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The high incidence of osteoarthritis (OA) in an increasingly elderly population anticipates a 
dramatic rise in the number of people suffering from this disease in the near future. Because 
pain is the main reason patients seek medical help, effective pain management—which is 
currently lacking—is paramount to improve the quality of life that OA sufferers desperately 
seek. Good animal models are, in this day and age, fundamental tools for basic research 
of new therapeutic pathways. Several animal models of OA have been characterized, 
but none of them reproduces entirely all symptoms of the disease. Choosing between 
different animal models depends largely on which aspect of OA one aims to study. Here, 
we review the current understanding of the monoiodoacetate (MIA) model of OA. MIA 
injection in the knee joint leads to the progressive disruption of cartilage, which, in turn, 
is associated with the development of pain-like behavior. There are several reasons why 
the MIA model of OA seems to be the most adequate to study the pharmacological effect 
of new drugs in pain associated with OA. First, the pathological changes induced by MIA 
share many common traits with those observed in human OA (Van Der Kraan et al., 1989; 
Guingamp et al., 1997; Guzman et al., 2003), including loss of cartilage and alterations in 
the subchondral bone. The model has been extensively utilized in basic research, which 
means that the time course of pain-related behaviors and histopathological changes, as 
well as pharmacological profile, namely of commonly used pain-reducing drugs, is now 
moderately understood. Also, the severity of the progression of pathological changes can 
be controlled by grading the concentration of MIA administered. Further, in contrast with 
other OA models, MIA offers a rapid induction of pain-related phenotypes, with the cost-
saving consequence in new drug screening. This model, therefore, may be more predictive 
of clinical efficacy of novel pharmacological tools than other chronic or acute OA models.
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INTRODUCTION

The Textbook of Rheumatology defines osteoarthritis (OA) as a “slowly progressive monoarticular 
[ … ] disorder of unknown cause and obscure pathogenesis” affecting primarily the hands and 
weight-bearing joints such as hips and knees (Firestein et al., 2016). It is defined clinically by joint 
pain, deformity, and loss of function and pathologically by articular cartilage loss and remodeling of 
the subchondral bone. With the advent of better imaging techniques, synovitis is being increasingly 
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recognized as being present in a considerable proportion of cases 
(Sokolove and Lepus, 2013; Xie et al., 2019). OA is the most common 
form of arthritis or degenerative joint disease; affecting millions of 
people (Bijlsma et al., 2011), with the World Health Organization 
estimating that, globally, up to 10% of people over the age of 60 
years is affected by some form of OA (Hunter et al., 2014). There is 
currently no cure for the disease, with currently available treatment 
focusing on temporary symptomatic pain relief and alleviating 
inflammation, often leaving patients with considerable pain and 
functional disability. Paracetamol, non-steroidal anti-inflammatory 
drugs (NSAIDs), and steroids are the most prescribed pain 
therapies (Lee et al., 2004). Patients that do not respond to NSAIDs 
are candidates for opioid therapy. These therapeutic options come, 
however, with severe side effects: prolonged NSAID use can 
lead to gastrointestinal bleeding and renal toxicity and increase 
cardiovascular risks, and opioids are associated with constipation 
and potential for addiction (Maniar et al., 2018). For patients with 
end-stage OA, surgical joint replacement is required (Hunter and 
Felson, 2006). Pain management in OA continues to be one of the 
main focuses of research because pain is the main reason why OA 
patients seek medical care. However, there is currently no drug 
that can fully treat OA-related pain; a better understanding of the 
pathophysiological mechanisms in play in OA is crucial if we are to 
deliver better treatment options to these patients.

