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To examine whether the peroxisome proliferator–activated
receptor-g coactivator-1a (PGC-1a), a key regulator linking
angiogenesis and metabolism, could enhance the engraftment
and angiogenesis of mesenchymal stem cells (MSCs) in diabetic
hindlimb ischemia, we engineered the overexpression of PGC-1a
within MSCs using an adenoviral vector encoding green fluores-
cent protein and PGC-1a, and then tested the survivability and
angiogenesis of MSCs in vitro and in vivo. Under the condition of
hypoxia concomitant with serum deprivation, the overexpression
of PGC-1a in MSCs resulted in a higher expression level of hypoxia-
inducible factor-1a (Hif-1a), a greater ratio of B-cell lymphoma
leukemia-2 (Bcl-2)/Bcl-2–associated X protein (Bax), and a lower
level of caspase 3 compared with the controls, followed by an in-
creased survival rate and an elevated expression level of several
proangiogenic factors. In vivo, the MSCs modified with PGC-1a could
significantly increase the blood perfusion and capillary density of
ischemic hindlimb of the diabetic rats, which was correlated to an
improved survivability of MSCs and an increased level of several
proangiogenic factors secreted by MSCs. We identified for the first
time that PGC-1a could enhance the engraftment and angiogenesis of
MSCs in diabetic hindlimb ischemia.Diabetes 61:1153–1159, 2012

P
eripheral arterial disease (PAD) affects 25% of di-
abetic patients all over the world (1). In more se-
vere diseases, critical limb ischemia (CLI) develops,
which may owe to diffuse vascular disease, the

distal location of obstruction, and the presence of multiple
comorbidities (2,3). As a result, incurable ulceration,
gangrene, and even limb loss are more likely to occur in

diabetic patients than in nondiabetic patients (4). Due to
diffuse vascular disease, many diabetic patients are not
amenable to revascularization by surgical bypass, endo-
vascular stenting, or balloon dilatation (2,3). Consequently,
more and more studies about the administration of au-
tologous stem cells for treating diabetic CLI are being
conducted (2).

Mesenchymal stem cells (MSCs), as promising cells for
treatment of ischemic disease, are self-renewing and
have a huge potential to differentiate into many kinds of
angioblasts and secrete a wide array of proangiogenic fac-
tors (5,6). Meanwhile, the therapeutic angiogenesis of bone
marrow MSCs has been widely proven in many studies (7–9).
Recently, MSCs have already been used to treat diabetic
patients with CLI by us and other researchers (10,11), but the
low survival rate (,1% after 4 days of transplantation) of
implanted MSCs (12) may seriously affect the angiogenic
potential of cells and then attenuate the effect of this cell
therapy.

Peroxisome proliferator–activated receptor-g coactivator-1a
(PGC-1a), a transcriptional coactivator for nuclear recep-
tors (13) that plays a critical role in the biological regulation
of mitochondria, is highly responsive to most stimuli from
ischemic tissues, including hypoxia, coldness, and lack of
nutrients (14). In recent years, some basic studies have
shown that PGC-1a can prevent apoptosis of vascular en-
dothelial cells (15,16) and greatly enhance the angiogenic
potential of skeletal muscle cells (17). It is implied that
PGC-1a serves as a key regulator in linking angiogenesis
and metabolism processes (18).

In the current study, to assess the effects of PGC-1a over-
expression on the therapeutic angiogenesis of MSCs, we in-
vestigated whether the MSCs modified with PGC-1a could be
more resistant to apoptosis and improve the perfusion recov-
ery in diabetic hindlimb ischemia more than the controls.

RESEARCH DESIGN AND METHODS

Expansion of rat MSCs. The expansion of MSCs was conducted with a little
modification as described previously (19). All the protocols were performed in
accordance with the Guide for the Care and Use of Laboratory Animals
published by the National Institutes of Health (publication 85-23, revised in
1996) and were approved by the Ethical Committee Board of the Third Military
Medical University Southwest Hospital.

