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Optimizing the construction and update strategies for reference and candidate populations
is the basis of the application of genomic selection (GS). In this study, we first
simulated1200-purebred-pigs population that have been popular in China for 20
generations to study the effects of different population sizes and the relationship
between individuals of the reference and candidate populations. The results showed
that the accuracy was positively correlated with the size of the reference population within
the same generation (r = 0.9366, p < 0.05), while was negatively correlated with the
number of generation intervals between the reference and candidate populations (r =
−0.9267, p < 0.01). When the reference population accumulated more than seven
generations, the accuracy began to decline. We then simulated the population
structure of 1200 purebred pigs for five generations and studied the effects of different
heritabilities (0.1, 0.3, and 0.5), genotyping proportions (20, 30, and 50%), and sex ratios
on the accuracy of the genomic estimate breeding value (GEBV) and genetic progress. The
results showed that if the proportion of genotyping individuals accounts for 20% of the
candidate population, the traits with different heritabilities can be genotyped according to
the sex ratio of 1:1male to female. If the proportion is 30% and the traits are of low
heritability (0.1), the sex ratio of 1:1 male to female is the best. If the traits are of medium or
high heritability, the male-to-female ratio is 1:1, 1:2, or 2:1, which may achieve higher
genetic progress. If the genotyping proportion is up to 50%, for low heritability traits (0.1),
the proportion of sows from all genotyping individuals should not be less than 25%, and for
themedium and high heritability traits, the optimal choice for themale-to-female ratio is 1:1,
which may obtain the greatest genetic progress. This study provides a reference for
determining a construction and update plan for the reference population of breeding pigs.
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1 INTRODUCTION

Genomic selection (GS), a method by which breeding values
are predicted using genome-wide markers, has become more
and more popular in livestock breeding (Goddard et al., 2016).
In pigs, there are many studies that have reported the
advantage of GS. Using pig 60K chips, Christensen et al.
studied the daily gain and feed efficiency of Danish Duroc
pigs and found that the genomic estimate breeding value
(GEBV) is more accurate than traditional methods
(Christensen et al., 2012). Uimari et al. performed GS on 86
Landrace pigs and 32 Large White pigs using a 60K chip for
traits such as growth rate, feed conversion ratio, and carcass
quality, and the results showed that the effective population
size estimated by the genomic best linear unbiased prediction
(GBLUP) and best linear unbiased prediction (BLUP) methods
was almost indistinguishable, indicating that the genome
selection technique has obvious advantages in the case of
insufficient data volume (Uimari and Tapio, 2011). In the
research of Howard et al., the single-step genomic best linear
unbiased prediction has more accurate than BLUP (Howard
et al., 2018). The findings of Marulanda et al. suggest that GS
can greatly improve genetic progression (Marulanda et al.,
2021).

There are many factors that affect the accuracy of genome
selection, one of which is the size and composition of the
reference population (Yang et al., 2020). The reference
population consists of individuals with genotype information
and observations of phenotypic values based on their own or
offspring performance. In general, the accuracy of the GEBV will
be higher when using a larger reference population (Dekkers
et al., 2021). An optimally designed reference population is
expected to maximize the accuracy of a candidate population
(Isidro et al., 2015; Marulanda et al., 2021). In the research of
Cleveand et al., the accuracy of the GEBV was related to the
degree of kinship between the reference population and the
candidate population, so parental information was used to
predict the offspring with the highest accuracy (Cleveland
et al., 2012). In other research, if the reference population was
not updated, the accuracy of genomic breeding values decreased
with increasing generations (Meuwissen et al., 2001; Pszczola
et al., 2012a). Moreover, as data continue to accumulate, the
estimation pressure continues to increase; in particular, the time
spent on the inversion of the G matrix increases. Therefore,
maintaining a suitable number of reference populations is
particularly important for the application of GS in production
practice.

