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Abstract
Background As one of the key features of sleep, sleep duration (SD) has been confirmed to be associated with 
multiple health outcomes. However, the link between SD and cognitive function (CF) is still not well understood.

Methods We employed a combined approach utilizing data from the National Health and Nutrition Examination 
Survey (NHANES 2011–2014) and Mendelian Randomization (MR) methods to investigate the relationship between 
SD and CF. In the NHANES cross-sectional analysis, the association between these variables was primarily examined 
through multivariate linear regression to explore direct correlations and utilized smoothing curve fitting to assess 
potential nonlinear relationships. To ensure the robustness of our findings, subgroup analyses were also conducted. 
MR analysis was used to assess the causal relationship between SD and sleeplessness on CF. After excluding 
confounding factors, univariate and multivariate MR were performed using inverse variance weighting (IVW) as the 
main analysis method, and sensitivity analysis was performed.

Results The results of our cross-sectional study indicate a notable negative association between SD and CF, forming 
an inverted U-shaped curve with the inflection point occurring at SD = 6 h. This relationship remains consistent and 
robust across subgroup analyses differentiated by variables such as age, levels of physical activity, and frequency of 
alcohol intake. In MR analysis, IVW analysis showed no causal relationship between SD and sleeplessness on CF (Both 
P > 0.05).

Conclusion Cross-sectional studies suggest the existence of an inverted U-shaped correlation between SD and CF 
among the elderly. However, MR analysis did not reveal a causal relationship between SD and CF, which the lack of 
nonlinear MR analysis may limit. These findings provide evidence from a sleep perspective for optimizing cognitive 
strategies in older adults.
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Background
In the contemporary era marked by an unprecedented 
rate of population aging, the preservation of cognitive 
function in the elderly emerges as a critical facet of pub-
lic health and geriatric medicine [1]. Cognitive function 
(CF)—encompassing memory, attention, executive func-
tion, and more—serves as the bedrock of autonomy, deci-
sion-making, and the overall quality of life in older adults 
[2, 3]. However, aging invariably brings about a decline 
in these crucial CF, leading to an increased prevalence 
of related disorders, including dementia and Alzheimer’s 
disease [4–6]. Notably, the World Health Organization 
reports that dementia affects approximately 50  million 
individuals globally, with an estimated 10  million new 
cases annually [7]. Cognitive health issues impacts not 
only the affected individuals and their families but also 
society as a whole, resulting in increased healthcare costs, 
caregiver burden, and diminished productivity [8–10]. 
Consequently, elucidating the determinants of cognitive 
health in the elderly, particularly modifiable lifestyle fac-
tors, is critical in devising effective interventions aimed 
at mitigating or reversing cognitive decline.

Sleep, particularly sleep duration (SD), is increas-
ingly recognized as a critical factor influencing cognitive 
health in the elderly [11–14]. The intricate relationship 
between sleep patterns and CF has been the subject of 
numerous observational studies, which have consistently 
indicated a correlation between SD and CF [15–17]. For 
example, research has shown that both short and exces-
sively long SD are associated with impaired CF, memory 
deficits, and a higher risk of cognitive decline [15, 18]. 
Studies drawing on data from various populations have 
observed that optimal SD is linked to better cognitive 
outcomes and may play a protective role against the pro-
gression of cognitive impairment [14, 19].

However, these findings are not without their limita-
tions. Observational studies, while valuable in highlight-
ing associations, are often constrained by confounding 
factors and cannot definitively establish causality. This 
limitation underscores the need for employing robust 
research methodologies that can more effectively discern 
the causal relationship between SD and CF. The utiliza-
tion of the National Health and Nutrition Examination 
Survey (NHANES) 2011–2014 data, coupled with Men-
delian Randomization (MR) methods, presents a novel 
approach in this context. NHANES provides a com-
prehensive, representative dataset of the U.S. popula-
tion, encompassing various health-related information, 
including sleep habits and CF measures [20]. On the 
other hand, MR uses genetic variants as instrumental 
variables to infer causal relationships, thereby mitigating 
confounding biases typical in observational studies [21]. 
Our study aims to illuminate the relationship between SD 
and CF, thereby paving the way for optimizing strategies 

to prevent cognitive decline and develop targeted inter-
ventions for the elderly.

Methods
NHANES study
Study design
This study aims to elucidate the relationship between SD 
and CF utilizing data from NHANES spanning 2011 to 
2014. Conducted by the National Center for Health Sta-
tistics (NCHS) under the Centers for Disease Control 
and Prevention (CDC), NHANES is pivotal in evaluating 
the health and nutritional status of the American adult 
and pediatric population [20]. Distinguished by its inte-
gration of both interviews and physical examinations, 
NHANES employs an intricate, multistage probability 
sampling strategy to generate a representative sample 
of the U.S. civilian, noninstitutionalized demographic, 
inclusive of diverse ages, races, and ethnic backgrounds. 
Methodologically, the survey amalgamates data from in-
house interviews with standardized physical assessments 
conducted in mobile examination centers (MECs).

