests between two classes2 to FSs that select a set of features based 
upon performance, e.g., random forest3. However, most FEs are unsupervised, including principal components 
analysis (PCA)4. Although some FEs are also supervised, such as partial least squares (PLS)5, unsupervised FS is 
rare because it is generally considered difficult to perform FS without any external criteria. However, if FS can be 
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performed in an unsupervised way based upon a data-driven strategy, rather than in a supervised way based on 
some evaluation, e.g., classification performance or prediction accuracy, then it is possible that unsupervised FS 
could work better than supervised FS in some cases. For example, if samples are wrongly labelled, e.g., four classes 
are erroneous and only two classes are true, then supervised FS may select unappreciated features based upon the 
wrong classification, whereas unsupervised FS may not be misled by the non-existent four classes, because it is 
data driven. One of the problems of supervised FS is that it is not known whether all the labelling information is 
significantly related to the data set (observations) obtained.

There have been several trials of unsupervised FS. For example Ding6 proposed unsupervised FS for the anal-
ysis of gene expression based upon similarity. Li et al.7 performed FS using feature clustering. Wong et al.8 applied 
FS, based on consensus affinity, to microarray data. Unsupervised feature filtering (UFF)9 is based upon the 
entropy calculated on a leave-one-out basis. However, the analysis of all genes is computationally challenging. 
Ding6 used weights between all pairs of genes, whereas Li et al.7 and Wong et al.8 required the computation of the 
similarity between pairs of features. UFF requires the iterative computation of entropy, which computes entropy 
by removing features until a sufficiently small number of features remains. All of these methodologies require 
computational time proportional to the squared number of genes, which can be as many as tens of thousands, 
with iterative improvements.

Recently, PCA-based unsupervised FE10–27, which was initially proposed for the performance of PCA with 
selected features27, has been suggested for use in FS, especially in the integrated analysis of multiple (omics) 
data sets. PCA-based unsupervised FE requires the application of PCA to a gene expression matrix10/epigenetic 
profile25 only once. Therefore, it is not computationally challenging compared with previous unsupervised FSs 
and can be successfully applied to various gene selection problems. For example, the integrated analysis of pro-
moter methylation in three distinct autoimmune diseases using PCA-based unsupervised FE identified the genes 
associated with aberrant promoter methylation that were common to the three diseases, which were identified 
by no other comparative method26. An integrated analysis of the mRNA/miRNA expression associated with 
posttraumatic stress disorder (PTSD)-mediated heart disease18 and various cancers13 identified a possible candi-
date gene associated with the diseases. An integrated analysis of gene expression and promoter methylation also 
successfully identified various disease-associated genes11,14,15,19. More recently, PCA-based unsupervised FE was 
used successfully in an integrated analysis of mRNA/miRNA expression and the metabolome20. In this paper, 
we applied PCA-based unsupervised FE to the mRNA expression profiles of DF and DHF patients and normal 
controls. An integrated analysis of two independent data sets allowed us to identify a limited number of possibly 
disease-associated genes, which was validated with an additional mRNA expression data set. The genes iden-
tified have been extensively shown to be associated with infectious viral diseases, suggesting the success of the 
methodology used here. We also propose a theoretical justification of this methodology, which works well for a 
wide range of FS/FE problems11–27, based upon a previously proposed theoretical framework28,29. Therefore, the 
purpose of this study was two-fold: to demonstrate the usefulness of PCA-based unsupervised FE and to propose 
a novel mechanism underlying DHF.

Results
Figure 1 shows the overall flow of the analysis.

Application of PCA-based unsupervised FE to synthetic examples. The use of a synthetic data set 
before the application of a methodology to a real data set is often useful in understanding the advantages and 
disadvantages of the proposed methodology. First, because we know the true answers for the synthetic data set (in 
contrast to the real data set), it is relatively easy to evaluate the performance of the methodology. Next, by prepar-
ing various data sets, we can intentionally generate a data set that can or cannot be successfully analysed with the 
proposed methodology, which allows us to understand the situations in which the proposed method is applicable. 
We can also demonstrate the superiority of the proposed method to conventional methods.

Figure 1. Overall flow chart. Thin black solid lines: data processing related to SAM. Red lines: data processing 
related to Limma. Solid blue lines: data processing related to PCA-based unsupervised FE. Broken blue lines: 
data processing related to (re-)embedding using the 46 selected genes. Bold black lines: data processing related 
to pairwise comparisons.
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To demonstrate how PCA-based unsupervised FE works and that it outperforms other popular FSs that are spe-
cifically designed for gene expression analyses, we compared PCA-based unsupervised FE with a significance anal-
ysis of microarrays (SAM)30 and Limma31 (see S1_Text for more details about how to perform SAM and Limma). 
The synthetically generated test data sets comprised “gene expression” data drawn from normal distributions, and 
the two classes to which each sample belonged had distinct or not distinct means (see Methods). Of 1000 genes, 
only the last 10 genes had expression patterns that differed between the two classes, whereas the expression of the 
first 990 genes did not, because it is reasonable to assume that in a real situation, the activities of a small number 
of genes are responsible for the observed phenotype(s). Each of the two classes included 10 samples, so in total, 
only 20 samples were considered. A small number of samples relative to the number of genes is also common in 
real experiments. The two classes had means of 0 and s(≥ 0). Therefore, a larger s indicates easier FS. s is also used 
as an enhancement factor for the expression of the 10 genes associated with the different gene expression patterns 
in the two samples, whereas the expression of the other genes is not enhanced. This also reflects the real situation: 
relevant genes should be more strongly expressed, whereas irrelevant genes should not be expressed. Figure 2 shows 
typical scatter plots of the PC scores attributed to 1000 genes when s =  1,1.5, or 2. Note that this poses a very diffi-
cult problem compared with the standard benchmark32, where the discrimination of the two classes is easier than 
in the present case because the difference between the two classes is greater. When s =  1, i.e., in the most difficult 
set-up, no genes were detected correctly, although no genes were wrongly identified. However, when s increased 
from 1 to 1.5, the number of correctly identified genes also increased to one of 10, and still no genes were wrongly 
identified. When s further increased to 2, nine genes were identified and no gene was wrongly identified. We per-
formed averaging using 100 ensembles while changing s between 1 and 2. Figure 3 shows the dependence of true 
positives (TPs), false positives (FPs), and F-measures upon s. Here, in addition to TPs and FPs, we considered 
F-measures, which are useful performance measures for unbalanced data sets and are defined as [2(TP)/(FP +  TP)⋅   
(TP)/(TP +  FN)]/[(TP)/(FP +  TP) +  (TP)/(TP +  FN)], where FN represents false negatives. Although neither TP 
nor F-measure was large for smaller s, when s =  2, TP, FP, and F-measure had reasonable values. To compare the 
performance of this computation with that of SAM, we repeated the same computation using two SAM set-ups; one 
correctly assumed two classes, whereas the other wrongly assumed four classes (Fig. 3). Although the FPs obtained 
with both SAMs were small, the SAM that wrongly assumed four classes and the SAM that correctly assumed two 
classes were inferior to PCA-based unsupervised FE when s ≥  1.6. and s ≥  1.8, respectively. Although it was unsu-
pervised, PCA-based unsupervised FE definitely outperformed SAM. Furthermore, although the performance of 
SAM decreased when four classes were wrongly assumed, PCA-based unsupervised FE circumvented this problem 
because it used no sample labelling information. Although we also tried to compare Limma, it did not identify any 
gene, including FPs, in this specific set-up, possibly because the parameter settings were too severe.

