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Exercise training results in beneficial adaptations to numerous tissues and offers

protection against metabolic disorders including obesity and type 2 diabetes. Multiple

studies have indicated that both white (WAT) and brown (BAT) adipose tissue may play

an important role to mediate the beneficial effects of exercise. Studies from both rodents

and humans have identified exercise-induced changes in WAT including increased

mitochondrial activity and glucose uptake, an altered endocrine profile, and in rodents,

a beiging of the WAT. Studies investigating the effects of exercise on BAT have resulted

in conflicting data in terms of mitochondrial activity, glucose uptake, and thermogenic

activity in rodents and humans, and remain an important area of investigation. This

review discusses the exercise-induced adaptations to white and brown adipose tissue,

distinguishing important differences between rodents and humans and highlighting the

latest studies in the field and their implications.
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INTRODUCTION

Exercise training is an important non-pharmacological strategy to prevent and treat metabolic
diseases, including obesity and type 2 diabetes. Exercise results in adaptations to almost all tissues
in the body that contribute to the beneficial effects of exercise to improve whole-body metabolic
health. A single bout of moderate intensity exercise has dramatic effects on glucose metabolism,
lowering circulating insulin concentrations and improving skeletal muscle insulin sensitivity (1).
Exercise training, defined as repeated bouts of exercise over a period of weeks, months, or years can
decrease insulin concentrations and improve glucose tolerance (1, 2).

While it is well-established that exercise induces adaptations to skeletal muscle (2) and
the cardiovascular system (3), several studies have now determined that exercise also results
in adaptations to adipose tissue that improve whole-body metabolic health (4–15). These
exercise-induced adaptations to adipose tissue include increased mitochondrial activity (5, 10),
decreased cell size and lipid content (11), reduced inflammation (12, 13), and, in rodents, increased
presence of thermogenic brown-like adipocytes or “beige” cells (6, 10, 15). Exercise also alters the
endocrine profile of adipose tissue, inducing the release of adipokines and lipokines that mediate
tissue-to-tissue communication and contribute to the improved metabolic homeostasis seen with
exercise (9, 14, 16). Here, we will discuss studies investigating the exercise-induced adaptations to
white and brown adipose tissue in humans and rodents, with a particular focus on the adaptations
that contribute to thermogenesis.
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ADIPOSE TISSUE

Adipose tissue is a type of connective tissue consisting primarily
of mature adipocytes (∼ 65–90% in volume) (17, 18), a cell
type whose defining characteristic is accumulation of internal
fat droplets (19). In addition to the mature adipocytes, adipose
tissue consists of a stromal vascular fraction (SVF). The
SVF is immensely heterogeneous, containing pre-adipocytes,
mesenchymal stem cells, endothelial cells, and a variety of
immune cells, including macrophages and natural killer T cells
(20). The SVF is very dynamic and can respond and adapt to
stimulus such as β-adrenergic stimulation (20) and exercise (8).

Adipose tissue can be broadly classified into two different
types, white adipose tissue and brown adipose tissue (21). Certain
stimuli such as cold, sympathetic activation (22), exercise (6, 23)
or an enriched environment (24) can give rise to a third type of
adipocytes, beige adipocytes, within the WAT.

White Adipose Tissue
White adipose tissue (WAT) is composed of white adipocytes
and its primary function is energy storage. Energy is stored by
mature adipocytes in the form of triglycerides as one unilocular
lipid droplet which occupies most of the cell volume and can
vary in size (25). Adipose tissue is very dynamic, it can expand
in size via hyperplasia or hypertrophy of the adipocytes (26, 27).
WAT can be further subdivided into two different depots with
distinct functions based on anatomical location, subcutaneous
and visceral WAT (28).

Subcutaneous WAT
Subcutaneous WAT (scWAT) is located beneath the skin. In
mice, scWAT is located in the inguinal, anterior axillary and
interscapular regions (28–30). In humans, scWAT locations
can be divided into lower-body, comprising gluteal and leg
depots, and upper-body, in the anterior abdominal wall region
(28). These distinct locations of scWAT adapt differently to the
same stimulus (26, 31). Under obesogenic conditions, lower-
body adipocytes tend to expand via hyperplasia, which has
been associated with improved metabolic adaptations (32), while
upper-body adipocytes expand via hypertrophy (26). Increases
in upper-body scWAT are correlated with decreased insulin
sensitivity and impaired glucose tolerance (31).