In brief, the female SD rats were killed to harvest bone marrow by flushing
the cavities of femurs and tibias with complete a-minimum essential medium
(a-MEM [GIBCO], supplemented with 10% FBS [GIBCO] and antibiotics). Then
after filtration through a 70-mm filter mesh (BD, Falcon), the cell suspension
was transferred into a 60-mm dish and incubated in a humidified chamber at
37°C and 5% CO2. After 3 h, the nonadherent cells were removed and replaced
with fresh complete medium. After an additional 8-h culture, the medium was
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replaced again. Thereafter, this step was repeated every 8 h for initial culture
of up to 72 h. Then the medium was replaced once every 2 days. Upon;70–80%
confluence, the cells were resuspended by trypsin-EDTA and the cell density
was adjusted to approximately 5,000/cm2. Finally, the MSCs at three to five
passages were used in the experiments. In the flow cytometry experiments, the
cell-surface antigens were tested and found to be positive for CD105, CD29, and
CD90 and negative for CD14, CD34, and CD45.
Adenovirus-mediated gene transfer to MSCs. Adenovirus-mediated gene
transfection was performed as described previously (20). In brief, the MSCs
were seeded at a density of 2 3 106 cells per 60-mm plate. One day after
adherence, the cells were exposed to the infectious viral particles in 1.5 mL
a-minimal essential medium (a-MEM) at 37°C, and infected with Ad–green
fluorescent protein (GFP) (Cell Biolabs) or Ad-GFP-PGC-1a (a gift from Daniel
P. Kelly, Sanford-Burnham Medical Research Institute, La Jolla, CA) at a mul-
tiplicity of infection (MOI) of 0–1,000. The ideal MOI of 100 with high effi-
ciency and low toxicity was detected and then selected in the following
experiments.
Apoptosis of MSCs modified with genes in vitro. The apoptosis of MSCs
modified with GFP-PGC-1a or GFP was induced by culture under the condi-
tion of hypoxia (5% O2) concomitant with serum deprivation. After 6- and 12-h
culture, the survival rate of MSCs was measured by the Annexin V/propidine
iodide method. In brief, the cells were washed with ice-cold PBS and then
resuspended in 200 mL binding buffer. Thereafter the cells were added with 10
mL Annexin V stock solution (Biolegend) and incubated for 25 min at 4°C. The
cells were further incubated with 5 mL propidine iodide (Biolegend) and im-
mediately analyzed on a Fluorescence-activated Cell Sorter LSR (Becton,
Dickinson, and Company, San Jose, CA). Approximately 1–2 3 104 cells were
analyzed for each of the samples.

The expression levels of caspase 3, procaspase 3, B-cell lymphoma leukemia-2
(Bcl-2), and Bcl-2–associated X protein (Bax) were detected by Western blotting
using rabbit polyclonal antibodies (1:500; Abcom, Cambridge, U.K.).
Expression of proangiogenic factors in MSCs modified with genes in

vitro. To identify the protein expression of hypoxia-inducible factor-1a (Hif-1a)
and PGC-1a in gene-mediated MSCs under the hypoxia and serum deprivation–
conditioned culture (6 h), Western blotting was performed using two rabbit
polyclonal antibodies raised against Hif-1a (1:500; Santa Cruz Biotechnology)
or PGC-1a (1:500; Santa Cruz Biotechnology).

To evaluate proangiogenic factors secreted by MSCs, the conditioned me-
dium in 60-mm plates (3 mL per 2 3 106 cells) was collected during 3 days
normal culture, and the levels of vascular endothelial growth factor (VEGF),
fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor subunit
B (PDGF-B) were measured using enzyme immunoassay kits (Rat VEGF
ELISA Kit RayBio for VEGF; Rat FGF-2 ELISA Kit USCNLIFE for FGF-2;

Platelet Derived Growth Factor Subunit B ELISA Kit antibodies-online for
PDGF-B).
Animal model and cell transplantation. SD rats weighing 200–220 g were
used in this study. The model of diabetic ischemic limb was established
according to the procedures previously published with a little modification (21).
In brief, diabetes was induced by intraperitoneal injection of streptozotocin
(55 mg/kg; Sigma Chemical, St. Louis, MO). One week after streptozotocin
administration, rats with a plasma glucose concentration .16 mmol/L were
selected in the subsequent experiments. Twelve weeks after diabetes was
induced, the left femoral artery, the distal portion, and all the lateral branches
were dissected free and excised under anesthesia with pentobarbital sodium
(45 mg/kg i.p.). The right hindlimb was kept intact and served as a control of
original blood flow.