To perform comparisons with more-realistic synthetic data sets, we generated a gene expression data set com-
posed of two classes using one set of the DENV gene expression profiles (data set 5, see Methods) analysed in this 
study. After the expression of each gene was standardized, the samples were divided into two classes, each con-
taining half the samples. The positive constant s was added to the samples in one of the two classes such that the 
two classes were distinct. Therefore, a larger s also indicates an easier resolution of the problem. Figure 3 shows 
the results averaged using 100 ensembles while s was changed from 0.5 to 1. The overall performance achieved 
was relatively similar to that achieved with the first synthetic data set. PCA-based unsupervised FE again out-
performed the other methodologies only for larger s (s ≥  0.7), although Limma identified non-negative TPs with 
smaller values in this second synthetic data set than were identified with the other two methods.

Although we can conclude from its application to the two synthetic data sets that PCA-based unsupervised 
FE outperforms two popular FSs proposed for the analysis of “gene expression” data when s ≥  1.8 (for the first 
synthetic data set) or s ≥  0.7 (for the second synthetic data set), it is unclear whether PCA-based unsupervised FE 
would outperform these two methods when the set-ups were further modified. In fact, there is no way to check 
the superiority of PCA-based unsupervised FE to these two methods in all possible situations. Therefore, compar-
isons made with real examples are required.

The theoretical background and further advantages of this methodology are discussed in S1_Text.

Figure 2. Scatter plots of the first and second PC scores, u1i and u2i, attributed to genes of the first synthetic 
data set. Open grey circles represent the 990 genes not associated with the differential gene expression between 
the two classes, whereas the red open circles correspond to the 10 genes associated with the differential gene 
expression between the two classes. Blue crosses are those selected by PCA-based unsupervised FE. s =  1: top 
left, s =  1.5: middle and s =  2:right.



www.nature.com/scientificreports/

4Scientific RepoRts | 7:44016 | DOI: 10.1038/srep44016

Application of PCA-based unsupervised FE to gene expression in DENV-infected patients. To 
demonstrate the utility of PCA-based unsupervised FE when applied to real data sets and to understand how DF 
progresses to DHF based upon a gene expression analysis, we used this method to analyse the gene expression 
patterns of multiple DENV-infected patients. We used multiple gene expression profiles because the comparison 
and integration of multiple profiles allows us to identify more-robust platform-independent outcomes.

The first example (data set 1, GSE51808) was obtained by Kwissa et al.33. It includes four categories: DHF 
patients, DF patients, convalescent patients (CP), and healthy controls (HC). When investigating the PC loadings 
that differ between the groups, we found that PC2 (with a contribution of only 1.45%) and PC3 (with a contribu-
tion of only 0.45%) differed between DHF +  DF and CP +  HC; the P-values computed with a t test rejected the 
null hypothesis that the mean vkj within DHF +  DF and the mean within CP +  HC were identical in favour of the 
hypothesis that they were not: 1.03 ×  10−21 for PC2 and 4.56 ×  10−3 for PC3. Although the contribution of the 
first PC was 95.5%, it did not differ significantly among the four classes. Figure S1 in S1_Text shows a biplot of 
PC1 to PC3, where PC1 clearly displays no sample dependence (the first PC loading attributed to all samples has 
the same value). However, it is obvious that DHF +  DF and CP +  HC are well separated in the two-dimensional 
space spanned by the PC2 and PC3 loadings. This suggests that PCA-based unsupervised FE correctly identifies 
the space in which DHF +  DF and CP +  HC are well separated. On this plane, we selected 879 probes as outliers 
(see sheet 4 in S1_File for the full list of genes associated with the 879 probes). Because 879 probes were too many 
to be considered critical to DHF and to establish a smaller and more reliable set of genes, we applied PCA-based 
unsupervised FE to a second data set (data set 2, GSE1305234) to further screen the genes. Figure S1 in S1_Text 
also shows the biplot of PC1 to PC3, where PC1 again clearly displays no sample dependence (again, the first PC 
loadings attributed to all samples have the same values). PC2 and PC3 were again selected as the PCs used for 
FE. The contributions of PC2 and PC3 were only 3.39% and 2.90%, respectively. The P-values computed with a t 
test that rejected the null hypothesis that the means vkj within the convalescent and acute patients are identical in 
favour of the hypothesis that where they were not were 1.65 ×  10−5 for PC2 and 7.15 ×  10−3 for PC3. Although the 
contribution of the first PC was 89.5%, it did not differ significantly among the four classes (see Fig. S1 in S1 Text). 
However, the convalescent and acute patients were well separated in the two-dimensional space spanned by the 
PC2 and PC3 loadings. This suggests that PCA-based unsupervised FE correctly identified the space in which the 
convalescent and acute patients were well separated. On this plane, we selected 275 probes as outliers (see sheet 4 
in S1_File for the full list of genes associated with the 275 probes). We identified the 46 common genes that were 