In our study, we utilized this comprehensive dataset 
to explore the intricate relationship between sleep pat-
terns and cognitive health. By focusing on the 2011–2014 
NHANES data, we aim to derive insights into current 
trends and associations that can inform future research 
and healthcare strategies targeting the elderly population.

The study cohort was derived from the NHANES 
2011–2014 dataset, initially consisting of 19,931 partici-
pants. We excluded participants with incomplete SD data 
(N = 7,391) and CF data (N = 9,681). Finally, 2,931 partici-
pants were included in this study (Fig. 1).

Variables selection
The NHANES 2011–2014 dataset includes a wide range 
of health-related information, making it an invaluable 
resource for studying various public health issues, includ-
ing the dynamics of SD and its impact on CF among the 
elderly.

For the exposure variable of our study, we utilized self-
reported SD data gathered from the NHANES 2011–
2014 questionnaires. Based on previous studies, SD can 
be considered as a continuous and categorical variable for 
analyzing relevant outcomes. We categorized SD as ≤ 6 h 
(insufficient), 7–8 h (average), ≥ 9 h (excessive) according 
to previous studies and clinical rationale [22–24].

In our study, we employed a suite of objective cogni-
tive tests from NHANES 2011–2014 to evaluate CF 
among participants. These assessments included the 
Consortium to Establish a Registry for Alzheimer’s Dis-
ease Word List (CERAD-WL) for both three-trial imme-
diate recall (IR) and one-trial delayed recall (DR), along 
with the Animal Fluency (AF) test and the Digit Symbol 
Substitution Test (DSST) [25, 26].The CERAD-WL test 
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gauges short-term memory and learning through the IR 
component, where participants are asked to recall words 
immediately following their presentation The DR part of 
the CERAD-WL challenges memory retention by having 
participants recall the same list of words after a timed 

delay [26]. The AF test is a measure of verbal fluency and 
semantic memory, requiring participants to list as many 
animal names as possible within a one-minute timeframe 
[27]. This task assesses the rapid generation and articula-
tion of words from a specified category, offering insight 

Fig. 1 Diagrammatic representation of participant selection and exclusion criteria
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into semantic memory and executive function [28]. 
The DSST is utilized to assess components of executive 
functioning and processing speed [29]. In this task, par-
ticipants engage in a symbol-number matching exercise 
that evaluates their attention, speed, and visual-motor 
coordination. The test’s demanding nature requires swift 
cognitive processing and has been shown to be a reliable 
measure of executive function [25]. For each of these 
tests, we calculated Z-scores to normalize the individual 
scores, allowing us to compare across the different cog-
nitive domains assessed by each test [30]. The mean of 
these Z-scores was then computed to provide a compos-
ite score that represents an individual’s overall CF [30, 
31], thus facilitating a comprehensive analysis of the rela-
tionship between SD and cognitive health.

Furthermore, we controlled for a variety of covariates 
to isolate the effect of SD on CF. These included demo-
graphic factors (gender, race, age, education level) [31], 
socio-economic status (Poverty Income Ratio, PIR) [31], 
lifestyle factors (alcohol frequency, waist circumference, 
BMI, smoking status, physical activity) [32], and health-
related variables (diabetes, depressive symptoms) [33].

Statistical analysis
Utilizing the NHANES 2011–2014 dataset, we performed 
a series of multivariate linear regression analyses to elu-
cidate the relationship between SD and CF. Our analysis 
was stratified into three distinct models to incremen-
tally adjust for potential confounders. Model 1 served as 
the unadjusted baseline, examining the raw association 
without controlling for any other variables. In Model 2, 
we introduced adjustments for demographic and socio-
economic factors, specifically gender, age, race, education 
level, and PIR. Model 3 represented the fully adjusted 
model, which, in addition to the variables included in 
Model 2, also controlled for lifestyle and health-related 
factors—alcohol frequency, waist circumference, BMI, 
smoking status, physical activity, diabetes, and depressive 
symptoms. To assess non-linearity in the sleep-cognition 
relationship, we conducted threshold effect analysis and 
fitted smoothing curves. We used EmpowerStats to per-
form smooth curve fitting based on Generalized Addi-
tive Models (GAM). This approach, integrated with R’s 
mgcv package, utilizes spline smoothing to capture the 
nonlinear relationship between sleep duration and cog-
nitive function, offering flexibility without requiring a 
predefined functional form. These analyses allowed us 
to visually and statistically identify any points at which 
the relationship between SD and CF may change in 
direction or intensity. Furthermore, sensitivity analyses 
through subgroup analyses and interaction effect tests 
were performed to verify the robustness of our findings. 
These analyses ensured that our results were not unduly 

influenced by any particular subgroup or confounding 
factor, thereby reinforcing the validity of our conclusions.

