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Abstract: Although the copolymerizations of L-lactide (LA) with seven- or six-membered ring lactones
have been extensively studied, the copolymerizations of LA with four-membered ring lactones have
scarcely been reported. In this work, we studied the copolymerization of LA with β-propiolactone
(PL) and the properties of the obtained copolymers. The copolymerization of LA with PL was
carried out using trifluoromethanesulfonic acid as a catalyst and methanol as an initiator to produce
poly(LA-co-PL) with Mn of ~50,000 and PL-content of 6–67 mol %. The Tg values of the copolymers
were rapidly lowered with increasing PL-contents. The Tm and ∆Hm of the copolymers gradually
decreased with increasing PL-contents, indicating their decreased crystallinity. Biodegradation test of
the copolymers in compost demonstrated their improved biodegradability in comparison with the
homopolymer of LA.

Keywords: copolymerization; L-lactide; β-propiolactone; trifluoromethanesulfonic acid; poly(L-
lactide-co-β-propiolactone); thermal properties; biodegradation

1. Introduction

Aliphatic polyesters such as poly(L-lactic acid) (or poly(L-lactide), PLA), poly(ε-caprolactone)
(PCL), and poly(β-hydroxyalkanoate)s (PHAs) such as poly(β-hydroxybutyrate) (PHB) are known
as typical biodegradable polymers [1–7]. PLA is one of the most promising biodegradable polymers
with a glass transition temperature (Tg) of ca. 60 ◦C and a melting temperature (Tm) of ca. 170 ◦C.
PLA is known for its renewability, biocompatibility, and high rigidity, and thus has been utilized for
biomedical, pharmaceutical, and agricultural applications as well as commodity applications [4,5].
However, biotic degradations or degradations in the natural environment of polylactides tend to be
relatively slow among the biodegradable polyesters [8–10]. In order to improve the degradability of
PLA, several copolymers of L-lactide (LA) with other cyclic esters such as ε-caprolactone (CL) and
blends of PLA with other polyesters have been extensively studied [8,9,11–13].

PHAs are known for their good biodegradability [14,15]. PHAs including PHB were originally
produced by fermentation with some bacteria [14,15], while the ring-opening polymerization of the
corresponding four-membered ring lactones such as β-butyrolactone (BL) also gives the structurally
same polymers with PHAs [16,17]. Unsubstituted four-membered ring lactone, β-propiolactone (PL),
can also be subjected to ring-opening polymerization to form poly(β-propiolactone) (PPL) [16], which
is known to show excellent degradability [18–21]. PPL, a structural isomer of polylactide, typically
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shows Tg at around −20 ◦C [22,23] and Tm at around 80 ◦C [24,25], and could potentially be utilized
in biomedical applications such as tissue engineering and drug delivery. Thus, the introduction of PL
units into PLA could improve the biodegradability of PLA. However, to the best of our knowledge,
the synthesis and biodegradation of high molecular weight poly(LA-co-PL)s has not been reported
systematically, possibly due to the difficulty in their synthesis.

Several catalysts such as distanoxane derivatives [26,27] and salen complexes of aluminum [28–30]
have been reported to give copolymers of LA with BL. However, those catalysts are not commercially
available and more convenient catalysts are desirable. In this work, we studied the copolymerization
of LA with PL using trifluoromethanesulfonic acid (TfOH) as a catalyst (Scheme 1) to produce high
molecular weight poly(LA-co-PL) with different PL-contents, and performed the biodegradation of the
obtained copolymers in a compost.
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Scheme 1. Ring-opening copolymerization of L-lactide (LA) and β-propiolactone (PL) catalyzed
by TfOH.

2. Results

2.1. Copolymerization of LA with PL

Table 1 summarizes the results of the copolymerization of LA and PL at a 1:1 feed molar ratio
using TfOH, SmMe(C5Me5)2(THF) (Sm-1), and tin 2-ethylhexanoate (Sn(Oct)2) as catalysts. The use of
TfOH resulted in the formation of the copolymer with relatively high molecular weight (Mn = 11,000) in
65% yield, while Sm-1 and Sn(Oct)2 did not produced polymers under the present conditions. Figure 1
shows the 1H NMR spectrum of the obtained poly(LA-co-PL) by TfOH, indicating that the obtained
copolymer contained PL and LA units at a 2:1 molar ratio. Thus, TfOH was adopted as a catalyst for
the further LA-PL copolymerization experiments.