Figure 3. Various performances of PCA-based unsupervised FE applied to synthetic data.  Upper row (the 
first synthetic data set, Gaussian): TP, FP, and F-measure for PCA-based unsupervised FE (open black circles), 
SAM correctly assuming two classes (open red triangles), and SAM wrongly assuming four classes (green crosses).
Lower row (the second synthetic data set, compiled from real gene expression data): TP, FP, and F-measures for 
PCA-based unsupervised FE (open black circles), SAM correctly assuming two classes (open red triangles), and 
Limma (green crosses). Error bars (95% confidence interval) were less than the size of the characters.
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common to the 879 and 275 genes identified with the first and the second data sets (data sets 1 and 2), respectively 
(Table 1). These are expected to be more robust and more reliable than the genes identified in either data set alone 
because they were detected in two data sets using different platforms.

To confirm that the expression of these 46 genes did actually differ between the healthy controls and patients, 
we performed a clustering analysis of the samples in data sets 1 and 2 using only these 46 genes. Figure S3 in 
S1_Text shows the heatmaps produced. It is clear that the symptomatic patients (with fever) are well separated 
from both the healthy controls and the patients without symptoms. This suggests that PCA-based unsupervised 
FE successfully identified a limited number of genes that discriminate the two groups well.

The fact that gene expression can distinguish patients with symptoms from healthy controls, but cannot dis-
tinguish patients with DF from those with DHF is consistent with the heatmap produced with all genes by Kwissa 
et al.33. Selecting a limited number of genes to reproduce the results using all genes is not straightforward. Genes 
are usually selected based on their differential expression. However, to do this, we must decide the kind of dif-
ference to be considered. For example, if we select genes based upon their differential expression between DF 
and DHF, the outcome may differ from that when we use all the genes that cannot be used to distinguish DF 
and DHF. Therefore, reducing the number of genes is highly context dependent. In contrast to this, our unsu-
pervised approach can identify a limited number of genes that produce the outcome produced using all genes, 
because we need no criterion based upon sample labelling or classification. Despite this, the 46 genes selected 
with our methodology reproduced the outcome obtained using all genes, which demonstrates the superiority of 
our methodology.

To confirm that we had successfully selected critical genes representing the relationships between samples, we 
applied PCA to xijs using only the probes associated with the 46 selected genes (Therefore, this is not only FS but 
also FE). That 46 genes alone can represent disease progression suggests the reliability of our methodology and 
the biological interpretation that can be drawn from the analysis of these 46 genes. Figure 4 shows the results. 
PC2 and PC3 were again selected to draw the biplot and the PCs were more easily interpreted. PC2 represented 
the distinction between patients that display symptoms (i.e., fever) and those that do not (i.e., healthy controls 
and convalescent patients). PC3 represents the distinction between DHF (dengue shock syndrome [DSS]) and DF 
(uncomplicated). Remarkably, using the 46 identified genes, the scatter plots of the PC loadings (samples) for data 
sets 1 and 2 became common. The samples were aligned beside PC3 on both sides of the origin. Infected patients 
were roughly divided into the upper and lower half, which corresponded to DF and DHF, respectively. More 
interestingly, the scatter plots of the PC scores (genes) correlated significantly between data sets 1 and 2 (Fig. S4 
in S1_Text). These common embedding structures of the samples, as well as those of the genes in data sets 1 and 
2 shown in Fig. S4 in S1_Text, demonstrate the robustness of PCA-based unsupervised FE and the applicability 
of this methodology.

Although PCA-based unsupervised FE identified essential genes and common biological structures in 
two independent data sets, it is still possible that this was an a coincidence. To test this hypothesis, we applied 
PCA-based unsupervised FE to data set 3 (GSE2500135). If the 46 genes selected also describe disease progres-
sion in another additional data set, our conclusions will be strengthened. Figure S1 in S1_Text shows a scatter 
plot of the PC scores attributed to the probes. Again PC2 (contribution 5.3%) and PC3 (contribution 1.4%) are 
shown. In this embedding, the 46 genes selected in both data sets 1 and 2 form a trigram Y shape, meaning that 
the 46 genes are grouped into three categories, each of which shares the same sample dependence. This Y shape 
is unlikely to be an accidental coincidence because data set 3 was not used to select the 46 genes. Finally, only 46 
genes were embedded by the PCA (Fig. 5). Although data set 3 was not used to identify the 46 genes, the timescale 
of DF/DHF development is well represented. In the early stage of infection, there were no significant differences 
between DF and DHF. With increasing time, the distinction between DF and DHF increased and was largest in 
the follow-up stage (i.e., after recovery). To investigate this quantitatively, we applied a t test to the second and 
third PC scores between the “DSS” and “uncomplicated” groups (Table 2). It is obvious that only in the disease 
(DIS) stage and follow-up (FOLLOWUP) stage do the PC scores differ between the “DSS” and “uncomplicated” 
groups. This confirms that we have successfully identified, using PCA-based unsupervised FE, the 46 genes in 
data sets 1 and 2 that represent DHF/DF progression, even in the independent third data set.

Why did we specifically select these three gene expression profiles? This study was fully data driven, and with 
a data-driven approach, we try to integrate multiple data sets that may generate reliable outcomes, like those we 
used in the present study. Because our approach was successful, the selection of these data sets was also successful.