In our study, categorical variables were depicted as 
percentages, with intergroup disparities assessed via 
the weighted chi-square test. Continuous variables were 
articulated as mean ± standard deviation and analyzed 
using the weighted Student’s t-test. These statistical 
evaluations were performed utilizing R software (version 
4.2.3) and EmpowerStats (version 2.0). A significance 
threshold was established at P < 0.05 for all analyses, 
delineating the level of statistical significance.

Mendelian randomization study
Study design
Our study utilized a two-sample MR approach to explore 
the causal link between genetically predicted SD and 
sleeplessness on CF. To ensure the validity of our MR 
analysis, we adhered to three critical criteria: firstly, the 
genetic variants must have a significant association with 
SD or sleeplessness; secondly, these variants should be 
free from any association with potential confounding fac-
tors; and thirdly, the influence of these variants on CF 
ought to occur solely through SD or sleeplessness [34]. 
Figure  2 illustrates the study’s methodology. Leveraging 
single nucleotide polymorphisms (SNPs) linked to SD or 
sleeplessness as instrumental variables (IVs), our strategy 
capitalized on the extensive Genome-Wide Association 
Study (GWAS) datasets. This approach effectively cir-
cumvents the limitations typically encountered in obser-
vational studies.

Genetic instruments selection
The GWAS summary statistics for SD and sleeplessness 
were obtained from the UK Biobank public database, 
encompassing data from 460,099 to 462,341 European 
participants, respectively [35, 36]. For SD, ACE touch-
screen question “About how many hours sleep do you 
get in every 24 hours? (please include naps)”. The fol-
lowing examinations were conducted: Reject answers 
less than 1 or more than 23. If the response is less than 
3, the participant is prompted to affirm. If the response 
is more than 12, the participant is prompted to confirm. 
When the participant clicked on the Help button, they 
were shown the message: Provide the average duration 
of sleep for a 24-hour day over the last 4 weeks if your 
sleep patterns have been inconsistent. For sleeplessness, 
ACE touchscreen question “Do you have trouble falling 
asleep at night or do you wake up in the middle of the 
night?“. When the participant pressed the “Help” button, 
they saw the message “If this changes a lot, answer this 
question in terms of the last 4 weeks.”

This MR analysis capitalized on SNPs that demon-
strated robust associations—surpassing the genome-wide 
significance threshold (P < 5 × 10− 8)—with the exposure 
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variables of SD or sleeplessness as IVs [37]. To ensure the 
independence of these IVs, we implemented stringent cri-
teria: a linkage disequilibrium correlation coefficient (r²) 
less than 0.001 and a clumping window exceeding 10,000 
kilobases. Further refinement was conducted through 
the PhenoScanner V2 [38] database to excise any SNPs 
potentially linked with confounders at the genome-wide 
significance level (P < 5 × 10− 8), with a comprehensive list 
of these confounders presented in Supplementary File 1: 
Table S1. In the harmonization phase for exposure and 
outcome data, we rigorously excluded SNPs that were 
missing, palindromic, incompatible, or directly related to 
the outcomes under study from the set of IVs. To address 
and mitigate the impact of weak instrument bias on our 
causal inference, we computed the F-statistic for each IV, 
using the formula: Fexposure = Beta2

exposure

SE2
exposure

. This metric was 
integral to evaluating the robustness of the IVs [39]. IVs 
with F-statistics below 10 were excluded from the anal-
ysis to avoid potential biases associated with weak IVs 
[40]. This stringent criterion ensured that only robust IVs 
were utilized in our MR study, enhancing the reliability of 
our causal estimates.

Summary dataset of outcome
The outcome data for our study come from the 2022 CF 
dataset (GWAS ID: ieu-b-4838), which is provided by 
the IEU Open GWAS project [41]. The dataset contains 
information on 22,593 male and female participants from 
Europe and includes 6,719,661 SNPs.

