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A B S T R A C T

Objectives: To separate estimates of mean change in a health outcome into components of aging and disease
progression for different severity groups of chronic obstructive pulmonary disease (COPD).
Study design and methods: A longitudinal model can be used to estimate mean change in a health outcome over
time. Methods to separate this change into portions due to aging and disease progression are discussed, including
conditions that allow for accurate estimation. Linear mixed models were used to estimate these changes for forced
expiratory volume in 1 s (FEV1) for various COPD severity and smoking groups using a large cohort (COPDGene)
followed for over 10 years.
Results: Based on an analysis of 4967 subjects, age-related loss in FEV1 was found to be about 1 % per year,
consistent with published work. Excess average losses (those beyond natural aging) were significant for all
severity groups (except nonsmokers), including those with smoking history but normal lung function. Subjects in
higher severity groups tended to have less loss in FEV1, but more relative loss, compared to baseline averages.
Losses in FEV1 that included both aging and disease progression ranged from 1 to 3 % over severity groups, with
current smokers generally exhibiting greater mean losses in FEV1 than former smokers.
Discussion: Effects of disease progression separate from aging can be estimated in observational studies, although
care should be taken in order to make sure assumptions involving this separation are reasonable for a given
study. This article demonstrates methods to estimate such effects using temporal changes in lung function for
subjects in the COPDGene study.

Introduction

Longitudinal models are powerful tools that help researchers assess
effects of progression of illness for observational studies of disease [1].
However, accurately estimating disease progression involves teasing out
effects of natural aging. Self-selection and dropout inherent in obser-
vational studies propose some challenges in estimating effects of inter-
est, although such studies provide real-life data that is relatively easy to
obtain on a large scale compared with designed experiments. Longitu-
dinal models will naturally have one or more predictors involving time
and/or age. Here, we discuss the nature of such predictors when effects
of both aging and disease progression are of interest, with an application
involving changes in lung function over time for subjects with chronic
obstructive pulmonary disease (COPD).

Forced expiratory volume in 1 s (FEV1) naturally changes with age
and decreases, on average, after approximately 25 years of age. These
decreases can be magnified for those with an illness such as chronic
pulmonary disease (COPD). Recent reports have estimated changes in
FEV1 over time for COPD [2,3], but with less focus on separation of
aging and disease progression. Here we discuss methods to separate
effects of aging and disease progression in depth, and then apply these
methods to data from a large study of current and former smokers
(COPDGene) graded by severity at baseline.

Models using time since disease onset

Fig. 1 shows a simple paradigm for disease progression and natural
aging after age of peak health. The mean of the linear progression model
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for health outcome Y that accounts for both aging and disease pro-
gression can be expressed as

E(Y) =
{

α0 + αaAge when Age < Onset age
α0 + αaAge+ αt(Age − Onset age) when Age ≥ Onset age

(1)

In (1), (Age – Onset age) can be replaced with Time since onset; disease
starts at Time since onset = 0 and the term with αt kicks in when Time
since onset ≥ 0. When time of disease onset is known, aging and disease
progression effects can be estimated by including Age and Time since
onset, both time varying, as predictors in the longitudinal model for Y.
This piecewise regression model [4] can be fit by setting pre-disease
times to 0 for the Time since onset variable. Outcome variables that are
approximately normally distributed (after transformation, if necessary)
can be fit using linear mixed models [5], which can easily be generalized
for non-normal outcomes by employing generalized linear (mixed)
models [6]. Repeated measures on subjects can be handled in mixed
models by including either subject-level random effects and/or a non-
simple error covariance structure. Model (1) can be generalized to ac-
count for nonlinearity. As an example, Supplement A includes a
quadratic disease progression paradigm that has a smoother transition
from healthy to disease states. Here, we primarily focus on the simpler
case to illustrate the principles.

Time in study

In many observational studies, Time since onset is not known and Time
in study is used instead. Including Baseline age and Time in study as pre-
dictors will allow for estimation of effects involving between-subject age
differences and within-subject changes over time during the study,
respectively [7,8], and possibly answer questions regarding aging versus
disease progression. However, if only (time varying) Age is included, the
effect being estimated is a weighted average of within- and between-
subject effects. Morrell et al. argued that separation of effects might
provide more accurate results since many observational studies have an
age-dependent bias, e.g., when a subject just entering the study tends to
be healthier than someone of the same age who has been in the study for
a few years [9]. Thus, including two time-related predictors may even be
helpful in estimating effects in groups for which no disease progression
is expected.