Visceral WAT
Visceral WAT (vWAT) surrounds internal organs. In mice,
vWAT is found in the perigonadal, mesenteric, perirenal,
retroperitoneal, cardiac, and triceps-associated regions (8, 28–
30). In humans, vWAT is located in the intraabdominal (omental
and mesenteric) as well as in the cardiac region (28). In lean
individuals, vWAT accounts for 10–20% of the total fat mass in
males and 5–8% in females (33).

There are distinct differences between scWAT and vWAT.
These two adipose tissue depots behave and adapt differently
to the same stimuli (26, 28, 34). Adipocytes in scWAT are
smaller, have higher avidity for free fatty acid and triglyceride
uptake, and are more sensitive to insulin compared to adipocytes
from the vWAT (33, 35). Subcutaneous WAT has elevated

expression of genes involved in glucose and lipidmetabolism, and
insulin signaling, compared to vWAT (36). Conversely, increases
in vWAT are correlated with impaired glucose tolerance and
increased insulin resistance (31) while increases in scWAT are
correlated with improved metabolism (37).

Brown Adipose Tissue
Brown adipose tissue (BAT) is a metabolically active tissue
that burns carbohydrates and lipids to generate heat (38–
40). Brown adipocytes are characterized by multilocular lipid
droplets, a central nucleus and a high density of mitochondria
(41, 42). The most distinctive feature of brown adipocytes is
the high expression of the thermogenic protein uncoupling
protein 1 (UCP1) (43). UCP1 is located in the inner membrane
of mitochondria and uncouples the proton gradient potential
generated by the electron transport chain. Release of this
chemical gradient results in the dissipation of energy in the
form of heat. In rodents, BAT is found in the interscapular,
mediastinal, perirenal, axillary, and cervical regions (29, 30,
44). BAT is a mammal-specific tissue and in humans, it
was long thought to be present only in infants. In 2009,
multiple studies demonstrated that BAT is also present in
adult individuals (45–48). In humans, BAT is found in the
cervical, supraclavicular, axillary, and paravertebral regions
(45, 49), as well as in the perirenal region in infants (50).
Perirenal BAT consists mainly of dormant brown adipocytes
that can be stimulated to give rise to active brown adipocytes
(51). Brown adipose tissue mass is negatively correlated
with BMI and age in humans (45). Given this, and the
functional role of BAT, targeting BAT as a therapeutic
to combat obesity and metabolic disorders has become
increasingly important.

Beige Adipocytes
Beige or brite (brown in white) adipocytes are a particular type of
adipocytes within scWAT. Over 100 different stimuli are known
to induce beiging, and most of them act through activation of
the sympathetic nervous system (SNS) (52). Beige adipocytes
have multilocular lipid droplets, a central nucleus, and a high
density of mitochondria, similar to brown adipocytes. However,
while brown adipocytes arise from Pax7 and Myf5 positive cells
(53, 54), beige adipocytes arise from Myf5 negative adipogenic
stem cells within the adipose tissue (55, 56). White adipocyte
tissue that has undergone beiging can be distinguished by the
specific beiging markers CD137, TBX1, and TMEM26 (30). Beige
adipocytes function similarly to brown adipocytes in that they
directly generate energy in the form of heat, contributing to
thermogenesis. Beige adipocytes deviate from brown adipocytes
in that they have a high degree of plasticity. In the absence of
beiging stimuli, UCP1 expression, and mitochondrial content of
beige adipocytes decrease and beige adipocytes transition to a
white adipocyte phenotype (49). Increasing beige adipocytes has
significant potential to combat obesity and type 2 diabetes.
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EXERCISE-INDUCED ADAPTATIONS TO
WAT

Exercise is an important therapeutic to prevent and treat
metabolic diseases, including obesity and type 2 diabetes. Exercise
results in adaptations to almost all tissues in the body, including
adipose tissue. Exercise increases whole-body energy expenditure
as chemical energy is converted into kinetic energy. During
acute exercise, WAT has an important role in supplying this
additional energy requirement from the triglyceride stores
within the mature adipocytes (57). Independent from its role
during acute exercise, chronic exercise leads to several metabolic
adaptations in WAT (Figure 1). In this section, we will be
reviewing the different metabolic adaptations that occur in
WAT with exercise in both rodents and humans, including
thermogenesis, mitochondrial adaptations, glucose metabolism,
lipid metabolism, and endocrine adaptations.

