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Sparse representation is a powerful tool in signal denoising, and visual evoked potentials (VEPs) have been proven to have strong
sparsity over an appropriate dictionary. Inspired by this idea, we present in this paper a novel sparse representation-based approach
to solving the VEP extraction problem. The extraction process is performed in three stages. First, instead of using the mixed
signals containing the electroencephalogram (EEG) and VEPs, we utilise an EEG from a previous trial, which did not contain
VEPs, to identify the parameters of the EEG autoregressive (AR) model. Second, instead of the moving average (MA) model,
sparse representation is used to model the VEPs in the autoregressive-moving average (ARMA) model. Finally, we calculate the
sparse coefficients and derive VEPs by using the AR model. Next, we tested the performance of the proposed algorithm with
synthetic and real data, after which we compared the results with that of an AR model with exogenous input modelling and a
mixed overcomplete dictionary-based sparse component decomposition method. Utilising the synthetic data, the algorithms are
then employed to estimate the latencies of P100 of the VEPs corrupted by added simulated EEG at different signal-to-noise ratio
(SNR) values. The validations demonstrate that our method can well preserve the details of the VEPs for latency estimation, even
in low SNR environments.

1. Introduction

Evoked potentials (EPs) are bioelectrical signals that are gen-
erated by the central nervous system when the latter is stim-
ulated by well-defined external stimuli. Depending on the
modality of stimulation, EPs are categorised into auditory
evoked potential (AEP), visual evoked potential (VEP), and
somatosensory evoked potential (SEP). In clinical environ-
ments, these signals are used to reflect the various func-
tions of auditory, optic, and sensory nerve sense-conducting
pathways. In this paper, we concentrate on the second type,
namely, the VEPs. Generally speaking, there exist three
prominent components (N75, P100, and N145) in the VEP
signal, whereas the preceding and following segments are
almost flat. Of the three components, the P100 wave is the
most significant and stable; hence, it is the most important
component in clinical applications [1].

VEP signals have time-locked (quasiperiodic) character-
istics and are always accompanied by ongoing electroen-
cephalogram (EEG) signals. Moreover, the signal-to-noise

ratio (SNR) of VEP records is usually low (−5 to −10 dB).
Ensemble averaging (EA) is the most widely used method
for estimating VEP against a noisy background. However, EA
cannot be used to detect latency and amplitude variations
from one trial to another; thus, single-trial analysis is better
suited for investigations into the dynamics of brain activation.
The single-trial VEP estimation is very meaningful in cogni-
tive science research and clinical applications, such as brain-
computer interfacing and intraoperative monitoring [2].

Many single-trial EP estimation methods have been
proposed over the past two decades. These methods can be
divided into two categories, namely, denoising methods and
separation methods. The denoising methods assume that the
measurement of the VEP is corrupted by noise and that the
main source of noise is the EEG. Many conventional denois-
ing methods have been applied, such as the Wiener filter [3],
Kalman filter [4], and ARX [5]. Among these methods, ARX
is widely recognised and has previously been applied tomon-
itor the depth of anaesthesia during surgery. In ARX, the EEG
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can be viewed as an autoregressive (AR) model driven by
white noise, and the EP can be modelled by an ARMA filter
with a known signal accurately. The known signal is typically
the average of the reference EPs (AREP). The orders and
parameters of the AR and ARMA models can be estimated
by utilising various optimisation techniques, such as the
final prediction error (FPE) [6] and the least-squares (LS)
method [7]. The EPs can then be reconstructed by ARMA
filtering with the AREP. Recently, Cerutti et al. [6] found
that EP extraction using ARX modelling is only capable
of extracting latency EP variations in relatively high SNRs
and that it is completely invalid because the latency varies
greatly compared with the AREP from systemic experiments.
The separation methods separate the VEP and EEG signals
by modelling them based on their characteristics, such as
wavelet transformation and sparse representation.