FBXO7 MX1 LY6E IFI27 TNFSF10

OAS1 CDC20 GYPC PI3 FCGR3A

HBA1 HBA2 HBG1 HBG2 IFI44L

IFIT3 CCR1 FPR1 STAT2 ISG15

OASL CD38 TNFRSF17 CXCR1 ZBP1

HBB IFI35 MKRN1 APOBEC3A ALAS2

IL1RN RSAD2 ASCC2 IFIT2 ADIPOR1

SLC25A37 OAS3 SDF2L1 TMEM140 FKBP11

HERC5 ITM2C TXNDC5 STRADB SLC25A39

EPSTI1

Table 1.  Forty-six genes identified with PCA-based unsupervised FE.
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Comparison with other supervised and unsupervised methodologies. Although we have 
demonstrated the usefulness of our unsupervised methodology, we should explain why we did not use other 
popular supervised methods but intentionally used an unsupervised method, because it is generally supposed 
that supervised FE outperforms unsupervised FE. To demonstrate the superiority of our unsupervised FE over 
other frequently used supervised methods, we compared our methodology with SAM and Limma, two major 
implementations of FE specifically adapted for gene expression analyses. Using SAM and Limma and assuming 
two or four classes, we identified genes associated with adjusted P-values of less than 0.01 (Table S2 in S1_
Text). However, when the same “adjusted P-values less than 0.01” criterion was applied, too many genes were 
identified in both sets to identify the intersections between data sets 1 and 2, as was done with PCA-based 
unsupervised FE. Although it might be possible to filter the genes further using additional criteria, e.g., the fold 
change, it is obvious that these two methodologies are inferior to PCA-based unsupervised FE, because 
PCA-based unsupervised FE requires no criteria other than P-values. How well would the other 
above-mentioned unsupervised FSs6–9 perform when applied to the present data sets? In the gene expression 
profiles analysed in this study, the number of genes exceeded a few tens of thousands, and the above-mentioned 
unsupervised FSs, other than Ding’s study6, would entail computational complexities proportional to the 
square of the number of genes. Therefore, it is unrealistic to apply these methods to the present data sets. 
Consequently, we could not compare our performance with that achieved with the above-mentioned unsuper-
vised FSs. The methodology reported in the study by Ding6 is very similar to our methodology. Ding6 ordered 
genes based upon a two-way ordering system, assuming a gene expression matrix as the bipartite graph, and 
discarded the middle-ranked genes. However, the genes themselves were not ranked based upon PC scores 
other than the first one obtained with PCA, and it did not outperform a simple supervised method according 
to a t test in his trials. Ding also stated clearly that gene expression must be non-negative in this implementa-
tion because the gene expression matrix must be treated as weights in the bipartite graphs. Therefore, he could 
not apply scaling such that ∑ ixij =  0 and ∑ =x N/ 1i ij

2  to the gene expression as we have done. Ding6 came close 
to the idea presented in this study, but missed the central point: not samples but features (genes) should be 
embedded and PC scores other than the first score should be considered for FSs, even if their contributions are 
apparently very small.

Discussion
We investigated the robustness and biological significance of the 46 genes identified.

First, because the results obtained may have been accidental, we used additional data sets to determine 
whether the selection of genes with PCA-based unsupervised FE was robust. We used an in vitro study to enhance 
the robustness of the results, because the data sets analysed were from an in vivo study. If the genes selected are 
consistent with those selected in the in vitro study, the outcome is more trustworthy. Interestingly, the 46 genes 
included many genes previously reported to be associated with DENV in in vitro studies36, i.e., CD38, HERC5, 
IFI44L, IFIT3, LY6E, OA, OASL, RSAD2, TRAIL, (TNFSF10), and the anti-viral activity of TRAIL against DENV 
has been confirmed experimentally36. Furthermore, after applying PCA-based unsupervised FE to the data set 
analysed by Warke et al.36, we found that 59 probes were associated with aberrant gene expression between the 
control and DENV-infected cell lines (see sheet 4 in S1_File for the full list of genes associated with the 59 probes). 

Figure 4. Biplots of PC2 and PC3 scores, u2i and u3i, computed using only the 46 genes selected with PCA-
based unsupervised FE. Left: data set 1 (GSE51808); right: data set 2 (GSE13052). Open magenta circles are PC 
scores for the probes associated with the 46 genes (for more details on the biological features of individual genes, 
see the enrichment analysis available in sheets 1–3 in S1_File). The contributions of PC2 and PC3 increased to 
13% and 4% (left: data set 1), respectively, and to 7% and 1.6% (right: data set 2), respectively. Black (red) crosses 
represent PC loadings, v2j and v3j, of the DF (DHF) patients. Blue crosses correspond to healthy controls. Green 
crosses represent convalescent patients. Broken arrows show the different gene functions (see sheets 1-3 in 
S1_File). DSS, Dengue shock syndrome.
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Among the genes associated with these 59 probes, the genes shared with those identified in the present study were 
identified: APOBEC3A, IFI27, IFI35, IFIT2, IL1RN, ISG15, MX1, and OSA1. Thus, 17 of the 46 genes were also 

Figure 5. Biplots for data sets 3 to 5. Top: Biplot of data set 3 (GSE25001) using only the 46 genes identified 
in data sets 1 and 2. Open magenta symbols × , ∇ , ◇  are the PC scores, u2i and u3i, for the probes associated 
with the 46 genes (for more details on the biological features of individual genes, see the enrichment analysis 
available in sheets 1–3 in S1_File). The contributions of PC2 and PC3 increased to 11% and 6.3%, respectively. 
Crosses (+ ) represent the PC loadings, v2j and v3j, of the patients. Filled circles connected by solid cyan lines 
represent the centres of mass for each group (see legends for more details). Middle left: Scatter plot of the PC 
scores for data set 4 (GSE43777-GPL507) using 76 probes attributed to any of the 46 genes. The contributions of 
PC2 and PC3 increased to 5.3% and 4.0%, respectively. The correspondence between the coloured crosses (+ ) 
and disease progression are black (stage G1), red (stage G2), green (stage G3), blue (stage G4), cyan (stage G5), 
magenta (stage G6), and grey (stage G7). Cyan solid and broken lines correspond to DF and DHF, respectively. 
Middle right: Scatter plot of the PC scores in data set 5 (GSE43777-GPL201) using 28 probes attributed to any of 
the 46 genes. The contributions of PC2 and PC3 increased to 14% and 10.0%, respectively. The correspondence 
between the coloured +  symbols and disease progressions are the same as for GSE43777-GPL507 and yellow 
(stage G0). Solid cyan line corresponds to patients with either DF or DHF. Bottom: Scatter plots of PC loading 
(left to right: GSE43777-GPL507/201). P-values were computed with a t test to determine whether the PC scores 
had positive (or negative) mean values.



www.nature.com/scientificreports/

8Scientific RepoRts | 7:44016 | DOI: 10.1038/srep44016

detected in an in vitro study. Moreover, 10 of the 46 genes were recognized as anti-viral interferon-stimulated 
genes (ISG)37, whereas APOBEC3, IFI44L, IFIT2/3, ISG15, MX1, OAS1/3/L, and RSAD2. CD38 are reported to be 
associated with immune thrombocytopenia38.