Using baseline age versus time-varying age

It may seemmore intuitive to include Baseline age and Time in study as

predictors rather than Age and Time in study. However, the choice de-
pends more on effects of interest. Also, the two approaches differ sys-
tematically, as the following equations illustrate, using the principle that
Age = Baseline age + Time in study.

E(Y) = β0 + βaAge+ βtTime in study
= β0 + βa(Baseline age+ Time in study) + βtTime in study
= β0 + βaBaseline age+ (βa + βt)Time in study

(Beta symbols are used here to distinguish it from the case where
time since disease onset is known.) The coefficient βa is the mean
between-subject baseline age effect; βa + βt is the (total) mean within-
subject time effect, and βt is the excess mean within-subject effect, i.e.,
time effects that extend beyond aging effects associated with baseline
age. When Age and Time in study are included as predictors, the co-
efficients being estimated are βa and βt, respectively (e.g., [10,2]),
whereas when Baseline age and Time in study are the predictors (e.g.,
[11–13]), they are βa and (βa+ βt). It is easy to estimate any combination
of these parameters from the same model using customized ‘estimate’
statements (e.g., in SAS or R). If there is no bias due to the enrollment
process or dropout, then the estimate of βa might accurately depict the
aging effect, in which case what is leftover could be due to disease
progression (estimate of βt), but for many observational studies this may
not hold. Researchers can see if estimates of βa are consistent with aging
effects reported in other studies. If so, separation of aging and disease
progression may hold at least approximately.

Using ‘Time in study’ as a proxy for ‘Time with disease’

Time in study is often somewhat arbitrary compared with a time
variable of greater interest, Time since disease onset. But in some cases,
the former can be used as a proxy for the latter. Mathematically, we are
interested in cases where βa = αa, βt = αt and βa + βt = αa + αt. These
principles were tested by constructing Time since onset = Time in study +
constant+ random error+ f(Baseline age), and fitting longitudinal models
using Monte Carlo simulation (see Supplement B). When f(Baseline age)
was set to 0 (Time since onset designed to be unrelated to Baseline age), no
bias occurred in estimating αa or αt when using Time in study as the
proxy; the addition of random error did not impact estimates, as ex-
pected, since it was Berkson-type error [14]. When f(Baseline age) was
set to constant•(Age at baseline) (i.e., Time since onset linearly related to
Baseline age, such as when older subjects entering a study tend to have
had a disease for a longer period of time), bias occurred in estimating
each of αa and αt, but the bias summed to 0 so that estimation of αa + αt
was still accurate (in absence of selection or dropout issues). The sim-
ulations also showed that when there was a hard change at time of
disease onset (as in Fig. 1), estimation of parameters was easier when
subjects were not changing disease status during the observation period.
(A ‘change point’ was not added in the models being fitted since in
practice, time of disease onset is unknown.)

Nonlinear effects

There are various ways that nonlinearity can be accounted for in
modeling age and time effects in longitudinal models, including trans-
forming model outcome or predictor variables (e.g., log-linear, linear-
log or log-log models [15]), including time-varying predictors or
including polynomial terms for time or age [1]. Models with quadratic
effects for age and disease progression do allow for smoother, perhaps
more intuitive changes between natural aging and disease progression.
However, one advantage of using simple linear terms is that it is easier to
separate time-varying age into between and within-subject components
and express change in terms of slopes, whereas estimates of change in
models with higher-order terms depend on age (or time). One may
decide not to use the nonlinear model unless it clearly yields a better fit.
Nevertheless, there may be cases where using the nonlinear approach is
clearly necessary.

Fig. 1. Change in health outcome Y as a function of age and disease progression
(after age of peak health). The solid line shows average progression over time in
a population due to natural aging; the dashed line shows additional mean
progression due to a particular illness; onset age is where the lines intersect.
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Selection bias and dropout in observational studies

Estimation of effects of interest (including separation of aging and
disease progression) can be biased due to unintended selection bias at
the beginning of a study, or due to non-ignorable dropout during the
study. Some methods for handling missing at random (MAR) data may
allow for reduction in bias of estimates, such as multiple imputation,
inverse weighting, or by including certain predictors and relevant
interaction terms in the model [16]. Although more difficult to deal
with, data that tend to be missing not at random (MNAR) can employ
techniques such as pattern mixture models and model selection tech-
niques [16]. Another issue to deal with in many long-term studies of
disease progression is how to handle those who die during the study
[17]. When applying imputation techniques, it may not make sense to
impute data for subjects after they die, particularly when the death is
related to the disease being studied. Rather, it can be considered an
alternative outcome. In such cases, reporting mortality rates jointly with
estimates of progression of outcomes for study groups provides a more
complete picture of the data and is particularly useful when comparing
results between disease severity groups.