Meanwhile, Causevic et al. [8] and Martazi et al. [9]
used wavelet transformation to separate the EP and EEG
signals. Sparse coding is a powerful tool in analysing non-
stationary signals, and it has shown significant success in
signal denoising and separation. Xu and Yao [10] proposed
the mixed overcomplete dictionary-based sparse component
decomposition method (MOSCA), which decomposes the
EP and EEG signals in the wavelet dictionary and discrete
cosine transform (DCT) dictionary, respectively. However,
given that EEG is not considered white noise and that many
components of EP and EEG look alike in a single trial, their
components are represented by the wrong dictionaries and
their corresponding coefficients. Therefore, MOSCA cannot
separate the EP and EEG signals sufficiently [11, 12].

In this paper, we present a novel sparse representation-
based approach to solving the VEP extraction problem.
Instead, of the mixed signals from the EEG and EP, we
utilised an EEG in a previous trial that did not contain VEP
to identify the parameters of the EEG AR model. Then, we
used sparse representation in the ARMA model, instead of
MA, to simulate the VEP. The sparse coefficients can be
calculated by an optimisation method. Finally, the VEP can
be derived from the AR model. Experiments carried out on
synthetic and real data confirm the superior performance of
our method. The rest of the paper is organised as follows.
Section 2 provides the details of our single-trial estimation
algorithm. Section 3 contains experimental results obtained
from the proposed method and a comparison with ARX and
MOSCA. Section 4 provides the conclusions.

2. Method

Let the VEP signal 𝑝(𝑘) ∈ 𝑅𝑁×1 to be estimated be corrupted
by noise from ongoing background activities. The main
source of noise is the spontaneous EEG 𝑒(𝑘) ∈ 𝑅𝑁×1. The
measurement 𝑠(𝑘) ∈ 𝑅𝑁×1 is given by

𝑠 (𝑘) = 𝑝 (𝑘) + 𝑒 (𝑘) . (1)

We need to design a method that can remove the noise from
𝑠(𝑘), getting as close as possible to the original EP signal 𝑝(𝑘)
[13].

2.1. The VEP Signal. In ARX, VEP 𝑝(𝑘) is derived by filtering
the reference 𝑢(𝑘) ∈ 𝑅𝑁×1, which is chosen to be the average
of a sufficient number of trials and can represent the general
form of the evoked response under analysis, by the ARMA
model parameters; that is,

̂
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(2)

where ̂𝑃(𝑧) and 𝑈(𝑧) are the 𝑧-transform of ̂𝑝(𝑘) and 𝑢(𝑘)
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−𝑗. Sparse
coding is a powerful tool for the analysis of nonstationary
signals; it has achieved significant success in signal denoising
and separation. Compared with ARMA, sparse coding is
more flexible and uses the dictionary and the corresponding
coefficient to represent signals. VEP has been proven to have
strong sparsity over an appropriate dictionary in our previous
paper [12]. Thus, in the current paper, we use sparse coding
to represent the single-trial VEP instead of the MA model in
ARMA.Therefore, formula (2) can be rewritten as
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(3)

where 𝐺 ∈ 𝑅𝑁×𝑀 and 𝜃 ∈ 𝑅𝑀×1 are the dictionary and sparse
coefficient of 𝐵(𝑧−1)𝑢(𝑘), respectively. The transfer function
𝐵(𝑧

−1
)/𝐴(𝑧

−1
)merely represents amechanism to incorporate

deterministic VEP 𝑝(𝑘) variations into the reference signal
𝑢(𝑘), rather than a physiologically meaningful process.

2.2. Dictionary Construction. Inspired by the modelling
method in [14], we proposed a dictionary construction
method for the EP signal, as reported in our previous paper.
This method assumes that the atoms in the dictionary can be
extracted from a reference signal and that the single-trial EP
can be decomposed sparsely by the dictionary.Many previous
experiments have demonstrated this result.

The reference signal 𝑢(𝑘) consists of a superposition of𝑀
components expressed as

𝑢 (𝑘) =

𝑀

∑
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𝑚
𝑠

𝑚 (
𝑘) .