Thermogenic Adaptations to WAT
An important exercise-induced adaptation to scWAT in rodents
is the beiging of scWAT. Exercise induces an upregulation of
thermogenic genes such as Prdm16 and Ucp1 in inguinal scWAT
(6, 15, 58, 59) and an increased presence of adipocytes with
multilocular lipid droplets (6, 60). The appearance of beige
adipocytes does not occur homogeneously, as some regions of
the inguinal scWAT are more prone to beiging than others
(58, 61). This exercise-induced beiging is specific to scWAT, in
particular the inguinal scWAT (8), and does not occur in vWAT
(23, 60, 62). Beiging of scWAT is the molecular mechanism that
leads to increased thermogenesis in WAT with exercise, as beige
adipocytes increase non-shivering thermogenesis.

While beiging is an important adaptation to exercise, it
is unclear why exercise induces a beiging of scWAT. Beiging

of scWAT by non-exercise stimuli, including through cold-
exposure, environmental factors or pharmaceuticals, is thought
to be induced through a heat compensatory mechanism in
which adrenergic stimulation compensates for heat loss with
the upregulation of UCP1 (44, 63–65). This explanation does
not make sense in the context of exercise-induced beiging,
because exercise itself increases heat production (66, 67). Several
hypotheses have been proposed as the underlying mechanism,
one of which is an increase in sympathetic innervation, which
occurs in scWAT during exercise (52, 68) Other hypotheses have
indicated that beiging occurs in response to the exercise-induced
release of myokines, such as irisin (23), myostatin (69), meteorin-
like 1 (Metrnl) (70), lactate (71), and β-aminoisobutyric
acid (BAIBA) (72), or other secreted factors released during
exercise, including brain-derived neurotrophic factor (BDNF)
(24). More investigation is needed to fully understand this

complex mechanism. These hypotheses are all important and
plausible, but the most likely explanation is that the exercise-
induced beiging of scWAT occurs because exercise decreases the
adipocyte size and lipid content in scWAT, decreasing insulation
of the body and necessitating heat production, which results
in the beiging of scWAT (52, 73). The fact that mice are
commonly housed at 20–22◦C, the habitual indoor temperatures
for humans, which itself contributes to mice being under chronic
cold stress (74), provides further support for this explanation.

To address the hypothesis that beiging occurs in response to a
loss of fat mass in a cold stress environment, multiple studies have
investigated the effects of exercise at thermoneutrality (30◦C) (14,
75, 76). Interestingly, when mice are housed at thermoneutral
conditions, the exercise-induced increase of thermogenic gene
expression and appearance of multilocular adipocytes exercise
is blunted in male and female mice (75, 76), and this occurred
independent of changes in body mass, fat mass, or running

FIGURE 1 | Exercise-induced adaptations to WAT in (A) rodents and (B) humans.

Frontiers in Endocrinology | www.frontiersin.org 3 April 2020 | Volume 11 | Article 270

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Vidal and Stanford Exercise-Induced Adaptations to Fat

distance. Interestingly, one of these studies investigated female
mice and determined that total running distance was lower at
thermoneutrality (∼40%) (76) and observed no differences in
body weight or adiposity compared to sedentary mice, while
another study determined that running distance was increased
at thermoneutrality in male mice (∼50%) compared to mice
at room temperature (75). These mice also had lower body
mass compared to sedentary mice and mice housed at room
temperature. While these discrepancies make some of the
nuances between these studies difficult to interpret, each study
determined that exercise-induced increase in thermogenic genes
was blunted at thermoneutrality. These data suggest that the
exercise-induced beiging is not a direct consequence of exercise,
it is indirectly induced through other stimuli such as increased
cold stress due to loss of WAT mass.

Several human studies have determined that exercise in
humans does not induce beiging of scWAT (77–80). In lean or
obese individuals, 10–16 weeks of endurance training did not
change the expression of thermogenic genes including UCP1,
PRDM16, and PGC1A in scWAT in males and females (77, 80–
82). Studies conducted in highly exercise-trained populations and
individuals with amore active lifestyle have also not observed any
differences inUCP1 expression in scWAT compared to sedentary
controls (83, 84). These results collectively indicate that exercise
does not induce beiging in humans.

The mechanistic reason as to why rodents and humans have
opposite thermogenic adaptations inWAT is currently unknown.
Similar to what has been discussed earlier, it is likely a result
of cold stress; since rodents are smaller, they have a higher
surface to volume ratio that makes them more susceptible to
cold stress. Exercise decreases WAT accumulation, increasing
cold stress, and thermogenic adaptations are increased to counter
this effect. This would not be the case in humans, so the loss of
WAT may not induce the same thermogenic response. However,
most human studies investigating the effects of exercise on
WAT have been conducted indoors in controlled environments.
Investigating human subjects who exercise in the cold (i.e., skiers,
open water swimmers) might result in a thermogenic response to
humanWAT.