Application

Chronic obstructive pulmonary disease (COPD) is the fourth leading
cause of death worldwide, and costs the U.S. health care system nearly
$50 billion in direct costs per year [18]. Like other diseases, under-
standing expected progression of disease for subjects with different
levels of severity of COPD is important in determining whom to target
for therapy. The COPDGene study [19] was used to evaluate aging and
disease progression estimates for forced expiratory volume in 1 s (FEV1)
for different severity groups. Groups were defined at baseline using
FEV1/FVC (where FVC = forced vital capacity) and percent of predicted
FEV1 using GOLD criteria [20], as follows: GOLD 0 = FEV1 ≥ 80 % of
predicted and FEV1/FVC ≥ 0.7; PRISm (preserved ratio, impaired
spirometry) FEV1 < 80 % and FEV1/FVC ≥ 0.7; GOLD 1 through 4 all
have FEV1/FVC<0.7, with FEV1≥ 80 % (GOLD 1), 50 %≤ FEV1< 80 %

(GOLD 2), 30 % ≤ FEV1 < 50 % (GOLD 3) and FEV1 < 30 % (GOLD 4).
Baseline demographics are provided in Table 1. Our analysis included
subjects with at least two measurements during the study, and subjects
with changes in smoking status during the study were excluded.

Raw FEV1 (in liters) was modeled on the natural log scale (yielding
better fits than raw FEV1 for nearly all groups) as a function of Age, Time
in study, sex, height, race (White or Black), body mass index (BMI), severity
group and severity group*Time in study. Our paradigm assumes one nat-
ural aging effect, and thus an interaction term between Age and severity
group was not included in the model. Enrollment criteria included
baseline age of 45 to 80 years and 10 pack-years of smoking history
(except for the nonsmokers). Subjects had up to three measurements
that were separated by 5-year intervals; sample sizes and number of total
measurements are shown in Table 2. Due to use of log outcome, expo-
nentiated fixed effects naturally have relative change interpretations (a
linear model with respect to natural log FEV1). Random intercepts and
slopes for Time in study were included for subjects to account for
repeated measures. The total within-subject effect was determined by
including an ‘estimate statement’ for the samemodel fit (performed with
SAS [v9.4, Cary, NC]). (An example of an estimate statement is given in
the SAS macro program in Supplement B.) The between-subject baseline
age effect (1.07 % loss per year) was very close to aging effects reported
in the literature (e.g., see [21–26]). As expected, the estimate of βt was
not significant for nonsmokers (p = 0.23). Given no excess effects are
expected for nonsmokers, the total mean within-subject effect (β̂a+ β̂t)
could also be used as an estimate for the aging effect from this group.

For other severity groups (see Table 2), given the 10 pack-year
smoking history criteria for enrollment, some disease progression is
expected for most if not all study subjects, even if minor, although the
standard criteria for COPD is FEV1/FVC < 0.7. Table 2 shows that FEV1
tended to decline more with increasing severity, with GOLD 3 exhibiting
the largest changes. The excess progression diminished for the GOLD 4
(highest severity) subjects, although approximately half of these sub-
jects died before a P2 visit would have occurred (mortality rates at 5 and
11 years across severity groups for subjects started the study were 5 and

Table 1
Mean baseline characteristics of subjects, by baseline severity. Entries are mean (SD) unless otherwise noted.