Statistical analysis
In our study, MR analyses were conducted employing 
the Inverse Variance Weighting (IVW) method as the 

principal analytical framework [42]. We utilized both 
the Fixed Effect (IVW-FE) and Random Effect (IVW-RE) 
IVW models to enhance the robustness of our findings. 
Further reinforcing the validity of our results, comple-
mentary MR methodologies, including MR-Egger and 
the weighted median approaches, were incorporated. The 
MR-Egger method is predicated on the assumption that 
a majority (over 50%) of the IVs are subject to horizontal 
pleiotropy [43], whereas the weighted median model pre-
supposes that a minority (less than 50%) of IVs are influ-
enced by such pleiotropy [44]. Integral to our sensitivity 
analyses were Cochrane’s Q test, employed to scrutinize 
heterogeneity, and the MR-Egger regression intercept 
tests, utilized to investigate the presence of pleiotropy 
[45, 46]. Additionally, the MR-PRESSO test was applied 
to evaluate whether MR estimates remained robust after 
the exclusion of potential pleiotropic outliers [47]. To 
ensure the integrity of our MR findings, we conducted 
a leave-one-out analysis, recalculating the causal effect 
while sequentially excluding each SNP from the instru-
mental variables, thus verifying the stability of our results 
[46]. To address potential reverse causality, Steiger filter-
ing analysis was undertaken, examining the directional-
ity between CF and the outcomes of SD and sleeplessness 
[48]. We established causality only for those exposure-
outcome pairs that maintained a consistent direction 
across all employed MR methodologies and demon-
strated significant findings in the IVW analysis.

Statistical significance for our analyses was prede-
termined at a threshold of P < 0.05. The results, indicat-
ing causal relationships, were quantitatively expressed 
through beta coefficients (β), standard errors (SE), and 
95% confidence intervals (95% CIs). These statistical 

Fig. 2 Principles of Mendelian randomization and assumptions. Assumption (1): the instrumental variables must be significantly associated with ex-
posure. Assumption (2): they should not have any correlation with potential confounding variables. Assumption (3): their impact on cognitive function 
should be exclusively mediated through exposure. IVs, instrumental variables; MR, Mendelian randomization; SNPs, single nucleotide polymorphisms
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evaluations were executed utilizing the “TwoSampleMR” 
(version 0.5.6) and “MR-PRESSO” (version 1.0) packages 
within the R computational environment (version 4.2.3) 
[49, 50].

Multivariable Mendelian randomization analysis
We employed Multivariable Mendelian Randomization 
(MVMR) to assess the impacts of multiple exposures 
on an outcome while adjusting for confounders: smok-
ing, diabetes, depression, obesity, and alcohol intake 
frequency (IEU GWAS IDs: ieu-b-4877, ukb-b-10753, 
ukb-b-12064, ukb-b-15541, ukb-b-5779) [51]. Post inte-
gration of GWAS summaries for these variables, IVs 
were validated for strong associations (P < 5 × 10− 8) with 
the exposures or confounders. We pruned SNPs within 
a 10,000 kilobases and r2 < 0.001 to mitigate linkage dis-
equilibrium effects. Subsequently, the IVW method dis-
cerned causal relationships, excluding palindromic SNPs 
and those missing in outcome data, while accounting for 
these confounders.

Results
Results of NHANES
Basic information
In the demographic data (Table 1), the three SD catego-
ries (≤ 6 h, 7–8 h, ≥9 h) exhibited significant differences 
in age, ethnicity, education level, and PIR, but not in gen-
der. In terms of other covariates, notable differences were 
found among the SD groups in the prevalence of diabe-
tes, symptoms of depression, levels of physical activ-
ity (PA), frequency of alcohol consumption, Body Mass 
Index (BMI), and waist circumference. With respect to 
CF outcomes, all three SD groups showed significant 
disparities in overall cognitive performance as well as in 
individual tests (IR, DR, AF, DSST).

Negative relationship between SD and CF
The results of the regression analysis revealed a notable 
negative association between SD and overall CF (Table 2). 
In the stratified analysis, elderly subjects with SD ≥ 9  h 
showed significant differences in their overall cognitive 
scores compared to those with SD ≤ 6 h. More precisely, 
an increase of 1 h in sleep time led to a 0.02-point reduc-
tion in the total cognitive score for the SD ≥ 9 h relative to 
the SD ≤ 6 h. This pattern was also evident in individual 
cognitive tests (detailed in Supplementary File1: Table 
S2-S5), where each additional hour of SD corresponded 
to decreases of 0.19, 0.35, 0.18, and 0.16 in the scores of 
IR, DR, AF, and DSST.

Smoothing curves and analysis of threshold effects
Smoothing curve fitting (Fig.  3) and threshold effect 
analysis (Table  3) demonstrated a pronounced inverted 
U-shaped correlation between SD and overall CF, with 

the curve’s inflexion point at SD = 6  h. In detail, for 
SD less than 6  h, an increase of 1  h in SD is associated 
with a 0.07 score increase in overall CF scores. When 
SD exceeds 6 h, each additional hour of sleep leads to a 
0.07 score decreases in these scores. Furthermore, simi-
lar analyses were performed for SD and various cognitive 
tests (IR, DR, AF, DSST), as elaborated in the supplemen-
tary file (Supplemental File1: Table S6-S9). The results 
showed that SD’s relationship with IR and DR also exhib-
its an inverted U-shaped curve, with inflection points at 
SD = 6 and 5 h, respectively (detailed in Supplemental File 
2: Figure S1).