Mitochondrial Adaptations to WAT
Exercise increases mitochondrial activity and density in scWAT
and vWAT in rodents (5–8, 10, 58, 60, 85–87). Eleven days of
voluntary wheel cage running increases the oxygen consumption
rate of scWAT (6) and upregulates mitochondrial genes in both
scWAT (6, 86) and vWAT (7, 8, 10, 58, 85). Importantly, exercise
at thermoneutrality also results in upregulation of electron
transport chain proteins (76), indicating that the increase in
mitochondrial activity after exercise is independent of the beiging
of WAT. In vitro studies indicate that exercise increases basal
oxygen consumption rate of adipocytes differentiated from the
SVF of scWAT (inguinal) or vWAT (perigonadal) of exercised
mice (8), however maximal respiratory capacity only increased
in adipocytes derived from scWAT (8). These data indicate that
mitochondrial adaptations with exercise occur in both scWAT
and vWAT in rodents, independent of beiging.

Exercise induces mitochondrial adaptations in human scWAT
in lean male subjects (83, 88, 89) or young obese female
subjects (77). Six weeks of high-intensity interval training
(HIIT) increased mitochondrial respiration of scWAT (88).
Ten to eighteen sessions of alternating continuous moderate-
intensity training and HIIT did not change expression of genes
involved in oxidative phosphorylation such as PGC1A or COXIV
(78, 83, 90), but long term aerobic exercise-training increased
expression of several genes involved in oxidative phosphorylation
(89) and mitochondrial biogenesis (83). Exercise induced
mitochondrial adaptations in vWAT have not been investigated
in humans. Together these data indicate that exercise or increased
physical activity increases mitochondrial activity in mouse and
humanWAT.

Adaptations to Glucose Metabolism in WAT
Exercise improves whole-body glucose homeostasis in rodents
(91) and humans (1). Exercise increases glucose uptake and
insulin sensitivity of scWAT (6, 15) and induces upregulation of
genes and proteins involved in glucosemetabolism in scWAT and
vWAT (7, 8). These data indicate that exercise improves glucose
metabolism inWAT in rodents. Here, we will focus on the effects
of exercise in glucose homeostasis in WAT.

Recent studies have investigated the effects of exercise at
thermoneutrality on glucose metabolism, with conflicting results.
One study found that exercise still resulted in improvements
in whole-body glucose tolerance (75), whereas another found
no effect of exercise on whole-body glucose homeostasis at
thermoneutrality (76). Interestingly, the latter found that there
was an increase in in vivo insulin-stimulated 3H-2DG uptake
in vWAT at thermoneutrality, but no changes were found in
scWAT (76). In the latter study, the lack of exercise-induced
changes to glucose metabolism can likely be attributed to the
fact that mice at thermoneutrality ran ∼40% less than mice at
room temperature (76). As the results from these two studies
are conflicting, the effects of exercise on glucose metabolism
at thermoneutrality are unclear. Further research is essential to
elucidate the effects of exercise at thermoneutrality on glucose
metabolism and determine which adaptations arise at a systemic
level and which are specific to the WAT.

Studies investigating exercise-induced adaptations to glucose
homeostasis in human WAT are less comprehensive. One study
determined that 6 months of exercise upregulated genes involved
in glucose metabolism in lower-body scWAT (89). Two weeks
of exercise increased insulin-stimulated glucose uptake in lower-
body scWAT, but not upper-body scWAT or vWAT (92). These
data indicate that scWAT and vWAT, and even upper-body
and lower-body scWAT, have distinct adaptations to glucose
metabolism with exercise. This is of particular interest to human
physiology as humans with a higher proportion of upper-body
WAT have been correlated with impaired glucose tolerance,
while humans with a higher proportion of lower-body WAT are
associated with improved glucose levels (32). These data indicate
the lower scWAT has a prominent role on the effect on whole-
body glucose homeostasis and is more susceptible to exercise.
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Adaptations to Lipid Metabolism in WAT
Exercise effects lipid metabolism in WAT during exercise.
Moderate exercise (40–65% VO2 max) acutely increases whole-
body lipolysis two to three times over basal rates after exercising
for 30min, and increases lipolysis up to 5-fold over basal after 4 h
of exercise (93). Here, we will focus on the chronic adaptations of
exercise to WAT with regard to lipid metabolism.