Second, we used two additional in vivo gene expression profiles (data sets 4 and 5, GSE43777, see methods) 
also associated with disease progression during eight distinctive stages, G0 to G7. Because Sun et al.39 identified 
a triangular configuration in their two-dimensional PCA embedding, their data set was suitable for testing the 
robustness of our 46 genes (for a more detailed comparison with their results, see below). Basically, these genes 
reproduced the configuration of data set 3, although with some differences (Fig. 5). First, the time progression 
in data sets 4 and 5 on the plane spanned by PC2 and PC3 was V-shaped, which was also seen in data set 3. PC3 
is the vertical axis in data set 3, whereas PC2 is the vertical axis in data sets 4 and 5. However, because the order 
of the PCs is simply dependent on their contributions, their order is not biologically important if the overall 
configuration is conserved. Finally, although the Y-shaped configuration of the genes observed in data set 3 is 
missing from data sets 4 and 5, the overall configuration is similar. Interferon and heme biosynthesis 1 and 2, 
are located in the right half plane, the second quadrant, and third quadrant of data sets 3, 4, and 5, respectively. 
This is obvious in data set 3, although a t test was also used to determine whether the PC scores had negative or 
positive mean values in data sets 4 and 5 in order to determine the quadrant in which the center of the genes was 
located (see captions). Therefore, the configuration of the PC scores in data set 3 observed in Fig. 5 is expected 
to be robust. After a t test was applied, the distinction between DHF and DF in the follow-up samples seen in 
data set 3 was still observed between DHF and HF at stage G7 in data set 4. The 2nd PC loading attributed to 
DF patients was significantly larger than that of the DHF patients (P =  0.05 and 0.04 with a t test and Wilcoxon 
signed-rank sum test, respectively). Because data set 5 is predominantly composed of DF only, we did not check 
this point in data set 5. The relatively weak distinction between DF and DHF in data set 4 may be because these 
samples were collected at different times (data set 3: FOLLOWUP, ≥ 72h after illness onset; data set 4: G7 (con-
valescent) samples, around day 28 after the first sampling). In fact, there was a large gap between the G7 samples 
(grey + ) and the G6 (late acute) samples (magenta+ ) for data sets 4 and 5 (middle panels of Fig. 5). It is possible 
that the uncollected samples reflect the distinction between DF and DHF. We require more samples to confirm 
this point.

Because we successfully confirmed the robustness of our results, we next investigated the biological reliability 
of the 46 selected genes. We uploaded the 46 genes to three enrichment analysis servers, DAVID40, g:pfofiler41 
and TargetMine42 (see sheets 1–3 in S1_File for the full list of enriched biological terms and pathways), to com-
pensate for the bias introduced by each individual enrichment server. g:Profiler reported the enhancement of the 
IRF/IRF-7 motif, which is known to occur in interferon (IFN)-related transcription factors (TFs)43. Both g:Pro-
filer and TargetMine also detected the measles and influenza A pathways (hsa05162 and hsa05164, respectively). 
Measles and influenza are often listed as diseases that differ negligibly from DF in terms of their diagnosis44,45. 
There are no DENV pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Therefore, 
it is reasonable that these two viruses were detected instead of DENV. Other than these, multiple enrichments 
related to either viral infection or haemorrhage were detected. For example, Gene Ontology (GO) biological 
process (BP) terms GO:0009615 (response to virus), GO:0006955 (immune response), and GO:0015671 (oxy-
gen transport) were identified by all three servers. GO cellular component (CC) term GO:0005833 (haemoglo-
bin complex) was also identified by all three servers. Reactome pathways REAC:913531 (interferon signalling), 
REAC:909733 (interferon alpha/beta signalling), REAC:168256 (immune system), and REAC:1280215 (cytokine 
signalling in immune system) were identified by g:Profiler and TargetMine. Further haemorrhage-related or 
viral-infection-related GO BP terms were detected by g:Profiler and TargetMine.

The next step in the biological validation process was to determine the interactions between these genes. If 
they have tight relationships, the selection of the 46 genes is more reliable because single proteins rarely function 
without the collaboration with other proteins. To check this, we uploaded the 46 genes to the STRING server46, 
which detected 96 protein–protein interactions among the products of the 46 genes (P =  0 within the numerical 
accuracy), although the expected number of protein–protein interactions was only eight. Therefore, the 46 iden-
tified genes were also enriched for protein–protein interactions, probably because of the functional collaborations 
between the products of these genes.

These analyses suggest that PCA-based unsupervised FE can successfully identify a biologically feasible set of 
genes.

To further investigate the biological backgrounds of the 46 selected genes, we uploaded the 46 genes to 
Enrichr47, a multi-functional enrichment analysis server. Among the results given by Enrichr, we noticed the 
top-ranked three transcription factor (TF) bindings at “ENCODE TF ChIP-seq 2015”, STAT1, STAT2, and IRF1 
in K562 cells. K562 is a cell line often used in in vitro DENV infection experiments (see references cited below). 
The 46 genes were also enriched for multiple histone modifications (Table 3). The genes associated with histone 
modification largely overlapped the TF target genes (Fig. 6). Ni et al.48 reported that the biphasic formation of a 
STAT1/IRF1 complex is accompanied by histone methylation, which is consistent with the observed enrichment 