Immediately after resection of the left femoral artery, rats were randomized
to one of the following four groups: MSC transplantation group (MSC group, n =
21), GFP-modified MSC transplantation group (GFP-MSC group, n = 21), PGC-
1a–modified MSC transplantation group (PGC-1a-MSC group, n = 21), or PBS
vehicle infusion group (PBS group, n = 21). In each group, 53 106 cells or PBS
was injected into the ischemic thigh muscles with a 26-gauge needle at five
different points. Fourteen days after transplantation, the incidence of hindlimb
necrosis was calculated.
Laser Doppler blood flowmetry. After 0, 7, and 14 days, the serial blood flow
was measured by a laser Doppler perfusion image (LDPI) analyzer (Moor
Instruments). The highest perfusion was displayed as red, whereas low or no
blood perfusion was displayed as dark blue. After blood flow had been scanned
three times, the average flow values of the ischemic and nonischemic limbs
were counted by computer-assisted quantification using stored images. The
LDPI index was defined as the ratio of ischemic to nonischemic hindlimb blood
perfusion (22).
Capillary density in diabetic ischemic hindlimb. To detect capillary en-
dothelial cells, the frozen sections of adductormuscleswere stainedwith alkaline
phosphatase according to the procedures previously published 2 weeks after the
transplantation (22–24). Six fields from six tissue sections were randomly se-
lected to calculate the number of capillaries in each field. To calculate capillary
density correctly, the capillary number adjusted per muscle fiber was used to
compare the difference in capillary density among the four groups (22–24).
Survival of transplanted MSCs in diabetic ischemic hindlimb. For detect-
ing the survival of transplanted MSCs, GFP-positive cell counts per 1,000 nuclei
were calculated in the GFP-MSC and PGC-1a-MSC groups 5 days after trans-
plantation (n = 10) (25).
Proangiogenic factors in diabetic ischemic hindlimb. To detect the protein
expression of proangiogenic factors and the colocalization of VEGF or FGF-2
protein, immunofluorescence staining and Western blots for VEGF or FGF-2

FIG. 1. Optimization of adenovirus transfection efficiency by MSCs. A: Transfection efficiency of MSCs by Ad-GFP-PGC-1a. TheMSCs were transfected
with Ad-GFP-PGC-1a at different MOI and cultured for 48 h. The transfection efficiency was determined by flow cytometry. B: The morphology of rat
MSCs and MSCs transfected with Ad-GFP-PGC-1a (defined as PGC-1a-MSC) or Ad-GFP (defined as GFP-MSC) at an MOI of 100 for 48 h was observed
by fluorescence microscope (original magnification 3200). (A high-quality color representation of this figure is available in the online issue.)
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were performed 5 days after transplantation. The frozen sections of adductor
muscles were fixed in acetone at 4°C, blocked with 10% normal goat serum for
10 min, and incubated with rabbit anti–rat VEGF (1:100; Santa Cruz Bio-
technology) or rabbit anti–rat FGF-2 (1:100; Santa Cruz Biotechnology) and
then with Cy3-coupled goat anti–rabbit IgG antibody (1:250; Abcom, Cambridge,
U.K.). Finally, nucleus staining was performed using DAPI (1:1,000; Sigma
Chemical). The stained sections were observed using a laser-scanning confocal
fluorescence microscope, and the generated images of GFP (green), growth
factors (red), and DAPI (blue) were obtained. With the above antibodies, the
protein expression level of VEGF or FGF-2 was detected using Western blotting.
Statistical analysis. Data were presented as mean 6 SD. Statistical compar-
isons were performed using ANOVA followed by Bonferroni correction/Dunn
test. A probability value of P , 0.05 was considered statistically significant.

RESULTS

PGC-1a overexpression decreased apoptosis within
MSCs. The transfection efficiency of adenoviral vector
encoding PGC-1a and GFP (Ad-GFP-PGC-1a) was 96.87%
at 100 MOI 2 days after transfection, as quantified by flow
cytometry detecting the number of GFP-positive cells
(Fig. 1A). After transfection, little change was observed in
the morphology of rat MSCs (Fig. 1B). PGC-1a protein

expression confirmed by Western blotting was 1.7-fold
higher in Ad-GFP-PGC-1a–transfected MSCs than in Ad-
GFP–transfected MSCs (P, 0.01, n = 8) (Fig. 2A) and 1.6-fold
higher than in MSCs (P , 0.01, n = 8) (Fig. 2A).