Candidate populations are another important component of
genomic selection. However, due to the limitation of research and
development costs, different companies have different
requirements for the determination of the proportion of
candidate populations, and according to the characteristics of
different traits, the genetic progress obtained by different
genotyping schemes is also be inconsistent. The results of
Danish’s pig research Centre showed that the greatest
potential genetic progress can be obtained by preselecting 40%
of the individuals for genotyping using the mean GEBV of the

parents. In the research of Lillehammer et al., if two sibs of boars
were tested simultaneously in each litter, the genetic progress of
maternal traits was faster (Lillehammer et al., 2011). However,
little research has reported the genotyping proportion and sex
ratio of traits with different heritabilities in pigs.

In China, there are more than 3000 breeding farms, and the
GS was first implemented in Wens group at 2012. At 2017,
China national GS plan which consisted of about 30 farms was
implemented, and then the reference population began to be
constructed. However, systemic GS breeding scheme for most
of the breeding farms is still lacked. In this study, based on the
most popular population structure of pig farms in China, the
effect of the reference population size and update strategy on
the accuracy of genome selection was studied by simulating
swine genome data. The effect of the genotyping amount and
genotyping ratio of the candidate population on the accuracy
of genome selection and genetic progress was also explored.
According to the actual situation of breeding and production
in breeding pig farms, this study provides a technical reference
for the establishment of the application of GS technology in the
genetic evaluation of breeding pigs.

2 MATERIALS AND METHODS

2.1 Data Simulation
In this study, QMSim software (Sargolzaei and Schenkel, 2009)
was used to simulate pedigree and genomic data. When
simulating the reference population formation and update
strategy, the selected medium heritability traits were set to 0.3.
To research the candidate population, data for three different
heritabilities (0.1, 0.3, and 0.5) were simulated.

2.1.1 Historical Population
The simulation flow of this study is shown in Figure 1. This study
first simulated the bottleneck effect of the population in the
historical evolution process according to the Fisher–Wright
population model (Wright, 1990). The initial population was

FIGURE 1 | The flow of population simulation.
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3000 heads, and 1000 generations were simulated. The
population of the 1000th generation was 3000, with half being
male and half female. After 1000 generations, the size of the
population was gradually reduced to 400. The last generation
obtained 2050 individuals (including 50 male individuals) by
random mating. These individuals formed the basis of all
selection schemes, and recent populations were selected on
this basis.

2.1.2 Recent Population
Simulation was carried out according to the group size of a
general purebred pig farm in China (Song et al., 2017; Guan
et al., 2021). In the population, there were 30 boars, 1200 sows,
a male-to-female ratio of 1:40, 10 offspring per litter, and a
male to female offspring ratio of 1:1; the annual renewal rate of
the boars in the group was 100%, and the annual renewal rate
of the sows was 40%. In each generation, individuals with a
high EBV were selected and individuals with a low EBV were
eliminated. When studying the reference population, 20
generations of data were simulated, and the mating method
was random mating. In the research on the candidate
population, five generations of data were simulated, and the
mating method was also random mating (Table 1).

2.1.3 Genome Parameters
According to the Porcine SNP50 BeadChip chip, which is
commonly used in China, the simulated genome parameters
were set as follows: The number of chromosomes was 18, the
chromosome length was 100 M, the number of SNP markers
on each chromosome was 2834, and the number of Single
Nucleotide Polymorphisms (SNP); markers on the genome

was 51,012. There were 17 QTLs on each chromosome, both
markers and quantitative trait loci (QTLs) were biallelic, and
SNPs and QTLs are evenly distributed on the chromosomes.
The distribution of QTL effects follows a gamma distribution
with ɑ = 0.4 and a scale function of 1.66, according to Hayes
et al. (Hayes and Goddard, 2001).

2.2 Estimate Breeding Value Estimate
Model
The EBV that was used to generate the index was estimated
based on the animal model as outlined below:

y � Xb + Zg + e

where y is a vector of phenotypic observations, b is a vector of
fixed effects, u is a vector of random additive genetic effects, e is a
vector of random residuals, and X and Z are incidence matrices
relating observations to the fixed and random additive genetic
effects, respectively.