ANIMAL MODELS OF OA PAIN: SURGICAL 
AND CHEMICAL MODELS

To study OA in the laboratory setting, several animal models 
have been developed over the last decades that contributed 
to a better understanding of the pathological mechanisms 
behind the disease. There are obvious limitations with these 
models, particularly those related to differences in anatomy, 
gait, and cartilage characteristics compared to human joints. 
The models only mimic parts or stages of the disease, with 
no model completely reproducing human OA complexity. 
Despite this, the use of animal models allows the study 
of the disease within controlled environment parameters 
and tissue collection at different time points of the model 
(Lampropoulou-Adamidou et al., 2014). We can divide OA 
animal models into two large groups—spontaneous models 
and induced models. Spontaneous models develop slowly but 
are pathophysiologically closest to human OA. However, due 
to the spontaneous nature of these models, it is challenging 
to find appropriate age-matched controls for pharmacological 
studies. Further, they are time- and money-consuming to 
produce and have a high maintenance cost.

In the second group—induced models—there are chemically 
and/or surgically induced animal models of OA. Surgical models 
include damage to the anterior cruciate ligament and partial 
or complete menisectomy. These models have been validated 
in many species and consist of induced lesions similar to those 
observed in humans; therefore, it is expected that the disease will 
progress in a similar way to the progression of post-traumatic 
human OA. Some more aggressive surgical models are, however, 
not appropriate to study the effect of drugs targeting pain, 

because of the rapid progression of cartilage degeneration and 
slow and inconsistent development of pain-related behavior. 
Additionally, surgical models are often technically challenging. 
Nevertheless, surgical models have been used with great success, 
as seen in recent studies that looked at the pain mechanism in 
OA (Mapp et al., 2013; Nwosu et al., 2016; Ashraf et al., 2018).

Chemically induced OA models, on the other hand, 
require much less intervention, consisting, normally, of 
a single intra-articular injection of substances, such as 
monoiodoacetate (MIA), papain, or mucilage, that can 
target different components of the joint (Lampropoulou-
Adamidou et al., 2014; Micheli et al., 2019). Because of their 
artificial onset, these models do not recapitulate the natural 
onset of the human disease but have, nevertheless, found 
pre-clinical value, namely because they originate robust and 
reproducible pain phenotypes, making them particularly 
adequate to test the efficacy of new pharmacological agents 
to treat OA pain (Bove et al., 2003; Micheli et al., 2019). In 
addition, chemically induced models are easy to implement 
and require less invasive procedures than surgically induced 
models. Further, because of the fast onset of development of 
the pain phenotype—which can be controlled by controlling 
the dosage of the substances injected—they are much less 
expensive than spontaneous models. Of all OA models, the 
MIA model is the most often used, being commonly chosen 
to study the efficacy of pharmacological agents to treat pain 
(Bove et al., 2003; Fernihough et al., 2004).

THE MONOIODOACETATE MODEL

MIA intra-articular injection results in histopathological 
alterations and functional impairment similar to some of the 
features observed in the early phases of human OA. MIA is an 
inhibitor of glyceraldehyde-3-phosphate, disrupting cellular 
glycolysis, which in turn leads to eventual cell death (Sabri and 
Ochs, 1971; Van Der Kraan et al., 1989). Because the site of 
injection is restricted to the joint space, intra-articular injection 
of MIA causes mainly chondrocyte cell death, leading to cartilage 
degeneration and subsequent subchondral bone alterations 
(Guingamp et al., 1997; Janusz et al., 2001). Although MIA can 
potentially affect different types of cells in the joint, the avascular 
nature of cartilage makes chondrocytes particularly vulnerable 
(Dunham et al., 1992; Guzman et al., 2003). While the method 
of induction is not technically challenging, MIA is highly toxic if 
it enters the circulation, quickly resulting in the animal’s death, 
so care should be taken not to pierce the joint capsule during the 
injection, so as to prevent MIA from leaking outside of the joint.