After 12 h hypoxia and serum deprivation–conditioned
culture, the survival rate of the PGC-1a-MSC group (62.0 6
6.5%) was significantly higher than that of the GFP-MSC
(35.8 6 5.0%) and MSC groups (38.2 6 3.9%) (P , 0.01) (Fig.
3A and B). Protein expression of caspase 3, detected by
Western blotting, was 1.9-fold higher in Ad-GFP–transfected
MSCs than in Ad-GFP-PGC-1a–transfected MSCs (P ,
0.001, n = 5) and 1.8-fold higher in MSCs than in Ad-GFP-
PGC-1a–transfected MSCs (P , 0.001, n = 5) (Fig. 3C). The
protein expression ratio of Bcl-2/Bax in Ad-GFP-PGC-1a–
transfected MSCs was 3.5- and 2.8-fold higher than that
separately in Ad-GFP–transfected MSCs (P , 0.001, n = 5)
and MSCs (P , 0.001, n = 5) (Fig. 3C).
PGC-1a overexpression enhanced the expression of
proangiogenic factors within MSCs. Under normal cul-
ture conditions, PGC-1a overexpression in MSCs increased
the expression of Hif-1a, which could not be detected in

FIG. 2. Proangiogenic factor expression of MSCs modified with genes in vitro. A: Western blotting analysis for Hif-1a, PGC-1a, and GAPDH. The
protein expression of Hif-1a was not detected in MSCs and MSCs transfected with Ad-GFP (defined as GFP-MSC), but could be detected in MSCs
transfected with Ad-GFP-PGC-1a (defined as PGC-1a-MSC) under 6 h normal culture. And after 6 h hypoxia and serum deprivation–conditioned
culture, PGC-1a-MSCs produced more Hif-1a by 2.8-fold (compared with MSCs; P < 0.001) or by 3.0-fold (compared with GFP-MSCs; P < 0.001). B:
Levels of VEGF secreted by MSCs, GFP-MSCs, and PGC-1a-MSCs from 24 to 72 h normal culture. C: Levels of PDGF-B secreted by MSCs, GFP-MSCs,
and PGC-1a-MSCs from 24 to 72 h normal culture. D: Levels of FGF-2 secreted by MSCs, GFP-MSCs, and PGC-1a-MSCs from 24 to 72 h normal
culture. *P < 0.01, PGC-1a-MSC vs. MSC; #P < 0.01, PGC-1a-MSC vs. GFP-MSC.
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MSCs or GFP-MSCs (Fig. 2A). After 6 h hypoxia and serum
deprivation–conditioned culture, PGC-1a-MSCs produced
more Hif-1a by 2.8-fold (compared with MSCs; P , 0.001,
n = 5) or by 3.0-fold (compared with GFP-MSCs; P , 0.001,
n = 5) (Fig. 2A). And the increased levels of VEGF, FGF-2,
and PDGF-B secreted by PGC-1a-MSCs from 24–72 h nor-
mal culture were always higher than those by MSCs (P ,
0.01, n = 5) or GFP-MSCs (P , 0.01, n = 5) (Fig. 2B–D).
MSCs modified with PGC-1a promoted perfusion
recovery in the diabetic hindlimb ischemia model.
Two weeks after transplantation, the perfusion recovery of
diabetic ischemic hindlimb was highest in the PGC-1a-MSC
group, followed by the MSC group and GFP-MSC group
(Fig. 4A). The perfusion recovery of diabetic ischemic
hindlimb in the PBS group was always lowest (Fig. 4A).
The quantitative analysis of hindlimb blood perfusion
showed that the increase of the LDPI index from 0 to 14
days was significantly higher in the PGC-1a-MSC (0.655 6
0.051) than in the GFP-MSC (0.438 6 0.049), MSC (0.440 6
0.088), and PBS groups (0.170 6 0.050) (Fig. 4C), and the
increase of blood perfusion in the GFP-MSC and MSC
groups was significantly higher than that in the PBS group
(Fig. 4C). Fourteen days after transplantation, the in-
cidence of limb necrosis in the PBS group was largest,
followed by the MSC and GFP-MSC groups (Fig. 4E).
There was no necrosis occurring in the PGC-1a-MSC group
(Fig. 4E).
Capillary density in diabetic ischemic hindlimb. A
large number of capillaries were detected in the diabetic
ischemic muscles of the PGC-1a-MSC, GFP-MSC, and MSC
groups 2 weeks after transplantation (Fig. 4B). Further-
more, the quantitative analysis demonstrated that the