The GEBV was estimated using single-step GBLUP
(ssGBLUP) model which could using information of both
genotyped and non-genotyped phenotype information. The
ssGBLUP has the same model as EBV estimated, except vector
g is assumed to follow a normal distribution N (0, Hσg2), as
described in previous study (Song et al., 2018).

2.3 Estimation Accuracy
The correlation between the true breeding value (TBV) and the
EBV on the selection candidates were calculated as accuracy.

2.4 Estimation of the Breeding Values of the
Reference Populations
In-house R scripts were used to randomly select one male and one
female from each litter of each generation for phenotype
calculation. The pedigree data were the pedigree of all
individuals from the initial generation to the 20th generation.
Using the DMUAI module in the DMU software, parameter
estimation was performed for each group of generations, repeated
three times, and the average value was used as the parameter for
estimating the GEBV. The composition of each generation and
the composition of the pedigree data are shown in
Supplementary Table S1. In this study, the reference
population was constructed in four ways: 1) randomly
selecting one male and one female (20%), two males and two
females (40%), three males and three females (60%), four males
and four females (80%), five males and five females

FIGURE 2 | Results of the variance component estimation in different
generations. σp2,σa2, and σe2 represent the phenotypic, residual, and genetic
variances, respectively.

TABLE 1 | Simulation group structure composition and update strategy.

Boars Sows Litter
size

Test number Refresh
rate
(%)

Refresh
number

Raising
rate
(%)

Boar/
Gilts

Fraction selected

BLUP GBLUP BLUP GBLUP

30 1200 10 120 1200 100 30 80 37.5 0.016 0.016
30 1200 10 2400 1200 40 480 80 600 0.125 0.25
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(100%),respectively, in the 19th generation; 2) randomly selecting
one male and one female from each litter of each generation from
the 10th to the 19th generation; 3) using a combination of
different generations of the second case, and this combination
is shown in Supplementary Table S2; 4) combining the first and
third case populations to compare the differences in the accuracy
of the distribution of the same number of reference populations in
one generation and in different generations. In the reference
population, all of the animals were with both phenotypes and
genotypes. One male and one female were randomly selected
from each litter of the 20th generation, with only genotype
information and no phenotype information for random
sampling with R scripts.

2.5 Estimation of the Breeding Values of the
Candidate Populations
Using the pedigree data of all five generations and the phenotype
data of one male and two females randomly selected from each
litter of the first four generations, the parameters were estimated
using the DMUAI module in the DMU software, repeated three
times, and the mean was calculated as the parameters for GEBV
and EBV estimation.

From the first four generations of individuals, one male and
one female per litter were selected as the reference population.
Selection of the candidate population set different schemes
according to the determination and gender ratios. When the
genotyping ratio was 20% of the candidate population, the
selection ratios were 2:0, 1:1, and 0:2, respectively, that is, two
boars, one male and one female, or two sows were selected from
each litter. When the genotyping ratio was 30% of the candidate
population, the ratio of male to female was selected as 3:0, 2:1, 1:1,
1:2, and 0:3. When the genotyping ratio was 50% of the candidate
population, the male-to-female ratio was selected as 5:0, 4:1, 3:2,
1:1, 2: 3, 4:1, and 0:5. The GMATIXmodule in the DMU software
was used to build the Gmatrix, while the DMU5module was used
to estimate the EBV, and the “Sing-step” method ssGBLUP was
used to estimate the GEBV. The breeding rate of general breeding
pigs in actual production is 80%, and 200 sows and 38 boars were
selected from the offspring each year for updating the basic group.

2.6 Calculation of Genetic Progress
In the population update, the update rate of boars was 100% and
sows was 40%. However, since this study only involved one
generation, for the convenience of calculation, it was assumed
that the generation interval of the population was 1. According to
the genetic gain formula:

ΔGt � ΔG/L � (σApiprAI)/L
whereΔGt is the annual genetic gain, ΔG is the total genetic gain, L
is the generation internal, σA is the additive genetic variation, i is
the selection intensity, andrAI is the estimation accuracy.