Table 1. Comparison of catalysts for the copolymerization of LA and PL 1.

Run Catalyst [LA]0/[PL]0/
[init.]/[cat.]

Temp.
(◦C)

LA-Conv. 2

(%)
PL-Conv. 3

(%) Mn
4 (103) Mw/Mn

4 PL-Cont. 5

(mol%)

1 6 TfOH 125/125/1/1 50 48 98 11 1.2 67
2

6,7 Sm-1 250/250/1/1 0 0 0 - - -

3 8 Sn(Oct)2 500/500/4/1 100 0 0 - - -
1 Conditions: Solvent = toluene (5 mL), LA0 = PL0 = 5 mmol, time = 24 h; 2 Conversion of LA calculated from
polymer yield and the composition of the resulting copolymer; 3 Conversion of PL calculated from polymer
yield and the composition of the resulting copolymer; 4 Determined by gel permeation chlomatography (GPC)
in tetrahydrofuran (THF) calibrated with standard polystyrenes; 5 PL-content determined by 1H NMR analysis;
6 Init. = CH3OH; 7 Time = 12 h; 8 Init. = PhCH2OH.
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Figure 1. 1H nuclear magnetic resonance (NMR) spectrum of the poly(LA-co-PL) (Table 1, run 1).

In order to synthesize high molecular weight copolymers, the feed monomer to initiator ratio
was increased to 750/1. Table 2 summarizes the result of LA-PL copolymerization under different
feed molar ratios. At feed [LA]0/[PL]0 of 90/10, the ratio of the initiator (init.) and the catalyst (cat.)
was varied in the range of 1/1–1/3 (runs 4–6) for the copolymerization. As a result, the highest
conversion was observed at the [init.]/[cat.] of 1/2 (run 5), and thus this condition was applied to
further experiments. When the polymerization time was extended from 24 to 48 and 96 h (runs 5,7,
and 8), the polymer yield increased with time and produced the copolymer in 98% yield after 96 h.
The molecular weights of the resulting polymers also increased with time and reached to Mn = 55,000
after 96 h, while the molecular weight distribution became rather broad (Mw/Mn = 1.53). In order to
evaluate the effect of PL-content on the polymer properties, the feed [LA]0/[PL]0 molar ratios were
varied from 100:0 to 80:20 (runs 8–12). All runs afforded high molecular weight PLA or poly(LA-co-PL)
having similar or slightly higher PL-contents in comparison with the feed PL ratio in good yields.

In order to reveal the features of the present LA-PL copolymerization system catalyzed by
TfOH, we performed the copolymerization experiments in a short polymerization time (3 h). Then,
the reactivity ratios were estimated to be rPL = 55.2 and rLA = 0.2 by the Fineman–Ross method [31].

Table 2. Copolymerization of LA and PL by TfOH 1.

Run [LA]0/[PL]0 [init.]/[cat.] Time (h) LA-Conv. 2

(%)
PL-Conv. 3

(%) Mn
4 (103) Mw/Mn

4 PL-Cont. 5

(mol %)

4 90/10 1/1 24 32 >99 10 1.11 27
5 90/10 1/2 24 67 >99 26 1.16 18
6 90/10 1/3 24 64 >99 30 1.17 15
7 90/10 1/2 48 86 96 37 1.11 11
8 90/10 1/2 96 98 98 55 1.53 10
9 100/0 1/2 96 95 - 41 1.59 0

10 95/5 1/2 96 89 >99 35 1.73 6
11 85/15 1/2 96 80 93 32 1.51 17
12 80/20 1/2 96 68 >99 25 1.25 27

1 Conditions: Solvent = toluene (5 mL), LA0 + PL0 = 10 mmol, (LA0 + PL0)/init. = 750/1, init. = MeOH, temp. = 50 ◦C;
2 Conversion of LA calculated from polymer yield and the composition of the resulting copolymer; 3 Conversion of
PL calculated from polymer yield and the composition of the resulting copolymer; 4 Determined by GPC in THF
calibrated with standard polystyrenes; 5 Determined by 1H NMR analysis.
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2.2. Thermal Properties of Poly(LA-co-PL)