ACUTE [0–1] DIS FOLLOWUP

PC2 2.14 ×  10−1 5.62 ×  10−1 7.87 ×  10−3 4.15 ×  10−3

PC3 7.23 ×  10−1 1.07 ×  10−1 6.41 ×  10−3 9.73 ×  10−3

Table 2.  P-values that distinct DSS and uncomplicated patients in data set 4. P-values computed with 
a two-sample t test applied to the differences in the second and the third PC scores between “DSS” and 
“uncomplicated” patients. (Fig. 5).
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of STAT1- and IRF1-binding sites in these 46 genes. More interestingly, Schoggins et al.49 identified STAT2 and 
IRF1 as effective inhibitors of DENV infection. Many studies have also reported the cooperation between these 
TFs. Kumatori et al.50 reported that STAT1 and IRF1 cooperatively regulate the expression of the GP91 gene. 
Wang et al.51 reported that the STAT1/IRF-1 signalling pathway mediates the injurious effects of IFN-gamma on 
oligodendrocyte progenitor cells. Therefore, identifying the enrichment of these three TFs is unlikely to be acci-
dental. We also found that antibody-dependent enhancement (ADE) is a factor potentially involved in the direct 
relationship between DF and these TFs. Chareonsirisuthigul et al.52 showed that the ADE infection pathway 
suppresses the innate anti-DENV mediator, the nitric oxide (NO) radical, by disrupting the transcription of the 
inducible nitric oxide synthase (iNOS) gene by TFIRF1, and blocking the activation of STAT1. ADE is believed 
to be a potential cause of DHF because DENV-ADE infection has a greater effect on viral replication than DENV 
infection53,54. In contrast, Huang et al.55 reported that neither DENV infection nor ADE-DENV infection upreg-
ulates IL10 or IL6 expression, and these proteins were not encoded by any of the 46 genes identified in the present 
study. As can be seen in Fig. 5, because the PCA of these 46 genes not only described the DF-to-DHF progression, 
but also distinguished between DF and DHF, these genes must include those responsible for DHF. Therefore, 
detecting the enrichment of these TF-bound genes may be the key to distinguishing between DHF and DF. This 
suggests that among our 46 selected genes, the genes targeted by these three TFs are expressed downstream from 
STAT1, STAT2, and IRF1, and are the ADE targets among the 46 selected genes. To our knowledge, this is the 

Rank Histone modification P-value adjusted P-values Z-score combines score

1 H3K4me1_fibroblast of dermis_hg19 1.60E-06 6.20E-04 − 1.8 13.29

2 H3K4me1_bone marrow macrophage_mm9 4.90E-05 3.16E-03 − 1.87 10.74

3 H3K4me1_myotube_hg19 4.90E-05 3.16E-03 − 1.7 9.78

4 H3K4me1_K562_hg19 2.56E-05 3.16E-03 − 1.66 9.54

5 H3K4me1_A549_hg19 3.03E-05 3.16E-03 − 1.64 9.43

6 H3K4me1_skeletal muscle myoblast_hg19 4.90E-05 3.16E-03 − 1.62 9.33

7 H3K4me2_K562_hg19 2.33E-04 1.00E-02 − 1.74 8.03

8 H3K4me1_HepG2_hg19 2.33E-04 1.00E-02 − 1.68 7.75

9 H3K4me1_HeLa-S3_hg19 2.33E-04 1.00E-02 − 1.6 7.37

10 H3K4me1_fibroblast of lung_hg19 9.88E-04 2.94E-02 − 1.73 6.12

11 H3K4me2_HeLa-S3_hg19 9.88E-04 2.94E-02 − 1.71 6.02

12 H3K4me1_T-cell acute lymphoblastic leukaemia_hg19 9.88E-04 2.94E-02 − 1.64 5.8

13 H3K27ac_osteoblast_hg19 9.88E-04 2.94E-02 − 1.63 5.75

14 H3K4me3_Panc1_hg19 1.40E-03 3.61E-02 − 1.59 5.27

15 H3K4me1_MEL cell line_mm9 1.39E-03 3.61E-02 − 1.47 4.88

16 H3K27ac_A549_hg19 1.95E-03 4.71E-02 − 1.53 4.68

17 H3K4me3_A549_hg19 2.14E-03 4.88E-02 − 1.51 4.56

Table 3.  Enriched histone modification detected with Enrichr (ENCODE Histone Modifications 2015) in 
the 46 selected genes. Only those associated with adjusted P-values less than 0.05 are listed. Bold text indicates 
enrichment in the K562 cell line and is used in Fig. 1.

Figure 6. Venn diagrams of the enrichment of TF-binding sites and histone modifications in the 46 
genes in the K562 cell line, identified with Enrichr. These clearly overlap strongly. Left: STAT1_K562_hg19, 
IRF1_K562_hg19 (ENCODE TF ChIP-seq 2015), and H3K4me1_K562_hg19 (ENCODE Histone Modifications 
2015); right: STAT2_K562_hg19, IRF1_K562_hg19 (ENCODE TF ChIP-seq 2015), and H3K4me2_K562_hg19 
(ENCODE Histone Modifications 2015).
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first report to identify the genes downstream from ADE-DENV using a bioinformatic (meta) analysis rather than 
experiments.

Although we hypothesize that our 46 selected genes include the genes associated with ADE, this only refers to 
immunology-related genes. As can be seen in Fig. 5, the 46 genes also include many heme biosynthesis genes. To 
determine the relationship between DHF and these heme biosynthesis genes, we uploaded the genes to another 
data analysis server, COEXPRESSdb56, which infers a possible set of genes within the list of uploaded genes that 
might be co-expressed. In this way, we found 11 spliceosome (hsa03040)-related genes among the 46 genes, 
which might be co-expressed (see Figs S8 and S9 in S1_Text and sheet 5 in S1_File). Interestingly, Hess et al.57 
have already reported that U-spliceosomal non-coding RNAs (ncRNAs) are affected during DENV infection. 
Pre-mRNA splicing not only occurs in the cytoplasm of platelets, but also provides a mechanism for regulating 
cytokine production after platelet activation58, which is related to the innate immune response59. It is clear that 
reduced platelet counts might lead to a severe bleeding diathesis. This suggests that the dysfunction of splice-
osomes causes haemorrhage, and is, to the best of our knowledge, the first such proposal. Further and follow-up 
studies are required.