In rodents, exercise induces several adaptations that affect
lipid metabolism including changes in gene expression (6, 8, 94),
post-translational modifications (7) and an altered lipidomic
profile (94). Two to three weeks of voluntary wheel cage running
upregulates genes involved in fatty acid oxidation in scWAT and
vWAT (6, 8), and genes involved in phospholipid metabolism
in scWAT (94). Twelve days of voluntary wheel cage exercise
increases phosphorylation of hormone sensitive lipase (HSL)
(86), and exercise over a longer duration (6 weeks) increases
phosphorylation of adipose triglyceride lipase (ATGL) (7). These
post-translational modifications result in increased lipolytic
activity of ATGL and HSL (95–97). Another study demonstrated
that chronic treadmill training (8 weeks) did not increase the
rate of lipolysis in isolated adipocytes under basal conditions, but
when these adipocytes were stimulated by a β-adrenergic agonist,
lipolysis was significantly increased in adipocytes isolated from
exercised mice compared to adipocytes isolated from sedentary
mice (98). Together, these results suggest that exercise induces
adaptations that increase lipolysis.

Exercise also induces extensive adaptations to the lipidomic
profile of scWAT in rodents. Previous work in our laboratory
demonstrated that 3 weeks of exercise dramatically alters the
lipidome of scWAT. Exercise significantly decreased the overall
abundance of triacylglycerol (TAG), phosphatidylserines (PS)
lysophosphatidylglycerols and lysophosphatidylinositols (LPI)
(94). In addition to the changes in overall lipid classes, there
were also decreases in several specific molecular species of
phosphatidic acid, phosphatidylethanolamines (PE), and PS.
These changes corresponded with a significant upregulation of
several genes involved in phospholipid metabolism. These data
suggest molecular species-specific remodeling of phospholipids
and TAGs in scWAT in response to exercise (66, 94). The
functional consequence of the exercise-induced changes to the
lipidome of scWAT have not been identified, but that will be the
focus of future investigation.

Research on the effects of chronic exercise on lipidmetabolism
in humans has not been thoroughly investigated. Studies have
shown that active individuals (self-reported exercise >3x per
week) have increased levels of CPT1B, the rate-limiting enzyme
in fatty acid oxidation, in scWAT compared to sedentary
individuals (83), and 6 months of exercise upregulates several
genes involved in lipid metabolism (89). These data indicate that
long-term exercise increases fatty acid oxidation in humanWAT.
However, shorter duration exercise interventions do not alter
adaptations to lipid metabolism in WAT (82, 83). Three weeks
of exercise in sedentary individuals did not change CPT1B levels
(83), and 12 weeks of exercise in obese subjects did not change
expression levels of ATGL, HSL, or other lipolytic enzymes (82).
Taken together, these data indicate that exercise upregulates lipid
metabolism in WAT of both rodents and humans.

Endocrine Adaptations to WAT
Exercise induces considerable adaptations to the secretory profile
of several tissues, including adipose tissue (13, 99). Secretory
factors released from adipose tissue have been labeled as
adipokines. Four or more weeks of exercise in rodents decreases
leptin and adiponectin mRNA levels in scWAT (100) and
circulation (87, 100, 101) in rodents and humans. Exercise also
increases expression of other factors such as TNF-α and IL-6 in
both WAT depots and in circulation (85, 100).

Recent work in our laboratory determined that
transplantation of scWAT from exercised donor mice into
sedentary recipient mice resulted in improved whole-body
glucose tolerance. Glucose uptake was also increased in BAT,
soleus and tibialis anterior, indicating that an endocrine factor
is released from exercise-trained scWAT to mediate these effects
(6). TGF-β2 was recently identified as the adipokine responsible
for these beneficial effects on glucose metabolism (14). TGF-β2 is
an adipokine secreted in response to exercise in both rodents and
humans from WAT. In rodents, acute treatment with TGF-β2
increased glucose uptake in soleus, heart and BAT, and increased
fatty acid uptake in skeletal muscle. Notably, adipose tissue
specific TGF-β2 knockout mice did not have exercise-induced
improvements in systemic glucose uptake (14).