(4)

𝑢(𝑘) can be acquired by AREP. 𝑠
𝑚
(𝑘) can be extracted

from 𝑢(𝑘) using a certain filtering window function, such
as Hamming window and Blackman window. The central
location and width of the window are determined by the
location of point of peak (and valley) amplitude and peak
(and valley) width of the𝑚th component.The dictionary can
be represented by

𝐷 = (
𝑆

1
𝑆

2
⋅ ⋅ ⋅ 𝑆

𝑀) , (5)
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(6)

Then, 𝑢(𝑘) can be represented by the dictionary 𝐷 and the
coefficient 𝜃

1
, as

𝑢 (𝑘) = 𝐷𝜃1
. (7)

In this paper, we aim to construct the dictionary 𝐵(𝑧−1)𝑢(𝑘).
The transfer function 𝐵(𝑧−1) represents a mechanism, which
incorporates deterministic single-trial EP variations into the
reference signal, rather than a physiologically meaningful
process. From this, it follows that

𝐵 (𝑧
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) 𝑢 (𝑘) =

𝑚+𝑑−1

∑

𝑙=0

𝑏
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𝑢 (𝑘 − 𝑙) ,

(8)

where𝑚 and 𝑑 are usually small positive integers. Given that
𝑢(𝑘) is sparse on dictionary 𝐷, 𝐵(𝑧−1)𝑢(𝑘) is also sparse on
dictionary𝐷. Thus, in this paper, 𝐺 = 𝐷.

2.3. EEG Signal. Similar to ARX, in this paper, the EEG 𝑒(𝑘)
is viewed as an AR model driven by white noise 𝑤(𝑘); that is,

𝑒̂ (𝑘) =

1

𝐴 (𝑧

−1
)

𝑤 (𝑘) . (9)

The parameters can be estimated using the least-squares
method. We assume that the statistical characteristics of the
EEG in the successive trials are similar, as has been reported
in many papers [7, 8]. Thus, in the current paper, instead of
the mixed signal of EEG and EP, we utilise the EEG from a
previous trial, to estimate the parameters of AR model. This
EEG does not contain EP.

2.4. Single-Trial Extraction. Substituting formulas (3) and (5)
into formula (1), we get

𝑠̂ (𝑘) =

̂
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Then,

𝐴(𝑧

−1
) 𝑠̂ (𝑘) = 𝐺𝜃 + 𝑤 (𝑘) . (11)

Let 𝑥(𝑘) = 𝐴(𝑧−1)𝑠̂(𝑘); then, formula (11) can be simplified as

𝑥 (𝑘) = 𝐺𝜃 + 𝑤 (𝑘) . (12)
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Figure 1: Simulated EP indicating three components: N75, P100,
and N145.

Hence,

̂

𝜃 = argmin
𝜃

‖𝜃‖0

s.t. ‖𝑥 (𝑘) − 𝐺 ⋅ 𝜃‖2 ≤ 𝜀0,
(13)

where 𝜀
0
is determined by the variance of the EEG. Formula

(10) can be solved by using optimisation methods, such as
basis pursuit (BP) [15], orthonormalmatching pursuit (OMP)
[16], and Lasso [17].

The single-trial VEP can then be reconstructed by using

̂

𝑝 (𝑘) =

𝐺

̂

𝜃
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)

.
(14)

3. Experimental Results

3.1. Analysis of the Simulations. Computer simulation is
conducted to verify the performance of our proposed VEP
signal extraction method. Depending on the characteristics
of the VEP, the simulated VEP is constructed with three
components and is expressed as

𝑝 (𝑘) = 3 exp(−(𝑘 − 75)
2

20

2
)

− 7 exp(−(𝑘 − (100 + 𝑚))
2

15

2
)

+ 1.2 exp(−(𝑘 − 145)
2

15

2
) .

(15)

The three Gaussian functions represent a prominent VEP
with similar morphological characteristics to those of the
negative (N75), positive (P100), and negative (N145) peaks
of a real VEP, respectively. The simulated VEP is shown in
Figure 1.
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The background EEG that is superimposed on the EP
signal is simulated by an AR process [18], which is given by

𝑒 (𝑘) = 1.5084𝑒 (𝑘 − 1) − 0.1587𝑒 (𝑘 − 2)

− 0.3109𝑒 (𝑘 − 3) − 0.0510𝑒 (𝑘 − 4) + 𝑤 (𝑘) ,

(16)

where𝑤(𝑡) is the Gaussian white noise.The simulated VEP is
shown in Figure 1.