PATHOPHYSIOLOGY OF MIA

Joint
Structurally, as early as 1 day after MIA injection, alterations to 
the surrounding synovium and articular cartilage have been 
described (Figure 1) (Bove et al., 2003; Guzman et al., 2003;  
Orita et al., 2011). Chondrocytes are shrunken with fragmented 
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nuclei, and some areas of chondrocyte degeneration are present 1 to 
3 days post-injection. The early stage of the model’s progression is 
characterized by signs of inflammation such as synovial membrane 
expansion and infiltration of macrophages, neutrophils, mast cells, 
lymphocytes, and plasma cells, but they normally subside at day 
7 (Figure 1) (Sousa-Valente et al., 2018). In accordance, human 
OA is also associated with synovitis, characterized by increased 
infiltration of macrophages and other immune cell types (Hill 
et al., 2007; Scanzello and Goldring, 2012) as well as elevation 
of cytokine levels in synovial OA samples (Smith et al., 1997). 
Proximal structures such as the meniscus and ligaments also show 
signs of inflammation. In accordance, after MIA injection, an 
elevation of pro-inflammatory mediators such as Tumor Necrosis 
Factor-α (TNF-α) and Interleukin 6 (IL-6) is observed, typically 
peaking at day 4 (Orita et al., 2011). Clinically used NSAIDs given 
locally can reduce MIA-induced pain as well as MIA-induced C- 
and A-fiber spontaneous activity (Schuelert and Mcdougall, 2009; 
Kelly et al., 2012). Later stages of the disease (after day 10–14) are 
characterized by progressive cartilage degradation and remodeling 
of subchondral bone. Fourteen days post-injection, areas of full-
thickness cartilage damage have been characterized. Formation of 
osteoclasts has also been described (Guzman et al., 2003). There is 
also evidence of osteochondral angiogenesis and vascularization 
(Walsh et al., 2010; Ashraf et al., 2011). Recently, it was also shown 

that superoxide dismutase mimetic compound MnIIMe2DO2A 
can reduce pain sensitivity and TNF-alpha serum levels in an MIA 
ankle model, suggesting a role of oxygen reactive species in the late 
stage of the model (Di Cesare Mannelli et al., 2013).

Primary Sensory Afferents
The knee joint is innervated by primary sensory neurons (PSNs). 
Because cartilage is aneural, mechanisms independent of cartilage 
loss participate in mediating the initial pain in this model. 
However, in later stages, sensory nerves have been described to 
grow into the cartilage, along with new blood vessels (Ashraf et al., 
2011). Nerve fibers detecting bone marrow lesions and edema have 
been shown to contribute to OA pain (Schaible and Grubb, 1993). 
PSN afferents can become sensitized by agents such as histamine 
or cytokines, underlying spontaneous pain, hyperalgesia, and 
allodynia following intra-articular MIA injection (Woolf and Ma, 
2007). In accordance, MIA induces a concentration-dependent 
increase of afferent responses to mechanical stimulation 
(Schuelert and Mcdougall, 2009). Joint cells such as synoviocytes, 
inflammatory cells, or chondrocytes produce chemokines,  
cytokines, and proteases, which can sensitize PSN afferents 
(Schaible et al., 2009). Li et al. have demonstrated that when dorsal 
root ganglia neurons are co-cultured with synovial fluid from OA 