Subgroup analysis
After conducting subgroup analysis based on age, PA 
levels, and alcohol frequency (Table  4), the negative 
association between SD and overall CF was consistently 
observed across all subgroups, without any significant 
interaction effects (P for interaction > 0.05). Furthermore, 
detailed subgroup analyses were performed for the rela-
tionship between SD and each cognitive test (IR, DR, AF, 
DSST), stratified similarly by age, PA levels, and alcohol 
frequency, as outlined in the supplementary file (Supple-
mental File1: Table S10-13).

Results of MR analysis
Results of univariate MR analysis
In our study, 24 SNPs were chosen as IVs for SD and 14 
SNPs for sleeplessness. For an in-depth overview of these 
IVs utilized in MR analysis, please refer to Supplemen-
tary File 1: Table S14. The F-statistics of each IV varied, 
ranging from 30.05 to 224.46. For SD and sleeplessness, 
the results of the four MR methods showed that the β 
coefficients obtained by all methods were not significant 
(P > 0.05; Table 5).

In our study, heterogeneity within SD measures was 
assessed using Cochrane’s Q test, revealing signifi-
cant diversity (P < 0.05; Table  6), thereby guiding our 
application of the IVW-RE model for the MR analysis. 
Conversely, the lack of significant heterogeneity in sleep-
lessness metrics justified the use of the IVW-FE model 
(P > 0.05; Table 6). Additionally, MR-Egger intercept tests 
were performed, indicating no substantial influence of 
horizontal pleiotropy on the MR outcomes for both con-
ditions (Both P > 0.05; Table 6).

The MR-PRESSO test identified an outlier SNP 
(rs7016314) within the SD analysis; however, the asso-
ciation remained consistent upon this SNP’s exclusion 
(P = 0.09; Table 6), underscoring the resilience of our find-
ings. Furthermore, a comprehensive leave-one-out sen-
sitivity analysis substantiated the robustness of our MR 
results, demonstrating no significant alteration in out-
comes upon the sequential exclusion of individual SNPs 
(Supplemental File 2: Figures S2-S3). Lastly, our Steiger 
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filtering analysis did not unveil any evidence of reverse 
causation within the analyzed datasets (Table  6), rein-
forcing the directional integrity of our inferred causal 
relationships.

Results of multivariable MR analysis
MVMR analysis was conducted to further assess the 
causal relationship between SD and sleeplessness on CF. 
After individually adjusting for five confounding fac-
tors: smoking, diabetes, depression, obesity, and alco-
hol consumption frequency, both SD and sleeplessness 
continued to exhibit no causal relationship with CF (All 