In this paper, we assume that the AR parameters of spon-
taneous EEG in two consecutive trials are extremely similar.
In order to validate this assumption, three consecutive trials
of spontaneous EEG signals 𝑒

𝑖
(𝑘) (𝑖 = 1, 2, 3) are chosen

randomly for the experiment.We compute their least-squares
AR model with an approach. We set
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the other trial, so these parameters are, respectively, changed
as
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The three EEG signals are transformed by 𝐴󸀠
𝑖
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transform of 𝑤
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(𝑘), respectively. In Figures 2 and

3, we, respectively, provide the frequency content and inde-
pendence of 𝑤

𝑖
(𝑘). As can be seen in the figures, compared

with 𝑒
1
(𝑘), the energy of each frequency band of 𝑤
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(𝑘) is

more uniform, and the autocorrelation coefficients of 𝑤
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are lower.
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1/2 represent the difference
between 𝐴

𝑖
and 𝐴

𝑗
. From formula (13), we obtain 𝑑

12
=

0.0743 and 𝑑
13
= 0.1626. In order to test the robustness of

the proposed method in case inaccurate estimations of the
AR coefficients are obtained, we use 𝑒

1
(𝑘) to estimate the AR

parameter and 𝑒
2
(𝑘) and 𝑒

3
(𝑘) to generate the measurements

𝑠

2
(𝑘) and 𝑠

3
(𝑘), respectively. Then, the extracted VEP2 and

VEP3 from 𝑠
2
(𝑘) and 𝑠

3
(𝑘) with our proposed method are

shown in Figure 4. With our method, the VEP2 and VEP3
are extracted from 𝑠

2
(𝑘) and 𝑠

3
(𝑘). As shown in the figure,

when SNR = −5 dB, both VEP2 and VEP3 show results that
approach the simulated VEP.

Table 1: The SNR of VEP2 and VEP3 extracted by our method.

SNR (dB) VEP2 VEP3
Mean Standard deviation Mean Standard deviation

−5 9.98 0.07 9.47 0.08
−10 5.48 0.24 5.24 0.17

Table 1 shows the mean and standard deviation of SNR
obtained from 100 extracted VEP2 or VEP3. As shown in the
table, with the same SNR, the SNR values of VEP2 and VEP3
are similar, although 𝑑

13
is two times larger than 𝑑

12
.

During estimation, the observed SNR values may change
over time due to the nonstationary characteristics of the EEG.
Therefore, in this experiment, the performance of ourmethod
is examined under various SNR conditions. The EEGs are
generated with formula (16).

As shown in Figure 5, although the estimation per-
formance degrades with decreasing SNR, the prominent
morphological characteristics (N75, P100, and N145) are
preserved in all the SNR values.

The average values of SNR obtained with our method,
MOSCA [10], and ARX [6] are shown in Figure 6. The
results are acquired by identifying the average of 100 trials for
each piece of data. In our method, the dictionary of VEP is
constructed by using formula (15) where𝑚 = 0. Similarly, in
ARX, the reference VEP is generated by formula (15) where
𝑚 = 0. In this experiment, we change the latency of P100 by
setting𝑚 = 5 and𝑚 = 10.We can see from this figure that our
method consistently demonstrates the greatest improvement
in all methods. Compared with sparse coding, ARX (𝑚 = 5)
shows superior performance at low initial SNRs. However,
when the latencies change greatly (𝑚 = 10), ARX method
degrades seriously. We can also see that the latency change
has hardly any impact on the estimation performance of our
method.

To increase the objectivity of the evaluation, for each SNR
and𝑚, we generate data from 50 trials and then estimate the
latencies of P100. As shown in Table 2, we change 𝑚 from
−10 to 10 and the SNR from −10 dB to 0 dB and estimate the
single-trial VEP signal. Results show that, with the decrease
of SNR, all standard deviations also increase. The RMSE
value depends primarily on the SNR, rather than on the
variations of latency (𝑚), thereby indicating that our method
is appropriate for tracking the latency variations when SNR ≥
−10 dB.

3.2. Analysis of the Real VEP. To further evaluate the perfor-
mance of our method, we collected VEPs from three pairs
of eyes of three human subjects during pattern reversal VEP
experiments. The basic data obtained from the three subjects
are shown in Table 3.