Exercise can also induce adaptations in WAT through
myokines such as myostatin and BAIBA. Myostatin is a well-
known factor that inhibits skeletal muscle growth (102). Exercise
decreases myostatin levels in skeletal muscle and serum (103).
Reduced levels of myostatin promote beiging of the scWAT in
rodents (104) and are correlated with improved insulin sensitivity
in humans (103). During exercise, increase in PGC1α triggers
the secretion of β-aminoisobutyric acid (BAIBA) in both rodents
and humans. BAIBA promotes beiging of scWAT in rodents
while it is inversely correlated with serum glucose and insulin
levels in humans (72). These data indicate that exercise stimulates
release of secretory factors, from WAT as well as other tissues
like skeletal muscle, that result in positive metabolic systemic and
WAT specific adaptations.

Effects of Endurance vs. Resistance
Exercise on WAT
Exercise can be broadly divided into endurance (aerobic) and
resistance (strength) training (2). There have been several
studies investigating the different adaptations of endurance and
resistance training in skeletal muscle (2, 105), but this is not
the case with adipose tissue. Most studies have investigated the
effects of endurance training on adipose tissue, using treadmill
or voluntary wheel cage running in rodents, and running or
cycling for human studies. Some studies have compared the
effects of different intensities, moderate (MIT) or high-intensity
(HIT) endurance training on adipose tissue and found that MIT
and HIT had similar effects on WAT in rodents (106, 107) and
humans (92, 108). Meta-analysis comparing the effect of MIT
or HIT on adiposity in humans found HIT resulted in a greater
decrease in total fat mass (109). A few human studies have mixed
endurance and resistance training in their exercise protocols,
without finding any striking differences when compared to just
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endurance training (14, 77, 79, 82). However, to our knowledge,
the direct effect of resistance compared to endurance exercise in
adipose tissue has not been investigated.

EXERCISE-INDUCED ADAPTATIONS TO
BAT

BAT accounts for a small percentage of total fat mass than WAT,
but it is a muchmore metabolically active tissue thanWAT (110).
Exercise increases energy expenditure, thus indirectly increasing
in thermogenesis (111). BAT and WAT functions are different,
and so are their exercise-induced adaptations. Here, we will
discuss the different metabolic adaptations that occur in BAT
with exercise in both rodents and humans (Figure 2).

Thermogenic Adaptations to BAT
The thermogenic effects of exercise on BAT in rodents have
been thoroughly investigated, with conflicting results. Eleven
weeks of swimming (6 days/week; 2 h per day) increased blood
flow and oxygen consumption in response to acute injection
with norepinephrine (NE) (112, 113), indicating that exercise
may increase sensitivity to adrenergic stimulation in BAT.
These data are difficult to interpret because swimming as an
exercise modality indirectly results in cold stress. Interestingly,
these studies found that when the water temperature is 32,
36, or 38◦C, acute injection of NE had the same response to
increase blood flow and oxygen consumption, but BAT mass
was only increased when the water temperature was 32◦C (112).
Other studies investigated the effects of exercise on BAT using
6 weeks of treadmill training as the exercise protocol (114).
Interestingly, there was no effect of treadmill exercise to affect
oxygen consumption or blood flow at rest or after NE injection

(114, 115). Furthermore, BAT mass and protein content were
decreased with 6 weeks of treadmill training (115, 116), regardless
of the ambient temperature of the exercise (room temperature
or 4◦C) (116). In female rats, 6 weeks of treadmill exercise
increased BAT mass and total protein content (117), but 9
weeks of treadmill training reduced BAT mass and decreased
UCP1 expression (118). The reason for this is unclear, but it is
possible that the discrepancies between these two studies could
be explained by differences in the rat strain studied, as the first
study used Sprague-Dawley while the latter used F-344 NNia.
These data indicate that different exercise modalities, or different
animal strains, could result in different adaptations to BAT.

More recent studies have indicated that exercise does not
affect, or even decreases, BAT activity (58, 86, 119). Twelve days
of voluntary wheel cage running in mice did not alter BAT mass
(86), and 6 weeks of treadmill training in rats did not affect
BAT mass, brown adipocyte size or Ucp1 expression (58, 119).
Oxidation of palmitate was also reduced in BAT ex vivo after 6
weeks of treadmill training, indicating exercise decreases fatty
acid oxidation in BAT (58). Exercise at thermoneutrality also
reduced BAT mass and did not alter markers of thermogenesis
(75). These data indicate that exercise does not increase
thermogenic activity in BAT in rodents in the absence of a cold
stress (i.e., swimming).