The thermal properties of the poly(LA-co-PL)s were determined by differential scanning
calorimetry (DSC) analysis and summarized in Table 3. Upon increasing the PL-content, the Tg values
of the copolymers were rapidly lowered. Each copolymer exhibited only one glass transition. The Tm

and the heat of fusion (∆Hm) values of the copolymers were gradually lowered with increasing the
PL-content. A similar tendency has also been observed for poly(LA-co-CL) [12]. The poly(LA-co-PL)s
(runs 8 and 10–12) showed only one Tm value corresponding to the PLA segment and no melting
transition corresponding to the poly(β-propiolactone) (PPL) segment. This is in sharp contrast to
the fact that an 80:20 blended sample of PLA and PPL homopolymers (run 13) showed two melting
transitions at 178.3 and 71.6 ◦C corresponding to Tm of PLA and PPL homopolymers, respectively
(Figure 2).
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Figure 2. Differential scanning calorimetry (DSC) traces of poly(LA-co-PL) (run 12) and a blended 
sample of poly(L-lactide) and poly(β-propiolactone) homopolymers (run 13). 
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Figure 2. Differential scanning calorimetry (DSC) traces of poly(LA-co-PL) (run 12) and a blended
sample of poly(L-lactide) and poly(β-propiolactone) homopolymers (run 13).
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Table 3. Thermal properties of poly(LA-co-PL) 1.

Run PL-Content Tg (◦C) Tm (◦C) ∆Hm (J/g)

9 0 62 172 55
10 6 45 170 53
8 10 41 167 49
11 17 24 165 45
12 27 11 166 42

13 2 20 - 72,178 4,46
1 Determined by DSC analysis; 2 A mixture of PLA and PPL homopolymers.

2.3. Biodegradation of Poly(LA-co-PL) in a Compost

We performed biodegradation tests of the poly(LA-co-PL)s as well as PLA in a compost at
60 ◦C (Figure 3). The PLA homopolymer took 16 weeks for complete weight loss. With increasing
PL-contents, the degradation of the copolymers became faster, and the copolymer with a PL-content of
17 mol % was completely degraded within 10 weeks.
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3. Discussion

Among the many catalysts reported for the polymerization of PL, BL, and lactide [16,32,33],
we chose TfOH, Sm-1, and Sn(Oct)2 for the LA-PL copolymerization in this work. A super
acid TfOH was reported to catalyze the polymerization of BL [34]. Rare earth alkoxides such
as Y(OMe)(C5Me5)2(THF) [35] and Sm(OEt)(C5Me5)2(THF) [35] were reported to catalyze the
polymerization of PL and BL to give polymers with relatively high molecular weights. TfOH [36,37]
and rare earth metal complexes similar to Sm-1 [12,38] are also active for the polymerization of lactide.
Sn(Oct)2 have commonly been used for the polymerization of lactide and middle size lactones such
as CL [39,40]. Because TfOH and Sn(Oct)2 are used in combination with a protic initiator such as
alcohols, we adopted the Sm-1-MeOH system in this study, which should generate Sm(OMe)(C5Me5)2

species [41]. The results shown in Table 1 clearly demonstrated that TfOH was effective for the
copolymerization of LA and PL to produce poly(LA-co-PL) with relatively high molecular weight
(Mn = 1.1 × 104). Although poly(ethylene glycol)-block-poly(D,L-lactide-co-PL) has been synthesized by
the copolymerization of D,L-lactide and PL catalyzed by Sn(Oct)2 in the presence of PEG monomethyl
ether (mPEG 550) as an initiator [42], the molecular weight of the copolymer remained very low
(Mn ~ 103). To the best of our knowledge, this is the first example of poly(LA-co-PL) with high
molecular weight (Mn > 104). The low activity of the metal catalysts could be attributed to the stable
six-membered ring intermediate after the incorporation of PL [35]. In addition, the polymerization