capillary/muscle fiber ratio of ischemic muscle was highest
in the PGC-1a-MSC group, followed by the MSC and GFP-
MSC groups, and the lowest was observed in the PBS
group (Fig. 4D).
Survival of transplanted MSCs modified with genes in
diabetic ischemic hindlimb muscles. Five days after
transplantation, the number of GFP-positive cells per 1,000
nuclei was notably higher in the PGC-1a-MSC group than
in the GFP-MSC group (36.8 6 4.7 vs. 6.2 6 3.1; P , 0.001)
(Fig. 5A).
Local production and secretion of FGF-2 and VEGF in
diabetic ischemic hindlimb muscles. Five days after
transplantation, the VEGF protein expression level of di-
abetic ischemia muscles in the PGC-1a-MSC group was 1.86-
and 1.91-fold separately of that in the MSC and GFP-MSC
groups (P , 0.01) (Fig. 5B). Similarly, the FGF-2 protein
expression level was 1.52- and 1.63-fold of that in the MSC
and GFP-MSC groups, respectively (P , 0.01) (Fig. 5B).

Immunohistochemically, the green-colored cells indicat-
ing GFP-positive MSCs were overlapped or surrounded by
a high concentration of red color, suggesting the local se-
cretion of FGF-2 and VEGF from MSCs modified with genes
(Fig. 5C).

DISCUSSION

In the current study, the therapeutic angiogenesis of MSCs
overexpressing PGC-1a in CLI of diabetic rats was exam-
ined. The overexpression of PGC-1a caused an increase of
Hif-1a, a higher ratio of Bcl-2/Bax, and a decrease of cas-
pase 3 in MSCs, improved the survival of MSCs under the
conditions of hypoxia and serum deprivation, and promoted

FIG. 3. Apoptosis analysis of MSCs modified with genes in vitro. A: Three representative density plots of flow cytometry showed that the survival
rate in the PGC-1a-MSC group was 61.8%, 35.8% in the GFP-MSC group, and 38.5% in the MSC group after 12 h hypoxia and serum deprivation
culture. B: Survival rate in each group after 0, 6, and 12 h hypoxia and serum deprivation culture. *P< 0.01, PGC-1a-MSC vs. MSC; #P< 0.01, PGC-
1a-MSC vs. GFP-MSC. C: Western blotting analysis for caspase 3, procaspase 3, b-actin, Bax, Bcl-2, and GAPDH after 12 h hypoxia and serum
deprivation culture. (A high-quality color representation of this figure is available in the online issue.)
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the secretion of proangiogenic factors by MSCs. In a
hindlimb ischemia model of diabetic rat, the injection of
MSCs modified with PGC-1a caused significantly greater
improvement of blood perfusion than the transplantation
of either MSCs or MSCs modified with GFP.

Within the last 10 years, many studies demonstrated that
the angiogenesis mechanisms of transplanted MSCs in is-
chemic tissues mainly included secreting a wide array of
proangiogenic factors, differentiating/integrating into angio-
blasts, and recruiting endogenous stem cells (26), in which
the paracrine and autocrine of transplanted MSCs played
a major role in the therapeutic angiogenesis of ischemic
tissues (9,27–31). In further research, it has been found that
MSCs modified with proangiogenic genes, such as VEGF,
insulin-like growth factor-1, and angiopoietin-1, could in-
crease the secretion of corresponding proangiogenic factors
in ischemic tissues and result in the enhancement of thera-
peutic angiogenesis of MSCs (32–34). More recently, a study
has shown that skeletal muscle cells modified with PGC-1a
can secret more proangiogenic factors through estrogen
receptor-a (17). Besides, PGC-1a in skeletal muscle cells
cannot only increase the stabilization of Hif-1a but also be
coupled to Hif-1a–dependent gene expression (35), which
implies a PGC-1a/ Hif-1a pathway to promote the secretion
of some proangiogenic factors in MSCs (36). Similarly, our
study also suggested that overexpressing PGC-1a could in-
crease Hif-1a expression in MSCs, which might contribute
to the increase of proangiogenic factors (VEGF, FGF-2, and
PDGF-B) secreted by MSCs in part.