Suppose that L = 1, then the final formula is:

ΔGt � ΔG � σApiprAI

3 RESULTS

3.1 Genetic Parameter Estimation
Variance estimation was performed on the data of different
generations, and the results are shown in Figure 2. From the
results, we can see that with the increase in generations, the
composition of each variance group decreased generation by
generation, and the genetic variance decreased significantly.

As shown in Table 2, with the increase in heritability, the total
variance group gradually decreased; when the heritability was 0.1
and 0.5, the residual variance was slightly higher than the
theoretical value, but the genetic variance was lower than the
theoretical value.

3.2 Accuracy of Genomic Estimate Breeding
Value Estimation With Different Genotyping
Proportions of the Reference Population in
the Same Generation and in Different
Generations
It can be seen from Figure 3A that the accuracy of the GEBV
estimation increased significantly with the increase in the
genotyping proportion of the reference population when the
candidate populations were the same. When the reference
population genotyping increased from 40 to 60%, the accuracy
value increased from 0.4171 to 0.5737, with an increase of 35%.
When the reference population genotyping ratio increased from
60 to 100%, the estimated accuracy of the GEBV increased slower,
with an increase of 7% (0.5718–0.6081).

When studying the accuracy of estimating the GEBV of different
generations, the reference population consisted of individuals from a
single generation. One male and one female were randomly selected
from each litter of the 20th generation to form a candidate
population. The genotype was detected, but no phenotype was
recorded. One male and one female were selected from each
litter of each generation from the 5th to the 19th generation to
form 15 groups (1–15) of reference populations, with approximately

TABLE 2 | Genetic parameter estimation of the different heritabilities in generation G15.

Heritabilities 0.1 0.3 0.5 0.8

σa 0.088 ± 0.007 0.295 ± 0.016 0.457 ± 0.039 0.748 ± 0.052
σe 0.921 ± 0.048 0.682 ± 0.033 0.513 ± 0.017 0.190 ± 0.009
σp 1.09 ± 0.039 0.977 ± 0.055 0.970 ± 0.052 0.938 ± 0.047

Note: σp
2, σa

2, and σe
2 represents phenotypic variance, residual variance and genetic variance, respectively.
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2400 individuals in each group. The GEBV accuracy of the 20th
generation candidate population by reference populations of
different generations is shown in Figure 3B. It can be seen from
the figure that the GEBV accuracy increased as the generations
between the reference population and the candidate populations
became closer. The accuracy estimated using the 19th generation
individuals as the reference population was significantly higher than
that of the other generations. The correlation coefficient between the
generations and the accuracy was −0.927, and the p-value was less
than 0.01, showing a very significant correlation.

3.3 Accuracy of Estimating the Genomic
Estimate Breeding Value in Reference
Populations of Different Generations
A combination of different generations was used as the
reference population. One male and one female were
randomly selected from each generation and litter for
genotype and phenotype detection. The variation trend of
the accuracy is shown in Figure 4A. When the 19th,

18th–19th, and 17th–19th generations were used as the
reference populations, the accuracy of the first three
generations accumulated by the reference population
increased rapidly. From the accumulation of the third
generation to the seventh generation, the increase in
accuracy slowed down. When the reference population
accumulated over seven generations, the accuracy began to
decline. Therefore, it is recommended that the reference
population should be updated when the cumulative
generation exceeds seven generations.

3.4 The Effect of Kinship Between
Reference Populations on the Accuracy of
the Genomic Estimate Breeding Value
For reference populations in the same generation, different
numbers of individuals per litter were selected: one male and
one female, two males and two females, three males and three
females, four males and four females, and five males and five
females, respectively. For the reference populations from different

FIGURE 3 | Estimation accuracy of the influence of different genotyping numbers and generations. (A)Changes in the accuracy of different reference populations in
the same generation; (B) Effects of different reference population generations on the accuracy of the estimated breeding values.

FIGURE 4 | The influence of different generations and different relationships of the reference populations on accuracy. (A) The influence of reference populations
from different generations on accuracy. (B) The influence of the relationship between reference individuals on accuracy.
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generations, one male and one female combination were
randomly selected from each generation and each litter to
form a reference population. In one generation or different
generations, the accuracy increased with the increase in the
number of reference populations; when the number of
reference populations was constant, such as the reference
population of 7200 heads, the accuracy of individuals in the
reference population from the same generation was slightly lower.