Variable NS (n = 279) GOLD 0 (n = 2250) PRISm (n = 564) GOLD 1 (n = 430) GOLD 2 (n = 899) GOLD 3 (n = 444) GOLD 4 (n = 101)

Height, cm 169.5 (9.4) 169.7 (9.3) 170.3 (9.5) 170.0 (9.6) 170.4 (9.6) 169.4 (9.9) 170.5 (9.2)
Female 56 % 51 % 57 % 45 % 47 % 46 % 41 %
White 87 % 67 % 64 % 81 % 77 % 82 % 87 %
FEV1, liters 3.02 (0.76) 2.85 (0.67) 2.06 (0.48) 2.63 (0.65) 1.89 (0.51) 1.16 (0.29) 0.70 (0.17)
FEV1/FVC 0.80 (0.05) 0.78 (0.05) 0.76 (0.05) 0.65 (0.04) 0.59 (0.08) 0.45 (0.09) 0.31 (0.05)
Age, years 60.2 (9.5) 58.1 (8.6) 58.4 (8.5) 63.0 (8.4) 62.9 (8.5) 64.2 (7.8) 64.0 (7.4)
Current smoker 0 % 44 % 50 % 41 % 37 % 21 % 10 %

Severity groups were defined at baseline using FEV1/FVC and percent of predicted FEV1as follows: GOLD 0 = FEV1 ≥ 80 % of predicted and FEV1/FVC ≥ 0.7; PRISm
(preserved ratio, impaired spirometry) FEV1< 80 % and FEV1/FVC≥ 0.7; GOLD 1 through 4 all have FEV1/FVC<0.7, with FEV1≥ 80 % (GOLD 1), 50 %≤ FEV1< 80
% (GOLD 2), 30 % ≤ FEV1 < 50 % (GOLD 3) and FEV1 < 30 % (GOLD 4); NS = nonsmokers.

Table 2
Estimates of relative change per year for FEV1, %, for COPD subjects graded by severity at baseline, with 95 % confidence intervals in parentheses unless otherwise
noted, based on a linear mixed model fit (see text for model details). Estimates apply to subjects with fixed height and BMI over time.

Group* Sample size (n), records
(r)**

Baseline Mean FEV1, liters
(SD)

100(exp(β̂a)-1)
(Between-subject baseline
effect),
% change per year

100(exp(β̂t)-1)
(Within-subject excess
effect),
% change per year

100(exp(β̂a + β̂t)-1)
(Total within-subject
effect),
% change per year

Nonsmokers n = 279, r = 606 3.02 (0.76)

− 1.07 (− 1.11, − 1.02)
(average for all groups)

− 0.18 (− 0.46, 0.11) − 1.24 (− 1.52, − 0.96)
GOLD 0 n = 2250, r = 5717 2.85 (0.67) − 0.51 (− 0.60, − 0.41) − 1.57 (− 1.65, − 1.49)
PRISm n = 564, r = 1382 2.06 (0.48) − 0.41 (− 0.59, − 0.23) − 1.47 (− 1.64, − 1.30)
GOLD 1 n = 430, r = 1092 2.63 (0.65) − 1.16 (− 1.35, − 0.96) − 2.21 (− 2.40, − 2.02)
GOLD 2 n = 899, r = 2193 1.89 (0.51) − 1.55 (− 1.70, − 1.41) − 2.60 (− 2.74, − 2.46)
GOLD 3 n = 444, r = 1051 1.16 (0.29) − 2.07 (− 2.28, − 1.86) − 3.12 (− 3.32, − 2.91)
GOLD 4 n = 101, r = 234 0.70 (0.17) − 1.08 (− 1.53, − 0.63) − 2.13 (− 2.57, − 1.69)

* Severity groups are defined as in Table 1.
** One model was fit and interactions included in order to obtain estimates by severity group.
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12% for GOLD 0, 10 and 22% for PRISm, 6 and 16% for GOLD 1, 12 and
30% for GOLD 2, 23 and 50% for GOLD 3 and 49 and 74% for GOLD 4).
Dropout for reasons other than death could also impact results. Gener-
ally, the use of random intercept and slope for subjects is expected to
minimize impacts of MAR-type missing data [16]. There was little or no
improvement in goodness-of-fit by adding quadratic age/time terms to
the models for the most part, perhaps due to the fact that a limited age
range was studied (baseline age: range of 45 to 80 years, mean = 60.2
years, SD = 8.9 years, n = 4967 never, former or current smokers), and
also because slopes for disease progression were allowed to vary by
baseline severity group.

A separate model was fit without nonsmokers in order to examine
progression by smoke group (persistent current or persistent former) in
addition to severity group. This model contained the same predictors as
previously described, plus smoke group and all interaction terms
involving smoke group, severity group and Time in study. Random in-
tercepts and slopes for Time in study for subjects were included, as
before, with separate covariance parameters estimated for current and
former smokers. Table 3 shows relative total within-subject estimates of
change over time by smoking status (persistent current or former) and
severity group. Current smokers in GOLD 0, 1 and 2 had significantly
greater mean decreases in FEV1 than former smokers, while a similar,
marginally significant difference occurred for PRISm. GOLD 3 and 4
showed no significant mean difference between current and former
smokers, however many of these subjects passed away before evaluation
of progression could be determined. In addition, mortality rates were
higher for Current versus Former smokers across GOLD groups. For
example, the 5-year mortality rate was 29 % versus 21 % in Current and

Former smokers for GOLD 3, respectively, and 56 % versus 47 % for
GOLD 4.