FIGURE 1 | Histopathological progression in the monosodium iodoacetate model of osteoarthritis. Top plane: Representative sections at different time points 
post–MIA injection (1 mg/mouse) stained with toluidine blue/purple, with femoral condyle at the top and tibial plateau at the bottom. (Left) Vehicle-injected joint 
with full-depth normal cartilage and normal subchondral bone structure. (Middle) Eleven days after MIA injection, visible focal cartilage damage and loss of 
proteoglycan staining (arrows) in both femoral and tibial condyles. (Right) Twenty-eight days after MIA injection, marked thinning of the whole articular surface, loss 
of proteoglycan staining, and restructuring of subchondral bone. Bottom plane: Representative sections at different time points post–MIA injection (1 mg/mouse) 
stained with hematoxylin and eosin. (Left) Vehicle-injected joint with normal synovium and few inflammatory cells visible. (Middle) At 11 days, there are obvious signs 
of inflammation: the synovial membrane is expanded, with a significantly increased density of inflammatory cells. (Right) At 28 days, inflammation is reduced, with a 
significant decrease in synovial size, but a dense cellularity is still observable. Scale bar = 100 µm.
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patients, there is a clear elevation of genes associated with neuronal 
pathways (e.g., Substance P (SP), Neurokinin (NK1), Neurokinin 
(NK2), Neuropeptide y receptor (NPYR1), Neuropeptide y receptor 
(NPYR2), α2δ1) or inflammation Cyclooxygenase 2 (COX2)/
Prostaglandin-endoperoxide synthase 2 (PTGS2) and IL-6/
interferon β2), suggesting that blocking inflammation can be a way 
of modulating OA pain (Li et al., 2011). Knee joints of both human 
and rodents are highly innervated by peptidergic afferents, i.e., they 
contain the peptides substance P and/or calcitonin gene-related 
peptide (CGRP) (Saito and Koshino, 2000; Sousa-Valente and 
Brain, 2018), and the number of CGRP-positive fibers in the joint is 
increased in the OA joint (Sousa-Valente et al., 2018), a feature also 
observed in human hip OA (Saxler et al., 2007). Consistently, there is 
an increase of CGRP content in the cell bodies of PSNs innervating 
the joint as well as an increase of CGRP release from the central 
terminals of PSNs (Fernihough et al., 2005; Ferreira-Gomes et al., 
2010; Sousa-Valente et al., 2018). Further, peripheral blockade of 
CGRP receptors by inhibitor BIBN4096BS alleviates MIA-induced 
weight-bearing deficits (Hirsch et al., 2013). Nerve growth factor 
(NGF), which is an important trophic factor, is increased in OA 
joints (Iannone et al., 2002; Manni et al., 2003), and pre-treatment 
with anti-NGF antibodies prevented the development of mechanical 
hypersensitivity in MIA-treated mice (Xu et al., 2016; Sousa-Valente 
et al., 2018). Indeed, anti-NGF therapies have shown promising 
analgesic potential for OA pain treatment, with NGF antibodies 
showing efficacy for pain relief (Lane et al., 2010). Interestingly, 
NGF released from cells in the joint can increase CGRP and SP 
expression in Tropomyosin receptor kinase A (TrkA)-expressing 
neurons (Malcangio et al., 1997), potentially linking the roles of 
CGRP and NGF in OA pain (Malcangio et al., 1997; Ogbonna et al., 
2013; Sousa-Valente et al., 2018).

Spinal Cord
Primary afferent fibers of the knee joint project to several spinal 
cord segments and terminate in both the superficial and deeper 
laminae, where they synapse with dorsal horn neurons (Woolf 
and Ma, 2007). Pathological changes in the joint cause these 
dorsal horn neurons to become hyperexcitable (Neugebauer et al., 
1993), reducing their thresholds and enhancing their responses 
to knee stimulation. Further, sensitized dorsal horn neurons 
expand their receptive fields, a mechanism that underlies the 
spread of hypersensitivity from the knee joint to adjacent areas. 
In accordance, MIA facilitates the responses of wide-dynamic-
range (WDR) neurons to noxious and non-noxious stimulation 
(Chu et al., 2011). Further, MIA-induced increase in dorsal horn 
Fos immunoreactivity—a marker of neuronal activation—at both 
7 and 28 days post–MIA injection correlates with behavioral 
outcomes (Sousa-Valente et al., 2018). MIA-induced pain is also 
associated with increased phosphorylation of mitogen-activated 
protein kinases (MAPK) in the dorsal horn of the spinal cord, 
and MAPK1 inhibitor PD98059 blocked both MIA-induced pain 
behavior and phosphorilated extracellular signal-regulated kinases 
1/2 (pERK1/2) induction in the spinal cord (Lee et al., 2011). 
The transient receptor potential vanilloid type 1 ion channel 
(TRPV1) is a polymodal transducer receptor expressed on a 
subset of PSNs that responds to various stimuli such as noxious 