3.5 Selection Accuracy and Genetic
Progress of the Genomic Estimate Breeding
Value Estimated by Different Candidate
Population Genotyping Proportions
It can be seen from the results (Figure 5A and Supplementary
Table S3) that for the genome selection of 20% genotyping ratio,
when the genotyping protocol was a 1:1 ratio of males to females,
the selection accuracy of the sows was the highest at 0.615, 0.706,
and 0.795, respectively, for heritability of 0.1, 0.3, and 0.5. With
the increase in the heritability of the trait, the selection accuracy
also increased. If only one sex was genotyped individually, the
selection accuracy of the other sex was significantly reduced.
When the male to female genotyping ratio was 1:1, there was a
significant advantage in the genetic progress obtained by the traits
of different heritabilities (Figure 5D and Supplementary Table
S3). When the heritability was 0.1 or 0.3, the sex ratio had little
effect. When the heritability reached 0.5, the genetic progress was
significantly higher in the male to female 1:1 and 2:0 genotyping
groups than in the 0:2 genotyping group.

For 30% of the genome selection of the genotyping ratio,
when the trait heritability was 0.1 and the genotyping male-

to-female ratio was 1:1, the selection accuracy of the boars
was the highest, at 0.708. When the genotyping ratio of males
to females was 2:1, the selection accuracy of the sows was the
highest, at 0.704 and 0.806, respectively, in the medium and
high heritability groups. If only one sex was genotyped, the
selection accuracy of the other sex was significantly lower
(Figure 5B and Supplementary Table S4). When the
genotyping ratio of males to females was 1:1, the genetic
progress obtained for heritability traits of 0.1 was 0.339, and
the difference was significant [p < 0.05 higher than the other
groups (the genotyping ratio was not 1:1)]. When the
heritability of the trait was 0.3 or 0.5, the genetic progress
of the male to female genotyping ratio 1:2 of was the highest
(Figure 5E and Supplementary Table S4).

As shown in Figure 5C and Supplementary Table S5, it
can be seen that for 50% of the genome selection of the
genotyping ratio, the selection accuracy increased with the
heritability. When the trait heritability was 0.1 and the
genotyping ratio of males to females was 3:2, the highest
accuracy was 0.704. When the heritability was medium and
high, if the male to female genotyping ratio was 4:1, the
selection accuracy of the sows was the highest. If only one sex
was genotyped, the selection accuracy of the other sex was
significantly reduced. When the heritability of the trait was
0.1, the maximum genetic progress could be obtained when
the male-to-female ratio of the individuals for genotype
determination was 3:2. When the heritability of the trait
was 0.3, the lowest genetic progress was obtained when the
genotyping ratio of males to females was 4:1. When the
heritability of the trait was 0.5 and the ratios of the
genotyped individuals were 1:4, 1:1, 2:3, and 3:2, the

FIGURE 5 | Estimation accuracy and genetic progress when the genotyping ratio was 20, 30, and 50% of the candidate population for different heritability traits.
(A–C) Estimation accuracy when the genotyping ratio was 20, 30, and 50% of the candidate population for different heritability traits; (D–F) Genetic progress when the
genotyping ratio was 20, 30, and 50% of the candidate population for different heritability traits. M, male; F, female; I, boar; II, gilt.
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genetic progress values were 0.859, 0.859, 0.912, and 0.912,
respectively (Figure 5F and Supplementary Table S5).

3.6 Influence of Different Genotyping Ratios
and Different Heritabilities on the Accuracy
of Estimating the Genomic Estimate
Breeding Value
From the results of the genetic progress in this study
(Supplementary Table S3), it can be seen that for the
different heritability traits, when the offspring of 1200 basic
groups were measured by 20%, the genetic progress of the
group improved by 53–100% compared to the traditional
BLUP method for phenotypic genotyping of one male and two
females. We then chose the optimal sex proportion described
above to determine the optimal genotyping proportion. As shown
in Figure 6, generally, the genetic progress increased when the
genotyping proportion of the offspring increased. For the lower
heritability traits, the genetic progress of a 50% genotyping ratio
was the highest, and the difference between the 30 and 50%
genotyping ratios was significant (p < 0.05). Moreover, for the
medium and high heritability traits, when the genotyping ratio
reached 30%, the accuracy was reasonable (p < 0.05).