There is currently a paucity of data that has investigated the
thermogenic adaptations of BATwith exercise in humans. Studies
have determined that endurance trained athletes subjected to
cold exposure have decreased glucose uptake in BAT compared
to sedentary subjects (84, 120). It is important to note that the
current gold standard to measure BAT activity in humans is
18FDG-PET/CT (121), and humans studies have only determined
BAT mass and activity in the context of its ability to take up

FIGURE 2 | Exercise-induced adaptations to BAT in (A) rodents and (B) humans.
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glucose. Moreover, cold exposure is frequently needed to activate
BAT for detection by 18FDG-PET/CT scans. Other methods like
infrared thermography (122) and T2 mapping (123) have been
developed to evaluate BAT presence, but they have not yet been
used to assess differences in BAT activity with exercise. Fat T2
relaxation time mapping is based on BAT having higher water
content than WAT. This technique measures BAT activity and
does not require cold exposure for detection (123). The use of
these new techniques will be important to truly ascertain the
effects of exercise on BAT in humans in vivo.

Mitochondrial Adaptations to BAT
The effects of exercise on mitochondrial activity in BAT have
also been investigated. In rodents, 2–8 weeks of exercise did not
change or decreased expression of mitochondrial genes (8, 58,
75, 76). Recent work in our laboratory determined that 11 days
of voluntary wheel cage running (VWR) in male mice decreased
basal oxygen consumption rate (OCR) in brown adipocytes
differentiated from the SVF of BAT (8), but cells from both
sedentary and exercise-trained BAT were able to respond to
pharmacological stimulation to a similar extent. Eleven days of
VWR decreased NADH autofluorescence, an indirect marker of
metabolism, compared to the sedentary controls (8). In contrast,
6–8 weeks of treadmill training in rats significantly increased
expression of proteins involved in mitochondrial biogenesis,
such as PGC1α, NRF1, or TFAM (119, 124). The reason for the
discrepancies in these studies are unclear, although duration,
exercise modality, or species investigated (rat or mouse), could
contribute to these different responses to exercise.

Studies on the effect of exercise in BAT mitochondria in
humans are limited. One study found no differences on PGC1α
expression in BAT between endurance athletes and sedentary
males (84). Overall, exercise appears to decrease mitochondrial
activity in BAT in mice, but more human studies are needed to
elucidate the effects of exercise on mitochondrial activity in BAT.

Adaptations to Glucose Metabolism in BAT
The effects of exercise on glucose uptake in BAT in rodents
are conflicting. On one hand, some studies have shown that 2–
8 weeks of exercise upregulates expression of genes involved
in insulin signaling, glucose and fatty acid oxidation in BAT
(8, 124, 125). However, 2 weeks of exercise decreased basal
glucose uptake in brown adipocytes differentiated from SVF
(8). Another study indicated that 6 weeks of exercise did not
effect in vivo glucose uptake in BAT at room temperature or
thermoneutrality, measured by in vivo insulin-stimulated 3H-
2DG uptake (76). These data reveal that, although exercise results
in an upregulation of genes involved in glucose metabolism, in
vivo data in rodents indicates that exercise does not increase
glucose uptake in BAT.

Several studies have indicated that exercise does not alter
glucose uptake in BAT in humans. As little as 6 sessions of
HIIT or moderate-intensity exercise-training in a 2 week period
decreased insulin-stimulated glucose uptake in BAT (92), and 6
weeks of moderate-intensity continuous training did not affect
cold-stimulated glucose uptake measured by 18FDG-PET/CT
(126). In addition, endurance athletes have reduced glucose

uptake in BAT when subjected to cold stimulation compared to
sedentary subjects (measured by 18FDG-PET/CT) (84). Another
study determined that there was no association of BAT mass
or activity to physical activity in a cohort of 130 healthy,
sedentary subjects (127). These data indicate that exercise or
increased physical activity does not increase glucose metabolism
in human BAT.

Adaptations to Lipid Metabolism in BAT
The effects of exercise on lipid metabolism in BAT has not
been thoroughly investigated. Eleven days of exercise increased
expression of genes involved in fatty acid oxidation (8), but
decreased expression of genes involved in fatty acid biosynthesis
(94), phospholipid metabolism (94) and lipolysis (8, 75).
Oxidation of palmitate was also reduced in BAT ex vivo after 6
weeks of treadmill training (58).

Exercise affects the lipidomic profile of BAT by increasing
total abundance of TAGs phosphatidylcholines (PC)
and cholesterol esters, while decreasing cardiolipins and
lysophosphatidylglycerols (94). Exercise also significantly
increased several specific molecular species of PC and PE in BAT.
These data show that exercise decreases lipid metabolism in
BAT. To our knowledge, there are currently no studies analyzing
the effect of exercise on lipid metabolism in human BAT. While
it is clear that BAT lipid metabolism changes with exercise, the
role of the exercise-induced decrease in lipolysis or changes in
BAT lipidome have not been identified and will be the topic of
future investigations.