heat, protons, and molecules such as capsaicin. It plays a crucial 
role in the development of burning pain and reflex hyperactivity 
across several models of pathological pain, including OA pain, 
where TRPV1 expression is elevated (Fernihough et al., 2005; 
Nagy et al., 2014). Interestingly, TRPV1 activation modulates 
the firing of spinal nociceptive neurons in the MIA model, and 
blocking TRPV1 prevented spontaneous firing of WDR neurons 
(Chu et al., 2011). This mechanism involves the release of CGRP 
into the dorsal horn of the spinal cord (Puttfarcken et al., 2010), 
and consistently, intrathecal administration of CGRP antagonist 
CGRP8-37 ameliorates MIA-induced mechanical allodynia 
(Ogbonna et al., 2013). Another important player modulating the 
afferent input into the dorsal horn is the endocannabinoid system, 
with various components of the system being elevated in the spinal 
cord of MIA-treated animals and anandamide catabolism blockade 
using Fatty acid amide hydrolase (FAAH) inhibitor URB597 
having inhibitory effects in MIA-induced mechanically evoked 
responses of WDR neurons (Sagar et al., 2010). Interestingly, 
endocannabinoid regulation of OA pain happens at multiple 
levels in the neuroaxis; in MIA-treated joints, local administration 
of Cannabinoid receptor  1 (CB1) receptor agonist Arachidonyl-
2'-chloroethylamide (ACEA) reduces the mechanosensitivity 
of afferent nerve fibers. This effect is reduced by blocking either 
Cannabinoid receptor 1 (CB1) receptor or TRPV1, suggesting that 
both receptors crosstalk in cannabinoid-mediated antinociception 
(Schuelert and Mcdougall, 2008; Chen et al., 2016).

After MIA injection, a microglial response (microgliosis) in 
the ipsilateral dorsal horn, as well as microglia activation (p-p38 
immunoreactivity), has been reported (Lee et al., 2011; Sagar 
et al., 2011; Sousa-Valente et al., 2018). Attenuation of microglial 
activation, via administration of glial inhibitor minocycline, is 
correlated with reduced pain behaviors in the MIA model (Sagar 
et al., 2011). In contrast with the established role of microglia 
activation and proliferation in the development of the MIA model 
of OA, the participation of astrocytosis is less clear, with some 
studies reporting a lack of astrocyte response (Lee et al., 2011; 
Ogbonna et al., 2013), while others studies report an increase of 
Glial fibrillary acidic protein (GFAP) immunoreactivity (Sagar 
et al., 2014; Lin et al., 2017).

NEUROPATHIC COMPONENT

OA patients commonly complain of referred pain, i.e., pain in areas 
adjacent to the affected joint (Bajaj et al., 2001; Khan et al., 2004) 
and in a subset of OA patients who continue to feel pain even after a 
technically successful joint replacements (Lundblad et al., 2008). Both 
circumstances suggest the existence of a neuropathic component to 
OA pain, given that the pain arises in areas outside the injury site or 
after the peripheral nociceptive input has been removed altogether. 
In animal models, there are also signs of a neuropathic component; 
the aforementioned microglial activation observed during the 
development of the MIA model is often observed in different models 
of peripheral nerve damage. Further, expression of the peripheral 
nerve damage marker AMP-dependent transcription factor  
(ATF-3) in the Dorsal root ganglion (DRG) has been described in 
the MIA model (Ferreira-Gomes et al., 2012; Thakur et al., 2012). 
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Pharmacologically speaking, gabapentin has been shown to have an 
analgesic effect in the late phase of the model, when NSAIDs appear 
to lose efficacy (Fernihough et al., 2004; Ivanavicius et al., 2007).