Fig. 2 contains spaghetti plots for (a) nonsmokers and (b) GOLD 2
subjects, overlaid with mean between-subject (BS; blue) and total
within-subject (WS; red) functions by age based on estimates from
Table 2 for these two groups, averaged over other covariates in the
model. As loglinear models were employed, slopes will be curved on the
scale in original units; curves were placed to intersect at the mean of
FEV1 and age in each graph. The multiplicative change per year is exp
(β̂a) for the BS function and exp(β̂a+β̂t) for the WS function. For the
nonsmoking controls (panel a), the curves are very similar and it is ex-
pected that they both capture natural aging effects. On the other hand,
the total WS slope for GOLD 2 subjects (red line) in panel b is steeper
than the BS slope (blue line), indicating an excess WS trend (difference
between curves). As the aging effect is similar to that reported in other
literature, this excess trend approximately reflects average disease
progression, barring other potential sources of bias.

Discussion

Longitudinal observational studies allow for analysis of large
amounts of data in real-world settings, but have inherent limitations.
Results from the studies can still be quite informative, but should be
qualified based on potential biases that may occur. Most notably, sub-
jects are self-selected for participation and may dropout at any time, and
thus average progression may not be representative of the population of
interest. The biases can impact severity groups differently. For example,

Table 3
Estimates of total within-subject relative change per year for FEV1, %, for COPD subjects graded by severity at baseline and by smoking status (persistent current or
former during study), with 95 % confidence intervals in parentheses, based on linear mixed model fits. Groups were as defined in Table 2; see text for model details.

Group Current Former p-value*

GOLD 0 − 1.80 (− 1.93, − 1.66), n = 1000 − 1.39 (− 1.50, − 1.29), n = 1250 <0.0001
PRISm − 1.63 (− 1.89, − 1.36), n = 284 − 1.31 (− 1.54, − 1.09), n = 280 0.08
GOLD 1 − 2.73 (− 3.06, − 2.41), n = 177 − 1.85 (− 2.08, − 1.62), n = 253 <0.0001
GOLD 2 − 3.32 (− 3.56, − 3.08), n = 334 − 2.18 (− 2.35, − 2.02), n = 565 <0.0001
GOLD 3 − 2.90 (− 3.39, − 2.40), n = 93 − 3.17 (− 3.38, − 2.95), n = 351 0.33
GOLD 4 − 1.55 (− 3.11, 0.03), n = 10 − 2.19 (− 2.63, − 1.74), n = 91 0.45

* Comparing Current vs. Former using t-tests derived from the linear mixed model fits.

Fig. 2. Demonstration of within and between-subject effects. Spaghetti plots of observed data are shown in gray for (a) nonsmokers (b) GOLD 2 subjects (random
sample of 20 %). Overlaid on the plots are the estimated average between-subject age effect (related to exp(β̂a) [bs] in blue) and the estimated average within-subject
change over time (related to exp(β̂a+β̂t) [ws total] in red). See text for more detail.
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GOLD 4 subjects had notable slowing of FEV1 change; however, they
also by far had the highest mortality rate. Many subjects in this group
cannot survive substantial decreases from their already relatively low
levels of FEV1, and thus pass away rather than continuing to progress in
illness, leading to an attenuation of average progression for this group.
This phenomenon may influence other groups as well, but probably not
to the degree observed for GOLD 4.

The estimates shown in Table 2 suggest that changes in FEV1 are in
fact nonlinear if you consider a subject’s entire history. For example,
many subjects who fell into GOLD 4 at baseline likely at one time had
normal spirometry, and thus progressed through earlier stages, even if
just for a short time. On average, the earlier stages had less progression
than later stages in terms of relative change. Models of absolute change
[3] also show that mean change differ by GOLD stage, with highest
changes in GOLD 1 or 2. Our attempts at including nonlinear terms
generally did not yield improved fits, but this may be due to the fact that
severity groups were allowed separate slopes over time, allowing pro-
gression to be modeled as approximately linear within GOLD stages. The
models used for analysis here also allow for individual variation, as
random terms for intercept and slope for time were included for subjects.