4 DISCUSSION

GS techniques have been widely used in livestock and plant breeding
due to their ability to achieve higher estimation accuracy and greater
genetic progress (Iqbal et al., 2019). The accuracy of genomic
estimates of breeding values is influenced by marker density
(Meuwissen et al., 2001), number of reference populations
(Daetwyler et al., 2008; Hayes et al., 2009a), size and number of
QTL effects (Kizilkaya et al., 2010; Daetwyler et al., 2012), and the
degree of linkage disequilibrium betweenmarkers andQTLs (Habier
et al., 2010). The establishment of a reference population is one of the
primary tasks and core components of the application of GS
technology in livestock and poultry breeding and has an
important impact on the accuracy of the estimated breeding

value of the genome (Pszczola and Calus, 2016). In general, the
larger the reference population, the higher the accuracy of the
genome’s estimated breeding values (Hayes et al., 2009b;
Goddard et al., 2011). The results of this study, based on
simulating the population structure of purebred pigs, also show
that the accuracy of the genome-estimated breeding value is almost
linearly related to the size of the reference population, and is
significantly positively correlated with the number of reference
populations, whereby the correlation coefficient reached 0.9366
(p < 0.05).

The optimal design of reference populations could maximize the
accuracy of estimated breeding values for a given population’s
genome (Clark et al., 2012; Rincent et al., 2012). Simulation
studies have shown that the farther the genetic relationship
between the reference population and the closer the genetic
relationship to the candidate population, the higher the accuracy
of the estimated breeding value of the genome (Pszczola et al., 2012a;
Pszczola et al., 2012b; Isidro et al., 2015; Wu et al., 2015). If the
reference population is not updated, both the accuracy and reliability
of the genome’s estimated breeding values will decrease as the
distance between the reference population and the candidate
population increases (Calus and Veerkamp, 2011; Wolc et al.,
2011; Lillehammer et al., 2016; Castro Dias Cuyabano et al.,
2019). Our study simulated the group structure of pigs, and the
reference population was composed of 10 generations. Within seven
generations, the increasing trend of accuracy is consistent with the
results of Weng et al. (Weng et al., 2016). After the generation
exceeded seven generations, the accuracy decreased. There are some
differences between this study and the study ofWeng et al., for which
theremay be two reasons: First, the number of generations simulated
in this study was relatively large, and second, the two studies
involved different animal species. Therefore, in the
implementation of genome selection on pigs, the accumulation of
reference populations with generations is not the best. On the one
hand, as genotyping data continue to accumulate, the size of the
reference population is also an important factor limiting the
efficiency of GS techniques. The computing and storage capacity
will be limited with the increase in the number of reference
populations. On the other hand, with the increase in the
cumulative generation of candidate populations, the number of
individuals with distant genetic relationships between the
candidate and reference populations increases. The original
linkage disequilibrium between SNPs and QTLs will weaken, and
new linkage disequilibria may also be established. The results of our
study show that the accuracy of genome selection decreased
significantly with increasing generations between the reference
and candidate populations. Therefore, during the implementation
of GS, it is crucial to keep the reference population information
updated to maintain the accuracy of GS. Therefore, the SNP effect
estimated by a reference population that is far from the candidate
population will be biased, and the accuracy of the GEBV estimated
by the SNP effect will also decrease. Moreover, our results indicate
that the accuracy of genome selection does not increase infinitely
with the accumulation of reference groups of different generations,
but shows a trend of first improving and then lowering.

During the implementation of genome selection technology, if
the cost of gene chips does not drop significantly, it is currently

FIGURE 6 | The influence of the genotype ratio and heredity on the
genetic progress of selection. Different lowercase letters above the bars
represent significant differences (p < 0.05).