Endocrine Adaptations to BAT
It is important to note that in most cases, particularly in human
studies, BAT activity, and mass are measured by glucose uptake.
This is important in most settings, however, since exercise is a
thermogenic activity it is unlikely that exercise would increase
glucose uptake in BAT. This has led several groups to hypothesize
that exercise may alter the endocrine activity of BAT. In fact,
multiple studies have identified an endocrine role for BAT in
response to exercise (13, 16, 128). Recent work in our laboratory
identified the lipokine, 12,13-diHOME, to be released from BAT
in response to exercise in mice and humans (9) Upregulation
of 12,13-diHOME activates fatty acid uptake and oxidation
in skeletal muscle without affecting glucose homeostasis (9).
This data shows a direct role of BAT to improve metabolic
health with exercise. These are the first data to identify a
secreted factor from BATwith exercise to mediate skeletal muscle
metabolic adaptations.

FUTURE DIRECTIONS AND
CONCLUSIONS

Exercise results in positive metabolic adaptations in both white
and brown adipose tissue. Exercise increases mitochondrial
activity, glucose metabolism, and endocrine activity in WAT in
both rodents and humans. Notably, beiging of WAT only occurs
with exercise in rodents, but both humans and rodents have
increased mitochondrial activity independent of beiging ofWAT.
Exercise increases endocrine activity of BAT but does not affect
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glucose uptake in rodents and humans. Additionally, exercise
does not affect thermogenesis and decreases mitochondrial
activity in BAT in rodents.

An important point of investigation has been the effects of
exercise-induced beiging in WAT. While this adaptation has
been clearly identified in rodents, studies in humans have not
identified the same effects. More recent studies have begun
to investigate the effects of exercise at thermoneutrality to
parse apart the direct effects of exercise on beiging, and have
demonstrated that exercise at thermoneutrality blunts the effects
of exercise on thermogenic gene expression (75, 76). Expanding
these studies will provide greater insight and translational
relevance for determining the effects of exercise on WAT (and
potentially BAT).

Most of the studies discussed in this review have been
conducted in either males or females. This is of particular
importance as there are clear sex differences in adipose tissue
depots among males and females, with females having a higher
percentage of WAT (27) and higher BAT activity at rest (45).
Another important issue in the field of BAT thermogenesis,
especially in human studies, is the measurement of BAT activity.
18FDG-PET/CT is the gold standard for measurement of BAT
mass and activity in humans, however, this analysis is solely based
on the ability of BAT to uptake glucose to use it as a substrate.
This highlights the importance of new techniques to accurately
measure BAT activity and establish in vivomeasurements of BAT
thermogenic capacity, including in the context of exercise. Newer
techniques such as infrared thermography and T2 mapping
are potential mechanisms to elucidate the adaptations of BAT
to exercise.

There is a need for the comprehensive understanding of the
mechanisms underlying the chronic adaptations of adipose tissue
with exercise. A single session of exercise leads to acute changes
in expression of several genes (129). Successive bouts of exercise

most lead to a cumulative effect of these acute changes resulting
in chronic adaptations, which contribute to changes in glucose
metabolism, fatty acid metabolism, and mitochondrial activity.
Post-translational modifications such as protein phosphorylation
regulate protein activity (130), and chronic exercise increases
overall phosphorylation of proteins such as HSL and ATGL,
which result in increased lipolytic activity (7, 75). Epigenetic
modifications may also be underlying drivers of exercise-induce
adaptations to exercise; studies have shown that exercise results
in changes to the genome-wide DNA methylation pattern of
human WAT (131, 132). These studies indicate that epigenetic
modifications could oversee the chronic adaptations to adipose
tissue with exercise by promoting or inhibiting expression of
metabolic genes. Understanding factors that trigger exercise-
induced adaptations remains an open field that will be an
important for future investigations.

Together these studies highlight the importance of
exercise to alter function of WAT and BAT that could
provide important targets to improve metabolic health
and reduce obesity. Future studies will investigate other
mechanisms by which exercise exerts metabolic adaptations
on adipose tissue such as increased mitochondrial function,
improved glucose homeostasis or endocrine function,
providing important translational relevance for exercise as a
therapeutic tool.
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