Table 1 Basic information on the study population
Total SD (hour) P-value

≤ 6 7–8 ≥ 9
Categorical scalar (%)
Gender 0.5229
Male 45.55 43.90 46.11 46.70
Female 54.45 56.10 53.89 53.30
Race < 0.0001
Mexican American 3.39 4.79 2.84 2.89
Other Hispanic 3.64 5.50 3.02 2.27
Non-Hispanic White 79.44 67.79 83.70 85.77
Non-Hispanic Black 8.48 13.81 6.33 6.70
Other 5.05 8.11 4.11 2.37
Education level 0.0004
< 9th grade 5.71 7.17 4.60 8.22
9-11th grade 10.26 11.52 9.78 9.67
High school graduate/GED 22.04 23.62 21.39 21.59
College or AA degree 31.42 32.96 31.45 27.21
College graduate or above 30.56 24.72 32.77 33.31
Smoking status 0.9704
Yes 50.40 50.69 50.35 49.90
No 49.60 49.31 49.65 50.10
Diabetes < 0.0001
Yes 19.28 24.10 16.26 23.82
No 76.64 72.09 79.73 71.03
Boundary 4.08 3.81 4.01 5.15
Depressive symptoms < 0.0001
Yes 8.33 14.27 5.47 9.01
No 91.67 85.73 94.53 90.99
Physical activity < 0.0001
High level 51.25 49.94 54.42 36.63
Low level 48.75 50.06 45.58 63.37
Continuous variables
(M ± SD)
Age (year) 69.22 ± 6.65 68.48 ± 6.36 69.25 ± 6.68 71.00 ± 6.89 < 0.0001
PIR 3.08 ± 1.53 2.90 ± 1.53 3.18 ± 1.52 3.00 ± 1.56 < 0.0001
Alcohol frequency (time) 4.89 ± 22.20 2.96 ± 8.92 5.64 ± 26.05 5.69 ± 22.50 0.0128
BMI (kg/m2) 29.04 ± 6.21 29.83 ± 7.02 28.63 ± 5.72 29.28 ± 6.41 < 0.0001
Waist circumference (cm) 102.34 ± 14.21 103.45 ± 15.05 101.60 ± 13.89 103.59 ± 13.46 0.0020
IR 0.17 ± 0.96 0.15 ± 0.95 0.23 ± 0.95 -0.11 ± 1.03 < 0.0001
DR 0.14 ± 0.99 0.21 ± 0.92 0.17 ± 0.99 -0.23 ± 1.07 < 0.0001
AF 0.28 ± 1.04 0.20 ± 1.00 0.35 ± 1.05 0.06 ± 1.07 < 0.0001
DSST 0.36 ± 0.97 0.29 ± 0.98 0.44 ± 0.96 0.11 ± 0.96 < 0.0001
Cognitive function (score) 0.24 ± 0.79 0.21 ± 0.77 0.30 ± 0.78 -0.04 ± 0.82 < 0.0001
PIR: Ratio of family income to poverty; SD: sleep duration; IR: Word list learning trials (immediate recall); DR: Word list learning trials (delayed recall); AF: Animal fluency; 
DSST: Digit symbol substitution test. Continuous variables are described using mean ± standard deviation(M ± SD), while categorical variables are represented by 
percentages (%). Individuals with a score > 9 on the Patient Health Questionnaire [PHQ-9] were considered to have depressive symptoms. High level of physical 
activity was defined as ≥ 600 MET-min/week and low level of physical activity was defined as < 600 MET-min/week
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P > 0.05, Fig. 4). This lack of causality persisted even after 
simultaneously adjusting for all five confounders (Both 
P > 0.05, Fig.  4), indicating a robust finding across mul-
tiple analytical conditions.

Discussion
In our cross-sectional study of NHANES 2011–2014 
data, we discovered a notable inverse U-shaped cor-
relation between SD and CF in the elderly. This pattern 
indicates that both insufficient and excessive sleep are 
associated with poorer cognitive performance com-
pared to moderate SD. Interestingly, our findings reveal 
that the cognitive function of elderly individuals sleep-
ing excessively is lower than those with insufficient sleep. 
However, our Mendelian Randomization analysis did 
not establish a causal relationship between SD and CF. 
These results underscore the complexity of the sleep-
cognition nexus in the elderly and highlight the need for 
further research to explore the underlying mechanisms 
and potential interventions to support cognitive health in 
aging populations.

Consistent with earlier research, our study reaffirms 
the complex relationship between SD and cognitive func-
tion in the elderly. Many prior studies have also identi-
fied a non-linear association, typically suggesting that 
both short and long SD could be detrimental to cognitive 
health [11, 52, 53]. This is in line with our observation of 
an inverse U-shaped relationship, reinforcing the notion 
that an optimal SD exists for cognitive health. However, 
a unique aspect of our study is the emphasis on the more 
pronounced cognitive decline in elderly individuals with 
excessive SD compared to those with insufficient sleep. 
This contrasts with some earlier findings where the focus 
has been predominantly on the adverse effects of short 
SD [13, 54]. Our results thereby contribute to a more 
nuanced understanding of the sleep-cognition dynamic, 
suggesting that excessive sleep might be an equally or 
more important factor to consider in cognitive health. It’s 
important to note that while our study adds to the grow-
ing body of literature, the lack of a demonstrated causal 
link between SD and CF through Mendelian Random-
ization analysis presents a divergence from some studies 
that have suggested a potential causal relationship [55, 
56]. Previous research by Henry et al. demonstrated the 
importance of considering non-linear MR approaches 
when investigating SD and cognitive outcomes [55]. 
Similarly, Chen et al. found a U-shaped association 

Table 2 Association between SD and overall cognitive function
β(95%CI)
Model 1 Model 2 Model 3

SD (hour) -0.04 (-0.06, -0.02) 0.0003 -0.04 (-0.05, -0.02) < 0.0001 -0.04 (-0.06, -0.02) < 0.0001
≤ 6 0(reference) 0(reference) 0(reference)
7–8 0.08 (0.02, 0.15) 0.0114 0.01 (-0.04, 0.06) 0.6370 -0.01 (-0.06, 0.05) 0.8463
≥ 9 -0.26 (-0.36, -0.16) < 0.0001 -0.22 (-0.30, -0.14) < 0.0001 -0.22 (-0.30, -0.14) < 0.0001
P for trend 0.007 < 0.001 < 0.001
SD: sleep duration