Int. J. Mol. Sci. 2017, 18, 1312 6 of 10

of PL by rare earth alkoxide was reported to be accompanied with an elimination side reaction to
form an acrylate end-group [43]. The ring-opening polymerization of cyclic esters by TfOH was
proposed to proceed in a monomer activation mechanism, as shown in Scheme 2 [37]. We agree with
this mechanism and suppose that it is the reason for its lower sensitivity to the ring-size of cyclic ester
monomers in the TfOH system in comparison with metal catalyst systems.
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At a high feed ratio of monomer to initiator (Table 2), the initiator to catalyst ratio of 1:2 in feed
resulted in the highest polymer yield (runs 4–6). In the reported TfOH-catalyzed polymerization of
BL, LA, and CL, the initiator to catalyst ratio of 1:1 was applied [34,36,37,44], where the monomer to
initiator ratios were rather low. The high monomer to initiator ratio in the present conditions could
prefer the initiator to catalyst ratio of 1:2. The molecular weight of the resulting copolymer reached up
to Mn = 5.5 × 104. The increasing molecular weights against polymer yields (runs 5, 7, and 8) suggest
that the molecular weights of the resulting polymers can be somewhat controlled by polymerization
time and feed monomer to initiator ratio in this polymerization system, although increasing Mw/Mn

with time suggests some side reactions such as trans-esterification.
The PL-contents in the copolymers were higher than those in the feed ratios, indicating the

preferential polymerization of PL rather than LA in this copolymerization system. The estimated
monomer reactivity ratios indicate that PL is preferentially incorporated into both the PL- and
LA-ended propagating chains. The PL-preference in the LA-PL copolymerization should be attributed
to the higher ring-strain of PL than that of LA [45]. The large rLA·rPL value of 11 suggests the blocky
character of the resulting copolymers.

One glass transition for each copolymer (Table 3) suggests the homogeneous nature of their
amorphous phase. Considering the Tg values of the homopolymers (ca. 60 ◦C for PLA and ca.
−20 ◦C for PPL [22,23]), the Tg values of the LA-PL copolymers drastically decreased with increasing
PL-contents. This could be attributed to the higher PL-contents of the amorphous phase in the
copolymers than those of the whole polymers, because the crystalline phase in the copolymer should be
composed of only PLA segments. The Tm and ∆Hm values of the copolymers were gently lowered with
increasing the PL-content, indicating a mild decrease of crystallinity of the copolymers with increasing
PL-contents. These features could come from the blocky nature of the present LA-PL copolymers as
mentioned above. On the other hand, the obtained copolymers did not show melting temperatures
corresponding to the PPL segment, while the blended sample of PLA and PPL homopolymers (run 13)
showed two melting transitions for both the PLA and PPL segments. The Tm value for the PLA segment
and total ∆Hm values in run 13 is also higher than those of the poly(LA-co-PL)s (runs 11 and 12) with
similar PL-contents, indicating a decreased crystallinity of the poly(LA-co-PL)s. These results imply
higher miscibility between the PLA and PPL segments in the poly(LA-co-PL)s than that in the blended
homopolymers, possibly due to LA-PL conjunctions in the copolymer, and they support that the
products from the copolymerization of LA and PL were not merely the mixtures of homopolymers but
were in fact copolymers.

Because PLA had been known as a compostable plastic [11,46] and actually used in composting
applications, here we adopted biodegradation tests in a compost. In the degradation test (Figure 2),
the LA-PL copolymers degraded faster than PLA homopolymer. The degradation rate of the
copolymers increased with the PL-contents. Thus, it was demonstrated that the incorporation of
PL units into PLA enhanced its biodegradability. The improved degradability of the copolymers



Int. J. Mol. Sci. 2017, 18, 1312 7 of 10

could come from the inherent degradability of the PPL segment and/or the decreased crystallinity of
the copolymers.

4. Materials and Methods

4.1. General

All the polymerization reactions were performed under a dry nitrogen atmosphere using standard
Schlenk techniques. 1H NMR spectra were recorded on a JNM-LA400 spectrometer (400 MHz for 1H
nuclei) (JEOL, Tokyo, Japan). Chemical shifts of 1H NMR spectra in chloroform-d were calibrated by
using the signals for residual chloroform (δ = 7.26 ppm). Molecular weights and polydispersities of the
polymers were determined by gel permeation chromatography (GPC) measurements on a Tosoh
GPC system (SC-8010) (Tosoh, Tokyo, Japan) equipped with an refractive index detector. GPC
curves were calibrated using standard polystyrenes. THF was used as an eluent at a flow rate of
1.0 mL/min at 40 ◦C. The melting temperature (Tm), heat of fusion (∆Hm), and glass transition
temperature (Tg) of the polymers were measured on a differential scanning calorimetry (DSC)
using a DSC 6220 apparatus (Seiko, Tokyo, Japan). The heating rate was 10 ◦C/min in a nitrogen
stream. The thermodegradation behavior was measured by thermogravimetric analysis on a TG/DTA
6300 apparatus (Seiko, Tokyo, Japan).