On the other hand, another study has also shown that MSCs
modified with antiapoptosis genes, such as Bcl-2, can improve
the survival of MSCs in ischemic tissues and enhance the ef-
fect of MSC therapy (37). In other species of cells, the current
reports have shown that PGC-1a may enhance the effect of
antiapoptosis and promote cell growth by accelerating the
degradation of reactive oxygen species (15), by increasing the
activity of ATP/ADP translocase (16), or by interacting with
the androgen receptor (38). To our knowledge, the data in this
study have shown for the first time that PGC-1a can increase
the Bcl-2/Bax ratio notably and inhibit the activated caspase 3
fragments, which may lead to the survival of more cells in the
ischemic hindlimb of diabetic rats.

Diabetic PAD is a systemic disease characterized by se-
vere impairment of angiogenesis (39), which may provide
a worse living condition for transplanted cells compared with
healthy PAD. The downregulation of proangiogenic factors,
such as VEGF and FGF-2, plays an important role in the
impaired angiogenesis of diabetes (40,41). So the increased
level of proangiogenic factors in diabetic ischemic hindlimb
can improve blood perfusion greatly (21,40–42). Our data
have indicated that the above effects of overexpressing
PGC-1a on MSCs may contribute to survival improvement of
transplanted MSCs and promote high-level secretion of
proangiogenic factors. This may lead to a greater increase
of capillary density and blood perfusion in diabetic ische-
mic hindlimb.

Although the PGC-1a–modified MSCs demonstrated
therapeutic angiogenesis by improving the engraftment of

FIG. 4. Perfusion recovery, capillary density, and necrosis incidence of ischemic hindlimb after stem cell–based therapy. A: Representative images of LDPI
on 0, 7, and 14 days after therapy. The blood perfusion of ischemic hindlimbwasmarkedly increased in the PGC-1a-MSC group.B: Representative examples
of ischemic hindlimb muscles by alkaline phosphatase staining (original magnification 3100). C: Quantitative analysis of hindlimb blood perfusion. The
LDPI index was significantly highest in the PGC-1a-MSC group on 7 and 14 days after transplantation, followed by the MSC and GFP-MSC groups, and the
lowest was observed in the PBS group.D: Quantitative analysis of capillary density in ischemic hindlimb muscles. Capillary density was shown as capillary/
muscle fiber ratio. The capillary/muscle fiber ratio of ischemic hindlimb muscles was highest in the PGC-1a-MSC group, followed by the MSC, GFP-MSC,
and PBS groups. E: Incidence of limb necrosis 2 weeks after transplantation. Data in C and D were presented as mean6 S.E.M. &P< 0.01, PGC-1a-
MSC group vs. PBS group; *P < 0.05, PGC-1a-MSC group vs. GFP-MSC group; #P < 0.05, PGC-1a-MSC group vs. MSC group; -P < 0.05, PBS group
vs. GFP-MSC group; +P < 0.05, PBS group vs. MSC group. (A high-quality color representation of this figure is available in the online issue.)
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transplanted MSCs and secreting a higher level of proan-
giogenic factors in this study, whether the MSCs can dif-
ferentiate and incorporate into several tissues or whether
they can promote myofiber regeneration is still unknown.
Longitudinal and further studies are required to explore
these issues and possible related mechanisms.

To our knowledge, the current study demonstrated for the
first time that overexpression of PGC-1a enhances the sur-
vival and angiogenic potential of MSCs, and transplantation
of MSCs modified with PGC-1a can cause significantly

greater improvement in diabetic hindlimb ischemia than
transplantation of MSCs, or transplantation of MSCs modi-
fied with GFP.
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