Including age and time in study as predictors in a longitudinal model
allow for estimation of between- and within-subject time-related effects.
Using time-varying age and time in study allow for estimation of
between-subject age and excess within-subject effects, respectively,
while using baseline age and time in study allow for estimation of
between-subject age and total within-subject effects, respectively. These
may specifically capture aging and disease progression effects, although
for a given observational study, some investigation should be taken in
order to determine if this assumption is reasonable. This can be carried
out by verifying aging effects for an appropriate control group within the
same study or from other reported literature. For the COPD application
presented here, the baseline between-subject age effect was similar to
natural aging effects in reported literature, suggesting that such a sep-
aration of effects was at least approximately reasonable.

Grant support

This work was supported by NHLBI U01 HL089897 and U01
HL089856. The COPDGene study (NCT00608764) is also supported by
the COPD Foundation through contributions made to an Industry
Advisory Committee comprised of AstraZeneca, Bayer Pharmaceuticals,
Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Novartis, Pfizer
and Sunovion.

Credit authorship contribution statement

Matthew Strand: Writing – review & editing, Writing – original
draft, Software, Methodology, Formal analysis, Conceptualization.
Surya Bhatt: Writing – review & editing. Matthew Moll: Writing –
review & editing. David Baraghoshi: Writing – review & editing.

Declaration of competing interest

MS and DB: grant support via U01 HL089897, U01 HL089856 and
the COPD Foundation.

MM: grant from NHLBI K08HL 159318-01A1; grant or contract from
Bayer; consulting fees from Verona pharma, Sitka, TheaHealth, 2ndMD,
Axon Advisors.

SB: grants or contracts for R01 HL151421, UH3HL155806, Nuivaira,
Sanofi/Regeneron; consulting fees from Sanofi/Regeron, Boehringer
Ingelheim, GSK; payment or honoraria from IntegrityCE.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.gloepi.2024.100165.

References

[1] Fitzmaurice GM, Laird NM, Ware JH. Applied longitudinal analysis. John Wiley &
Sons; 2012.

[2] Ragland MF, Strand M, Baraghoshi D, Young KA, Kinney GL, Austin E, et al. 10-
year follow-up of lung function, respiratory symptoms, and functional capacity in
the COPDGene study. Ann Am Thorac Soc 2022 Mar;19(3):381–8.

[3] Dransfield MT, Kunisaki KM, Strand MJ, Anzueto A, Bhatt SP, Bowler RP, et al.
Acute exacerbations and lung function loss in smokers with and without chronic
obstructive pulmonary disease. Am J Respir Crit Care Med 2017 Feb 1;195(3):
324–30.

[4] Naumova EN, Must A, Laird NM. Tutorial in biostatistics: evaluating the impact of
‘critical periods’ in longitudinal studies of growth using piecewise mixed effects
models. Int J Epidemiol 2001 Dec 1;30(6):1332–41.

[5] Verbeke G, Molenberghs G, Verbeke G. Linear mixed models for longitudinal data.
New York: Springer; 2000.

[6] McCulloch CE, Searle SR, Neuhaus JM. Generalized, linear, and mixed models.
New York: John Wiley & Sons; 2001 Jan.

[7] Neuhaus JM, Kalbfleisch JD. Between-and within-cluster covariate effects in the
analysis of clustered data. Biometrics 1998 Jun 1:638–45.

[8] Strand M, Nelson D, Grunwald G. Modeling between-subject differences and
within-subject changes for long distance runners by age. J Quant Anal Sports 2018
Jun 27;14(2):81–90.

[9] Morrell CH, Brant LJ, Ferrucci L. Model choice can obscure results in longitudinal
studies. J Gerontol Ser A 2009 Feb 1;64(2):215–22.

[10] Mroz MM, Maier LA, Strand M, Silviera L, Newman LS. Beryllium lymphocyte
proliferation test surveillance identifies clinically significant beryllium disease. Am
J Ind Med 2009 Oct;52(10):762–73.

[11] AlGhatrif M, Strait JB, Morrell CH, Canepa M, Wright J, Elango P, et al.
Longitudinal trajectories of arterial stiffness and the role of blood pressure: the
Baltimore longitudinal study of aging. Hypertension 2013 Nov;62(5):934–41.