We also compared our results with those of the studies from which the data sets used in this study were taken. 
Why didn’t we compare the genes we selected with those selected in the original studies? 33,34,35,39. Neither Kwissa 
et al.33 nor Hoang et al.35 provided a list of the selected genes, possibly because they could not select a sufficiently 
small number of genes to investigate them individually in detail. Long et al.34 selected 100 genes for each of the 
three pairwise comparisons (DHF vs DF, CP vs DF, and CP vs DHF), 300 genes in total, similar to the number we 
selected (275 genes). Thus, the only comparison possible is between our 275 genes and their 300 genes. When we 
replaced our 275 genes with the 300 genes selected by Long et al. in data set 2, only 83 genes were selected from 
both data sets 1 and 2 (see sheet 6 in S1_file). Because 83 genes are more than our 46 genes, Long et al. apparently 
identified more coincidental results between data sets 1 and 2 than did our analysis. However, when both the 83 
genes and the 46 genes were uploaded simultaneously to g:profiler, the impression was reversed. The 83 genes 
are primarily enriched in genes involved in the cell division cycle, which is unlikely to be related to DF (see the 
enrichment analysis in S1_Text). This suggests that our methodology identified a more limited but more bio-
logically reliable set of genes than did that of Long et al. Among the five studies from which the gene expression 
profiles were taken, the study by Sun et al.39 was most similar to ours. Those researchers even embedded samples 
in two-dimensional space with PCA, using only the genes that they selected and that formed the triangular con-
figuration seen in our genes in Fig. 5. However, our results still have multiple advantages over theirs. First, they 
selected 313 genes, which is over six time more than the number we selected (46 genes). Because they selected 
genes for each of the eight disease stages (G0 to G7) and there were very few overlaps between them, they could 
not identify a restricted number of genes that represented the overall disease progression. Their PCA embedding 
of samples was also less consistent with disease progression than ours. Therefore, they had to merge the eight 
stages into three groups, the early acute, late acute, and convalescent groups, to obtain biologically interpretable 
results. Furthermore, only some (23) of our 46 genes were included in their 313 genes. Fifteen and 13 of our genes 
were included in the genes detected in the early and late acute stages, respectively, and only five of our genes were 
included among the genes detected in both the early and late acute stages. Therefore, our methodology identified 
a more reliable, smaller, more robust, and distinct set of genes than the analysis of Sun et al.

Throughout the manuscript, we have almost always argued that the identification of too many significant 
genes is neither trustworthy nor usable. There can be two objections to this opinion:

1. It is always possible to reduce the number of genes by using a smaller number of top-ranked (relatively 
more significant) genes. Therefore, the identification of too many significant genes is not a problem at all.

2. The identification of too many significant genes may be evidence that the methodology works even when 
smaller samples are considered (because generally smaller samples induce larger, less significant P-values).

Objection 1 is meaningless from a statistical perspective because adjusted P-values are usually regarded as a 
portion of FP. This means that requiring very small adjusted P-vales (e.g., less than 1/N) does not make sense. 
Therefore, selecting the top-ranked genes does not guarantee more-reliable results. To demonstrate this, we used 
Limma or SAM to analyse the top-ranked 879 or 275 genes, which were the numbers identified with PCA-based 
unsupervised FE from data sets 1 and 2, respectively, and counted the overlaps between them (there were 46 
overlaps when PCA-based unsupervised FE was used). We found that only one and two genes were commonly 
selected when Limma was used for the two- and four-class classifications, respectively. For SAM, because more 
than a thousand genes were associated with adjusted P-vales equal to zero in data set 1 for both the two-class and 
four-class classifications, we could not even select a smaller number of significant genes. This definitely suggests 
that simply taking the top-ranked genes without statistical reliability is not an appropriate alternative to a method 
that can select a reliable number of genes based on a statistically meaningful assumption (e.g., adjusted P-values 
less than 0.01). Thus, objection 1 is refuted, at least for our case. As for objection 2, we tried to select genes using 
samples containing half the data from data sets 1 and 2, using either SAM, Limma, or PCA-based unsupervised 
FE (Table S2). The results for SAM and Limma were very disappointing. The number of genes selected often 
remained unchanged (i.e., too many) or became too small (even less than 1). This suggests that objection 2 holds 
only for very specific combinations of methods and sample numbers, so it is not worthy of consideration. In 
contrast, PCA-based unsupervised FE selected almost the same number of genes independently of the sample 
numbers. This may seem strange. However, PCA-based unsupervised FE selects genes based upon the PC scores 
attributed to individual genes. PCA is essentially a projection from a high dimension to low (two) dimensions. In 
this context, halving the sample numbers corresponds to the random elimination of half the high-dimensional 
space, which is unlikely to change the projection dramatically. If the PC scores are not altered much, the genes 
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selected remain unchanged, even after the sample numbers are halved. For these reasons, we conclude that objec-
tions 1 and 2 need not be considered, at least in the present study.

Finally, we will briefly discuss the relationship between the robustness of our methodology and the heteroge-
neity of the data sets. Our results may be considered untrustworthy because we derived most of our conclusions 
from the study of heterogeneous data sets collected from multiple studies that had distinct experimental plans, 
used different platforms (microarrays), and had distinct purposes. How can we derive something valid from 
such diverse data sets? Our methodology, PCA-based unsupervised FE, is known to generate robust results from 
an integrated analysis of heterogeneous data sets. For example, we previously analysed mouse cardiac matura-
tion based on data sets collected with two distinct microarray platforms60. The selected genes were biologically 
useful when they were considered in human samples. This process is similar to that used in the present study, in 
which the integration of data sets 1 and 2 identified a gene set that described disease progression in data set 3. 
Alternatively, in an integrated analysis of mRNA and miRNA, we successfully compared the mRNA and miRNA 
expression measured in different studies13. All these studies suggest that our methodology is sufficiently robust to 
derive biologically reliable outcomes, even from heterogeneous data sets. Contrary to the impression that the use 
of heterogeneous data sets is erroneous, it can provide rather robust and reliable results if a suitable methodology 
is used. It even strengthens the robustness of the outcomes if it is successful, because although the use of hetero-
geneous data sets has greater potential for failure, the conclusions are less likely to be accidentally reliable while 
actually being untrue. Today, although RNA-seq technology is superceding microarrays because they are less 
reliable, if suitable methods such as PCA-based unsupervised FE are used, suitable results can still be obtained. 
In fact, PCA-based unsupervised FE has also been used in an integrated analysis of microarray and RNA-seq 
measurements10,20.