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9389477

Wei et al. Optimizing Strategies of GS

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


impossible for domestic breeding livestock and poultry enterprises to
genotype all individuals in the whole herd (Henryon et al., 2014;
Meuwissen et al., 2016; Wolc et al., 2016). Strategies for genotyping
selection candidates should be explored to maximize the economic
benefit of GS (Granleese et al., 2019). This study selected individuals
for genotyping on a litter-based unit in the candidate population to
ensure that the selected individuals are representative. In the results
of Lillehammer et al., when three boars were measured in each litter
and all sows were genotyped, the genetic progress for reproductive
traits was the largest, when 50% of the offspring were genotyped
without testing for boars, the genetic progress was slightly decreased
but was cost-effective (Lillehammer et al., 2011). The results of this
study showed that when the proportion of genotyped individuals
accounted for 20% of the candidate population, the traits of different
heritabilities could be genotyped according to a male-to-female sex
ratio of 1:1. If the genotyped individuals account for 30% of the
candidate population, for low heritability (0.1) traits, it is
recommended that the ratio of male to female for genotyping
should be 1:1. Higher genetic progress can be obtained when the
ratio of males to females is 1:1, 1:2, and 2:1 for medium and high
heritability traits. When the genotyping ratio reaches 50% of the
candidate population, the ratio of sows for low heritability traits (0.1)
should not be less than 25%, and the ratio of male to female
genotyping for medium and high heritability traits should be 1:1
to achieve the best genetic progress.

In the 2010 annual report of the DanBred Swine Genetics
Research Center (Pig Research Centre, PRC), issues such as the
genotyping ratio of the candidate population and how to select
genotyped individuals were discussed. The EBV value was estimated
by the BLUP method, and the optimal 40% individuals was selected
for genotyping according to the EBV value. When the male-to-
female ratio of genotyping was 3:1, the genetic progress equivalent to
the genotyping of the whole group could be obtained (Annual
Report of Centre Danish Pig Research). The design ideas of this
study are quite different from those of DanBred. DanBred
implements genome selection after performance measurement,
while this study fully considered the problems of performance
genotyping in China and the cost of breeding and management
of breeding pigs. We hope to use GS technology to pre-select piglets
at birth to reduce the feeding volume of breeding pigs, especially the
feeding volume of boars, and reduce the cost in the process of
breeding pigs. The scheme of DanBred is a good strategy for
reducing the cost of genotyping, but because the parents of
siblings have the same EBVs, 40% of the individuals selected
according to the average EBVs of parents occupy a large
proportion of siblings. Continued breeding according to this
scheme will lose some of them. Genetic variation affects the
genetic progression of a population. Judging from the current
research, various schemes have their own advantages and
disadvantages, and further research and exploration are needed to
establish a complete set of pig genome selection schemes.

5 CONCLUSION

This study suggests that when initially constructing a reference
population, the number of reference population should be large

enough, and individuals with the closest kinship to the candidate
population should be selected. In addition, the replacement of new
and old generations of reference populations can be carried out from
the fourth generation at the earliest at the seventh generation at the
latest. For the selection of lower heritability traits, when the candidate
individual genotyping ratio reach 50%, the genetic progress was
acceptable, while for the medium and high heritability traits, when
the genotyping ratio reached 30%, the genetic progress was
acceptable. If the proportion of genotyped individuals accounts
for 20% of the candidate population, the male-to-female sex ratio
of 1:1 is preferred for all heritability traits. If genotyped individuals
account for 30% of the candidate population, it is recommended that
the male-to-female ratio of low heritability (0.1) traits be genotyped
at 1:1, with male-to-female ratios for medium and high heritability
traits at 1:1, 1:2, and 2:1. If the genotyping ratio reaches 50% of the
candidate population, the proportion of sows with low heritability
traits (0.1) cannot be less than 25%. In conclusion, this study
provides a detailed reference for the establishment of the
application of GS technology in the genetic evaluation of
breeding pigs.
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