Model 1: Unadjusted Variables. Model 2: Race, gender, age, education level, ratio of family income to poverty were adjusted. Model 3: Race, age, gender, education 
level, ratio of family income to poverty, alcohol frequency, waist circumference, BMI, smoking status, diabetes, depressive symptom, and physical activity were 
adjusted

Table 3 Threshold effect analysis of SD on overall cognitive 
function

β(95%CI)
One-line linear regression model -0.04 (-0.06, -0.02) < 0.0001
Two-piecewise linear regression model
Inflection point (K) 6
SD < K(hours) 0.07 (0.02, 0.13) 0.0059
SD ≥ K(hours) -0.07 (-0.10, -0.05) < 0.0001
Log-likelihood ratio < 0.001
SD: sleep duration;

This model adjusted for various variables including race, age, gender, education 
level, ratio of family income to poverty, alcohol frequency, waist circumference, 
BMI, smoking status, diabetes, depressive symptom, physical activity

Fig. 3 Smoothed curves of the relationship between sleep duration and 
cognitive function
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between SD and dementia risk, highlighting the poten-
tial genetic susceptibilities influencing both short and 
long SD [56]. The MR analysis employed in this study uti-
lized a linear model, which may not be suitable for cap-
turing the observed non-linear, U-shaped relationship. 
Linear MR models assume a constant effect size across 
the range of the exposure, potentially overlooking com-
plex associations where the effect varies at different lev-
els of exposure. Consequently, our MR analysis may not 
have detected a causal relationship due to its inability to 
model non-linear effects. Future studies should consider 
employing non-linear MR methods to better understand 

the complex interplay between SD and CF. This discrep-
ancy underscores the complexity of the relationship and 
the need for ongoing research using diverse methodolog-
ical approaches to fully understand the interplay between 
sleep and cognitive health in the elderly.

Our study suggests that in older adults, excessive SD 
may exert a more adverse effect on CF than short SD. 
However, the mechanisms driving this association are 
not definitively established. We propose several poten-
tial mechanisms for consideration. Firstly, the correlation 
between excessive sleep and underlying health condi-
tions might be a key factor. Diseases such as depres-
sion and cardiovascular conditions [57, 58], which are 
linked to prolonged SD, are independently associated 
with cognitive decline [59, 60]. This suggests that exces-
sive sleep may be more symptomatic of these underlying 
conditions rather than a direct cause of cognitive impair-
ment. Another mechanism to consider is the disruption 
of the brain’s clearance processes due to excessive sleep. 
Sleep facilitates the elimination of metabolic waste from 
the brain, but overextension of this state could poten-
tially interfere with these processes, potentially leading 
to an accumulation of neurotoxic substances like beta-
amyloid plaques [61, 62]. In addition, poor sleep quality, 
often masked by prolonged SD, is also a potential factor. 
This can result in disrupted sleep cycles and frequent 

Table 4 Subgroup analyses of the relationship between SD and overall cognitive function
Model 1 Model 2 Model 3

SD (hour) -0.04 (-0.06, -0.02) 0.0003 -0.04 (-0.05, -0.02) < 0.0001 -0.04 (-0.06, -0.02) < 0.0001
Stratified by age
≤ 70 -0.01 (-0.04, 0.01) 0.3118 -0.05 (-0.07, -0.03) < 0.0001 -0.05 (-0.08, -0.03) < 0.0001
>70 -0.03 (-0.06, 0.01) 0.1128 -0.04 (-0.07, -0.01) 0.0033 -0.04 (-0.06, -0.01) 0.0100
P for interaction 0.5847 0.6038 0.3675
Stratified by PA
High level -0.02 (-0.06, 0.01) 0.1539 -0.02 (-0.05, 0.00) 0.0688 -0.03 (-0.05, -0.00) 0.0265
Low level -0.04 (-0.07, -0.01) 0.0047 -0.05 (-0.07, -0.03) < 0.0001 -0.05 (-0.07, -0.02) < 0.0001
P for interaction 0.4125 0.1419 0.3203
Stratified by alcohol frequency
High level -0.05 (-0.08, -0.03) 0.0002 -0.05 (-0.07, -0.02) < 0.0001 -0.05 (-0.07, -0.03) < 0.0001
Low level -0.03 (-0.06, 0.00) 0.0846 -0.04 (-0.06, -0.01) 0.0059 -0.05 (-0.07, -0.02) < 0.0001
P for interaction 0.2410 0.5141 0.3004
SD: sleep duration

Model 1: Unadjusted Variables. Model 2: Race, gender, age, education level, ratio of family income to poverty were adjusted. Model 3: Race, age, gender, education 
level, ratio of family income to poverty, alcohol frequency, waist circumference, BMI, smoking status, diabetes, depressive symptom, and physical activity were 
adjusted