4.2. Materials

Dehydrated tetrahydrofuran (Kanto Chemical, Tokyo, Japan) was further purified by distillation
from Na-benzophenone under nitrogen prior to use. Toluene was purified by distillation from
sodium-benzophenone. Each solvent was stored over sodium. Chloroform was dried over CaH2

overnight and then distilled. Methanol (Kanto Chemical) and PhCH2OH (Wako Pure Chemical, Tokyo,
Japan) was distilled, and stored over activated molecular sieves (3A). LA and PL were purchased from
Tokyo Chemical Industry (Tokyo, Japan). LA was sublimated under nitrogen before use. PL and TfOH
(Sigma-Aldrich Japan, Tokyo, Japan) were distilled under reduced pressure before use. Sn(Oct)2 was
purchased from Sigma-Aldrich and used without further purification. SmMe(C5Me5)2(THF) (Sm-1)
was synthesized according to Reference [47].

4.3. Copolymerization of LA and PL Catalyzed by TfOH

Certain amounts of TfOH and methanol were added to a mixture of prescribed amounts of
L-lactide and β-propiolactone in toluene. The mixture was stirred at 50 ◦C for a given time. The
mixture was poured into an excess amount of methanol to precipitate the polymer, which was collected
by centrifugation and dried in vacuo.

4.4. Copolymerization of LA and PL Catalyzed by Sm-1

Sm-1 (0.02 mmol) was reacted in situ with one equivalent of methanol in toluene (1 mL). A solution
of LA (0.72 g, 5.0 mmol) and PL (0.31 mL, 5.0 mmol) in toluene (4 mL) was added to the reaction
mixture of Sm-1 and methanol in toluene, and the mixture was stirred at 0 ◦C for 12 h. The mixture
was poured into excess methanol to precipitate the polymer, however, no precipitation appeared.

4.5. Copolymerization of LA and PL Catalyzed by Sn(Oct)2

A solution of LA (0.0.73 g, 5.0 mmol) and PL (0.31 mL, 5.0 mmol) in toluene (5 mL) was added to
Sn(Oct)2 (3.2 µL, 0.01 mmol) and PhCH2OH (4.1 µL, 0.04 mmol) in toluene. The mixture was stirred
at 100 ◦C for 24 h. Then, the resulting mixture was poured into excess methanol to precipitate the
polymer, however, no precipitation appeared.
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4.6. Degradation of the Polymers by a Compost

The degradation tests were carried out according to the literatures [38,48]. Commercially available
effective microorganism (EM)-fermented solution (30 mL) containing Rhodospirillum, Rhodopseudomonas,
Pseudomonas, Micrococcus, Bacillus, Lactobacillus, Streptococus, Saccharomyces, Aspergillus, Penicillium
etc. and theriaca syrup (40 mL) was added to 2000 mL of water, and this solution was sprayed
on the mixture of rice hulls (5 kg) and rice bran (15 kg). The resulting material was wrapped
with a polyethylene film and then dried in the shade for 1 day. The content of water was evaluated
by the weight loss of the samples after heating them to 200 ◦C. The poly(LA-co-PL)s and PLA were
shaped into films by solution casting from CHCl3. The film samples were sealed in polyethylene mesh
and held in the resulting compost for a fixed time. The evaluation of the biodegradation was carried
out by measuring the weight loss with the compost.

5. Conclusions

In conclusion, LA-PL copolymerization was studied using several catalysts. TfOH was found to
be an effective catalyst for the LA-PL copolymerization to afford poly(LA-co-PL) with high molecular
weight (Mn ~ 50,000) and various PL-contents (6–67 mol%). The obtained copolymers exhibited rapidly
decreasing Tg values with increasing PL-contents, while their Tm and ∆Hm values gradually decreased
with increasing PL-contents. Biodegradation test of the copolymers in compost demonstrated the
biodegradability of the copolymers increasing with PL-contents.
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