BEHAVIOR PROFILE OF MIA

In addition to structural changes, MIA-induced pain-related 
behavior has been characterized. Pain assessment in animals is 
challenging. Commonly used assays such as the von Frey test or the 
dynamic plantar aesthesiometer are used to measure alterations of 
nociceptive mechanical thresholds in the hind paw, rather than 
the injected knee joint—a measurement of referred pain. This is, 
primarily, because measuring such thresholds from the joint is 
technically challenging. Nevertheless, as mentioned above, during 
experimental OA, joint afferents typically expand their receptive 
fields to areas adjacent to the injecting joint. The same expansion 
of receptive fields and reduction of mechanical thresholds around 
the joint area have been observed in human OA patients (Wessel, 
1995; Farrell et al., 2000; Kosek and Ordeber, 2000). Another 
method commonly used is the incapacitance test, which measures 
the weight distribution between both hind limbs—a measurement 
of static pain (Bove et al., 2003). Weight-bearing asymmetry and 
paw withdrawal thresholds are measurements of ongoing pain 

and referred pain, respectively, and 1 mg MIA is the only dose to 
induce both, with 0.5 and 0.75 mg MIA only producing referred 
pain (Pomonis et al., 2005; Pitcher et al., 2016).

Interestingly, changes in the hind paw weight distribution 
closely followed changes in punctuate allodynia (Combe et al., 
2004). MIA-induced pain-related behavior has a typical biphasic 
temporal profile (Pomonis et al., 2005; Pitcher et al., 2016). It 
usually manifests 1–3 days after administration as weight-bearing 
deficits and development of referred allodynia or hyperalgesia 
(Combe et al., 2004; Fernihough et al., 2004; Pomonis et al., 2005). 
This biphasic pattern is coincident with structural changes in the 
model progression, with the first stage associated with substantial 
inflammatory response and the second stage reflecting structural 
changes to the joint (Bove et al., 2003; Fernihough et al., 2004).

PHARMACOLOGY OF MIA

The biphasic nature of the model can be also observed in the 
responsiveness of the model to pharmacological agents (Table 1). 
The initial stage of the pain phenotype is sensitive to paracetamol 
(Fernihough et al., 2004) and NSAIDs, which seems to correlate 
with signs of inflammation (Guingamp et al., 1997; Bove et al., 
2003; Fernihough et al., 2004; Pomonis et al., 2005). This stage 

TABLE 1 | Pharmacological modulation of pain-related behavior in MIA model of osteoarthritis.

Compound Dose (mg/kg) Observed changes in pain-related behavior References

Early phase Late phase

Diclofenac 30 M.H. – (Fernihough et al., 2004)
Morphine 6 M.A., M.H. M.H., M.A., W.B. (Combe et al., 2004; 

Fernihough et al., 2004; 
Pomonis et al., 2005) 

Gabapentin 6 – M.A., W.B (Fernihough et al., 2004; 
Ivanavicius et al., 2007)

Paracetamol 1 M.H. W.B. (Fernihough et al., 2004)
(Bove et al., 2003)

Naproxen 10 – W.B. (Bove et al., 2003)
Rofecoxib 10 – W.B. (Bove et al., 2003)
Tramadol 3 – M.A., W.B. (Combe et al., 2004)
CGRP8-37 5nmol/5 µl/mouse – M.A. (Ogbonna et al., 2013)
Indomethacin 3 – W.B. (Pomonis et al., 2005)
Celecoxib 3 – W.B. (Pomonis et al., 2005)
A-796260* 35 – M.E. (Yao et al., 2008)
URB597** 5 – W.B. (Schuelert et al., 2011)
PF-04457845 0.3 – M.H. (Ahn et al., 2011)
Amitriptyline 3 – W.B. (Ivanavicius et al., 2007)
A-889425*** 30 M.E. (Chu et al., 2011)
Anti-NGF antibody 5 M.A. – (Sousa-Valente et al., 2018)
PD98059+ 10 µl – M.E. (Lee et al., 2011)
BIBN4096BS++ 3 W.B. – (Hirsch et al., 2013)
Minocycline+++ 30 – M.A (Sagar et al., 2011)

M.A, referred mechanical hyperalgesia; measured with von Frey apparatus; M.H, mechanical hyperalgesia, measured with Randall–Salito; W.B, weight bearing, measured with 
incapacitance tester; M.E, movement-evoked pain, grip force test.
*CB2 agonist.
**FAAH inhibitor.
***TRPV1 antagonist.
+MAPK1 inhibitor.
++CGRP antagonist.
+++glial cell inhibitor.
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