An example from the 50 trials is selected randomly from
the original recorded VEPs of subject 2’s right eye. Figure 7
shows the corresponding average VEP.

We extract the VEPs with our method, MOSCA, and
ARX, and the results are shown in Figure 8. Clearly, the three
components N75, P100, and N145 of VEPs extracted with our
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Figure 4: The VEP2 and VEP3 extracted with different SNR values. (a) SNR = −5 dB; (b) SNR = −10 dB.

SNR = 0dB

SNR = −3dB

SNR = −5dB

SNR = −7dB

SNR = −10dB

Simulated VEP VEP corrupted with EEG Extracted VEP

Figure 5: Single-trial VEP extracted by our method with different SNR values.

Table 2: Latency of P100 extracted by our method.

𝑚

SNR (dB)
0 −3 −5 −10

Mean Standard deviation Mean Standard deviation Mean Standard deviation Mean Standard deviation
−10 90.8ms 1.4ms 90.4ms 3.2ms 89.2ms 5.8ms 91.1ms 6.2ms
−5 94.9ms 1.4ms 95.5ms 3.9ms 94.5ms 5.9ms 95.7ms 6.6ms
0 100.8ms 1.8ms 100.7ms 3.4ms 102.8ms 4.2ms 101.3ms 6.2ms
5 104.7ms 1.5ms 105.2ms 3.8ms 103.4ms 5.7ms 104.7ms 6.4ms
10 110.7ms 1.9ms 110.2ms 3.9ms 112.4ms 6.1ms 112.4ms 7.4ms
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Figure 6: The improved SNR of VEP with different latencies of P100 using our method, MOSCA, and ARX.
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Figure 7: The average VEP.

Table 3: The basic data of 3 subjects.

Subject Age Sex Vision
1 25 F Normal
2 24 M Normal
3 25 F Normal

method are prominent, and the signals estimated using our
method are more similar to the ensemble average signal.

Then, our method is used to estimate the amplitudes and
latencies of P100 in 200 trials. As shown in Figure 9, the
variations in amplitudes and latencies are significant, whereas
most amplitudes are between −7 and −4 and most latencies
are between 100 and 115. These results have good agreement
with those observed in practice.

4. Conclusions

Single-trial EP estimation is a very useful tool in cognitive
science-related studies and clinical applications. Many inves-
tigations have been carried out and some amount of success
has been achieved. However, only a few practical methods
have been proposed. ARX modelling is a classical method
that has been applied in clinical practice for several years.
However, this method has limitations regarding the tracking
of latency variations and is only capable of extracting latency
variations of an EP under relatively high SNR values. Mean-
while, sparse coding is a powerful tool in signal denoising,
and EPs have been proven to have strong sparsity over an
appropriate dictionary. Inspired by this idea, in this paper, we
introduce sparse coding into the ARX model and propose a
novel single-trial VEP extraction method based on ARX and
sparse coding. Compared with ARMA, sparse coding is more
flexible. It uses the best matching atoms from the dictionary
to represent the EP signal without needing to estimate the
number of atoms beforehand. By transforming the electroen-
cephalography signal into white noise, the single-trial EP
estimation is transformed into a signal denoising problem
for white noise. With the dictionary constructed specially for
EPs, the EP signal can be extracted easily with sparse coding.
Moreover, since the location of the atom in the dictionary has
no influence on the effectiveness of sparse decomposition,
variations of the amplitude and latency of EPs have only a
minor impact on the performance of the proposed method.
The proposed method can thus track EP signal variations.
We conducted a series of experiments on synthetic and real
data, and the results have been evaluated using waveform
observation and several metrics.The validations demonstrate
that our method can well preserve the EP details of latency
and amplitude estimation simultaneously, even under low
SNR conditions.
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Figure 8: (a) The original 50 VEP signals. (b) The estimated VEP with our method. (c) The estimated VEP with MOSCA. (d) The estimated
VEP with ARX.
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Figure 9: (a)The estimation of amplitudes of P100 of 200 trials.Themean is 110.16ms and the standard deviation is 3.07ms. (b)The estimation
of latencies of P100 of 200 trials. The mean is −5.73mv and the standard deviation is 0.54mv.
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