[12] Luong G, Charles ST. Age differences in affective and cardiovascular responses to a
negative social interaction: the role of goals, appraisals, and emotion regulation.
Dev Psychol 2014 Jul;50(7):1919.

[13] Pearson JD, Morrell CH, Brant LJ, Landis PK, Fleg JL. Age-associated changes in
blood pressure in a longitudinal study of healthy men and women. J Gerontol A
Biol Sci Med Sci 1997 May 1;52(3):M177–83.

[14] Carroll RJ, Ruppert D, Stefanski LA. Measurement error in nonlinear models. 2nd
ed. CRC press; 2006.

[15] Benoit K. Linear regression models with logarithmic transformations. Lond School
Econ Lond 2011 Mar 17;22(1):23–36.

[16] Hogan JW, Roy J, Korkontzelou C. Handling drop-out in longitudinal studies. Stat
Med 2004 May 15;23(9):1455–97.

[17] Kurland BF, Heagerty PJ. Directly parameterized regression conditioning on being
alive: analysis of longitudinal data truncated by deaths. Biostatistics 2005 Apr 1;6
(2):241–58.

[18] Press VG, Konetzka RT, White SR. Insights about the economic impact of chronic
obstructive pulmonary disease readmissions post implementation of the hospital
readmission reduction program. Curr Opin Pulm Med 2018 Mar 1;24(2):138–46.

[19] Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, et al. Genetic
epidemiology of COPD (COPDGene) study design. COPD: J Chron Obstruct Pulmon
Dis 2011 Feb 1;7(1):32–43.

[20] Patel AR, Patel AR, Singh S, Singh S, Khawaja I. Global initiative for chronic
obstructive lung disease: the changes made. Cureus 2019 Jun;11(6).

[21] Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a
sample of the general US population. Am J Respir Crit Care Med 1999 Jan 1;159
(1):179–87.

[22] Kuster SP, Kuster D, Schindler C, Rochat MK, Braun J, Held L, et al. Reference
equations for lung function screening of healthy never-smoking adults aged 18–80
years. Eur Respir J 2008 Apr 1;31(4):860–8.

[23] Ahmadi-Abhari S, Kaptoge S, Luben RN, Wareham NJ, Khaw KT. Longitudinal
association of C-reactive protein and lung function over 13 years: the EPIC-Norfolk
study. Am J Epidemiol 2014 Jan 1;179(1):48–56.

[24] Lange P, Parner J, Vestbo J, Schnohr P, Jensen G. A 15-year follow-up study of
ventilatory function in adults with asthma. N Engl J Med 1998 Oct 22;339(17):
1194–200.

[25] Liao SY, Lin X, Christiani DC. Occupational exposures and longitudinal lung
function decline. Am J Ind Med 2015 Jan;58(1):14–20.

[26] Sherman CB, Xu X, Speizer FE, Ferris Jr BG, Weiss ST, Dockery DW. Longitudinal
lung function decline in subjects with respiratory Symptoms1 3. Am Rev Respir Dis
1992;146:855–9.

M. Strand et al. Global Epidemiology 8 (2024) 100165 

5 

https://doi.org/10.1016/j.gloepi.2024.100165
https://doi.org/10.1016/j.gloepi.2024.100165
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0005
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0005
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0010
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0010
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0010
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0015
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0015
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0015
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0015
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0020
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0020
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0020
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0025
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0025
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0030
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0030
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0035
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0035
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0040
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0040
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0040
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0045
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0045
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0050
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0050
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0050
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0055
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0055
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0055
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0060
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0060
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0060
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0065
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0065
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0065
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0070
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0070
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0075
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0075
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0080
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0080
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0085
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0085
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0085
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0090
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0090
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0090
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0095
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0095
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0095
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0100
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0100
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0105
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0105
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0105
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0110
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0110
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0110
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0115
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0115
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0115
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0120
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0120
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0120
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0125
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0125
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0130
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0130
http://refhub.elsevier.com/S2590-1133(24)00031-2/rf0130

	Estimating effects of aging and disease progression in current and former smokers using longitudinal models
	Introduction
	Models using time since disease onset
	Time in study
	Using baseline age versus time-varying age
	Using ‘Time in study’ as a proxy for ‘Time with disease’
	Nonlinear effects
	Selection bias and dropout in observational studies
	Application
	Discussion
	Grant support
	Credit authorship contribution statement
	Declaration of competing interest
	Appendix A Supplementary data
	References