Methods
Synthetic data set. First synthetic data set. In the first synthetic gene expression data set (data set 1), the 
gene expression values were uncorrelated random numbers drawn from a Gaussian distribution with common 
variance. The number of genes was assumed to be much larger than the number of samples. The samples formed 
two classes, each of which included the same number of samples, but they differed only for very small numbers of 
genes among all genes. The mean value within each class was taken to be different, so that they were discrimina-
tive. The majority of the remaining genes did not form two classes. The mathematical formulation was as follows.

To simulate gene expression with N genes and M samples, xijs (i =  1, … , N, j =  1, … , M) were drawn from the 
normal distribution  µ σ( , ), where μ ≥  0 is the mean and σ >  0 is the standard deviation, and
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Then, xijs (N −  N0 <  i ≤  N) are enhanced by factor s as follows: xij ←  s ×  xij. In this study, N =  1000 and N0 =  10.

Second synthetic data set. Because the gene expression data drawn from a Gaussian distribution are unlikely to 
be similar to real data sets, we compiled a more realistic but synthetic data set from data set 5 (see below). Gene 
expression was standardized to have a zero mean and a variance of one for each gene. The samples were then shuf-
fled within each sample. The shuffled samples were divided into two classes. Some positive constant was added to 
only the samples within one of the two classes. The mathematical formulation is as follows.

Suppose xij is the gene expression of the ith gene of the jth sample that belongs to data set 5. To standardize 
gene expression, xij was converted to
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where sj is a random integer drawn from (1, … , M) without replacement. sj is independently drawn for each i. The 
positive constant s was then added to the first N0 genes in the first half of the samples,

← + ≤ ≤x s x i N j M, ,
2 (6)ij ij 0

In data set 5, N =  8793, M =  168 and N0 is taken to be 100.

PCA-based unsupervised FE. PCA. In contrast to the usual use of PCA, where samples are embedded, 
the genes were embedded in this implementation.

Suppose xijs satisfies ∑ = ∑ =x x N0, / 1i ij i ij
2  and X is a matrix whose elements are xij. The gram matrix G is 

defined as G ≡  XXT. Eigen vectors uk =  (uk1, … , ukN)Ts (1 ≤  k ≤  min(M, N)) are then obtained as Guk =  λkuk, where 
uki is the kth PC score attributed to gene i and λks are the Eigen values ordered as λk ≥  λk +  1. The kth PC loadings 
attributed to the jth sample vkj are defined as vk =  XTuk, where vk =  (vk1, … , vkM)T because vk is the Eigen vector of 
the covariance matrix XTX, XTGuk =  XTXXTuk =  XTXvk =  λkXTuk =  λkvk.

PCA-based unsupervised FE applied to the synthetic data set. First, we computed the P-values that rejected the 
null hypothesis that the mean of {vkj|j =  1, … , (M)/(2)} is equal to that of {vkj|j =  (M)/(2) +  1, … , M} in favour of 
the alternative hypothesis, that the mean of {vkj|j =  1, … , (M)/(2)} is not equal to that of {vkj|j =  (M)/(2) +  1, … , M}.  
The k′ th PC associated with the smallest P-value was then selected and used for FE, as a smaller P-value corre-
sponds to a more significant difference between {vkj|j =  (M)/(2) +  1, … , M} and {vkj|j =  1, … , (M)/(2)}. Assuming 
that uk′i obeys a normal distribution, P-values were then attributed to the ith gene using the χ squared distribu-
tion. The P-values were further adjusted by the Benjamini–Hochberg (BH) criterion61, and the genes associated 
with adjusted P-vales less than 0.01 were selected as the genes associated with the difference between 1 ≤  j ≤  (M)/
(2) and (M)/(2) <  j ≤  M.

PCA-based unsupervised FE applied to gene expression in DENV patients. We identified a set of ks, {k}sig, associ-
ated with P-values less than 0.05 that rejected the null hypothesis that the means of the PC loadings (vkj) were 
identical over multiple classes, in favour of the alternative hypothesis that the means were not identical over 
multiple classes. Assuming that uk′is are normally distributed, the P-values were then attributed to the ith gene 

using a χ squared distribution; P-values are 
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{vik|i =  1, … , N}, and >χP x( )2  is the probability that the argument is larger than x under the assumption that the 
arguments obey a χ squared distribution. The P-values were further adjusted by the BH criterion61, and those 
genes associated with adjusted P-values less than 0.01 were selected as the genes associated with the difference 
between multiple classes. All the genes identified with PCA-based unsupervised FE are shown in S1_File.

Gene expression profiles. Four in vivo gene expression data sets were downloaded from the Gene Expression 
Omnibus (GEO) using GEO IDs: GSE5180833, GSE1305234, GSE2500135, and GSE43777-GPL570/20139. Hereafter, 
these gene expression data will be denoted data sets 1, 2, 3, 4, and 5, respectively. One in vitro gene expression data 
set was also downloaded from GEO ID GSE937836. The processed data GSEXXXXX_series_matrix.txt (where 
GSEXXXXX is GEO ID) for all five sets were downloaded and used for further analysis. Gene expression was scaled 
for PCA-based unsupervised FE, i.e., ∑ = ∑ =x x N0, / 1i ij i ij

2 . For other analyses, gene expression was used as it 
was, because the data had been processed. For details of the samples included in these gene expression profiles, see 
Table S1 in S1_Text.

Biplot. A biplot is a scatter plot in which PC scores = u uu ( , )i
k k
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 are 
projected and over drawn onto the two-dimensional space spanned by the k1th and k2th PCs. For visibility (in 
other words, to avoid any overlap of the genes and samples or to avoid the locations of the genes or samples that 
are too close to the origin because the distances between the PC scores and PC loadings differ), an arbitrary pos-
itive constant scaling factor c is often used to multiply either uis or vjs. By definition, since = ∑ =v x ukj i

N
ij ki1 , the 

jth samples and ith genes that are oriented in the same direction from the origin are regarded as related on the 
biplot.
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