Table 5 Mendelian randomization analysis results
Exposure Method SNPs MR

β (95%CI) SE P
Sleep duration IVW-FE 24 -0.08 (-0.42, 0.26) 0.17 0.66

IVW-RE 24 -0.08 (-0.55, 0.39) 0.24 0.75
MR Egger 24 -0.05 (-1.51, 1.41) 0.74 0.95
WM 24 0.14 (-0.40, 0.68) 0.28 0.61

Sleeplessness IVW-FE 14 -0.22 (-0.74, 0.31) 0.27 0.42
IVW-RE 14 -0.22 (-0.79, 0.36) 0.29 0.47
MR Egger 14 -0.57 (-3.90, 2.77) 1.70 0.75
WM 14 -0.28 (-1.02, 0.46) 0.38 0.46

IVW-FE, inverse variance weighted (fixed effects); IVW-RE, inverse variance 
weighted (multiplicative random effects); WM, Weighted median; β, beta; SE, 
standard error

Table 6 Results of sensitivity analyses
Exposure Heterogeneity

(Cochran’s Q test)
Pleiotropy Steiger filtering

MR-egger IVW MR egger MR-PRESSO
Q P Q P Intercept P n Outliers P Correct causal direction P

Sleep duration 43.78 0.01 43.78 0.01 0.01 0.97 1 0.09 TRUE 0.57
Sleeplessness 15.72 0.21 15.78 0.26 0.01 0.84 NA NA TRUE 0.36
IVW, inverse variance weighted; SE, standard error
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awakenings, which are detrimental to the hippocampus 
and memory consolidation, hence impacting CF [14, 63–
65]. Lastly, the lifestyle associated with excessive sleep, 
characterized by reduced physical and cognitive activity, 
could contribute to cognitive decline. Regular engage-
ment in stimulating activities is crucial for cognitive 
health, and a sedentary lifestyle due to prolonged sleep 
could limit these beneficial activities [66–68]. In con-
clusion, while our study highlights the potential greater 
harm of excessive sleep on CF compared to insufficient 
sleep in the elderly, the exact mechanisms remain unclear 
and require further exploration.

Our study shares similarities with Yu et al. [69], which 
also explored the relationship between sleep duration 
and cognitive function using NHANES and UK Biobank 
data. However, key differences exist. Yu et al. used a bidi-
rectional MR approach with SNPs categorized for short 
and long sleep durations, whereas our study applied a 
linear MR analysis using sleep duration as a continuous 
variable. This difference stems from our lack of access to 
individual-level UK Biobank data, which is necessary for 
such categorization. While Yu et al. identified a causal 
link between extreme sleep durations and cognitive risks, 
our study did not establish such a relationship, likely 

Fig. 4 MVMR analysis for evaluating the causal effect of sleep duration and sleeplessness on cognitive function. MVMR, multivariable Mendelian random-
ization; β, beta; SE, standard error

 



Page 11 of 13Qiu et al. BMC Geriatrics          (2024) 24:935 

due to differences in methodology and data availability. 
These contrasting findings highlight the complexity of 
the sleep-cognition relationship and the need for further 
research.

Despite yielding valuable insights, our study has several 
limitations. The cross-sectional design of the NHANES 
dataset curtails our capacity to deduce temporal rela-
tionships and longitudinal changes. Moreover, while 
MR serves as a potent mechanism for causal inference, 
it presumes that the genetic instruments employed are 
specifically associated with SD and sleeplessness with-
out influencing CF via alternate pathways. This study 
also does not encompass other potential confounding 
variables, including nutritional intake, lifestyle behaviors, 
and environmental factors, all of which could influence 
both SD and CF. A key limitation is the use of a linear MR 
model, which may not capture the nonlinear U-shaped 
relationship between SD and CF. Future studies should 
explore nonlinear MR methods to more accurately assess 
causal relationships in such complex associations. Addi-
tionally, our study has another limitation, which is that 
only a portion of participants in NHANES completed 
the sleep questionnaire and the full CF tests. The miss-
ing data could potentially introduce bias into the results. 
Future research should aim to overcome these con-
straints and further dissect the intricate relationships 
among physical health, genetic predispositions, and CF 
with greater granularity.

Conclusion
In our study, cross-sectional study findings indicate an 
inverted U-shaped relationship between SD and CF, with 
excessively long SD having a more detrimental effect on 
CF than insufficient sleep. However, MR analysis did 
not reveal a causal relationship between these variables. 
These findings underscore the importance of optimal SD 
for the cognitive health of older adults, offering poten-
tial intervention strategies to prevent cognitive decline 
associated with aging. And highlight the criticality of 
maintaining an optimal SD for safeguarding the cognitive 
health of the elderly. It propels the discourse on devising 
tailored sleep management strategies as preventive mea-
sures against the cognitive decline associated with aging.
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