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Introduction

Proteins do not always interact through large ordered globular 
domains, but there is growing evidence of the involvement 
of short motifs in those interactions.1-3 Short linear motifs 
are regions of typically less than ten amino acids in length, 
usually with less than five defined positions, which function as 
recognition sites for protein modification, as cleavage sites or as 
targeting motifs for subcellular localization.1,4 Due to their short 
length they provide a small interface with their protein partners, 
allowing the formation of low affinity interactions with them. 
The formation of weak links makes them ideal for regulating 
interactions that need to be formed and disrupted easily.3 Short 
linear motifs tend to reside inside disordered regions of proteins. 
The attributes of known functional motifs, such as their 
skewed amino acid composition, their placement in disordered 
regions and their tendency to evolve convergently,5 allowed the 
development of bioinformatics tools that predict potentially 
novel active motifs.6-12 In a previous in silico analysis we showed 
that disordered regions tend to reside in the juxtamembrane 
region of transmembrane proteins potentially accommodating 
linear motifs.13 A family of transmembrane proteins, cadherins, 
was predicted to contain potential bioactive regions close to the 
membrane at their cytoplasmic side. Cadherins mediate Ca2+-
dependent, homophillic, cell-cell interactions, called adherens 
junctions.

In this study, we set off to predict bioactive peptides on the 
juxtamembrane regions of cadherins, and as loss of adherens 
junction is one of the consequences of TGFβ1 signaling, we 
wanted to investigate the role of these peptides on TGFβ1 
signaling. Such functional peptides could give insights into 
potential new therapeutic approaches to targeting signaling in 
cancer. The TGFβ1 signaling pathway involves several protein 
motif-protein interactions,14-16 commencing extracellularly 
with binding of growth factor to the type I and type II kinase 
receptors on the cell surface. The assembly of type I and type II 
TGFβ1 receptors into a complex requires the recognition and the 
phosphorylation of the GS motif in the intracellular part of the 
type I receptor by the type II receptor, which activates the receptor 
I kinase.17 Another signaling step that requires the presence of a 
motif involves the phosphorylation of Smads in the C-terminal 
motif SSxS by the receptor complex.18 Phosphorylated Smad2 
and Smad3 form complexes with Smad4 and translocate to the 
nucleus where they bind many transcriptional factors modulating 
the expression of genes that propagate the TGFβ1 signal.19,20

Genes whose expression is modulated through TGFβ1 
signaling include those contributing to the development of 
epithelial to mesenchymal transition (EMT), such as E- and 
N-cadherin21 and to the generation of fibrosis, such as connective 
tissue growth factor (CTGF).22 TGFβ1 also induces the expression 
of elements of the Notch signaling pathway, such as Jagged.23 
EMT is an evolutionary conserved process during embryogenesis 
that provides new embryonic tissue and specific cell lineages, 
like mesoderm, which later in development generate epithelial 
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organs, such as kidney through mesenchymal to epithelial 
transition.24,25 EMT activation in differentiated epithelial cells 
is linked with adult pathologies. There is emerging evidence of 
EMT’s role in the generation of cancer cells with stem cell-like 
characteristics26,27 and in the formation and accumulation of 
fibroblasts in kidney fibrosis.22,28 TGFβ1 stimulation of CTGF 
expression results in the synthesis and the accumulation of 
extracellular matrix (ECM), leading to tissue fibrosis.29 Notch 
signaling pathway is involved in the development of many tissues 
and organs through the regulation of cell proliferation, survival, 
apoptosis and differentiation.30

In the present study we identified peptides in the 
juxtamembrane region of E and N-cadherin that 
inhibit TGFβ1 responses at both the level of gene and 
protein expression. We identified shorter sub-peptides 
retaining the inhibitory function and mapped the 
active residues in those peptides.

Results

In silico identification of conserved motifs in 
juxtamembrane region of cadherins

The cadherin cytoplasmic juxtamembrane region 
influences function by supporting the accumulation 
of cadherins in clusters, a prerequisite for proper 
adherens junction formation.31 Experimentally verified 
functional short linear motifs tend to reside inside 
locally disordered regions.32,33 We sought to identify 
sites in human E- and N-cadherin protein sequences 
that are characterized simultaneously by high 
disorder and an increased relative local conservation 
in orthologous proteins. In general, short motifs are 
less conserved than structured domains. They are, 
however, relatively conserved compared with their 
adjacent residues.34 The conservation of a few residues 
in an otherwise non-conserved environment may 
sometimes be an indication of a functional role. The 
Relative Local Conservation (RLC) of a disordered 
residue was calculated,2 by comparing its conservation 
to the background distribution of adjacent disordered 
residues within the sequence. The in silico analysis 
identified groups of residues in the intracellular 
juxtamembrane region of E- and N-cadherin as 
relatively conserved and disordered (Figs. S1 and 
2). Multiple sequence alignment of various human 
cadherins (Fig. 1) showed that cadherins are fairly 
conserved in their juxtamembrane region especially 
within the p120 catenin binding site (Fig. 1). The 
association of p120 catenin with the juxtamembrane 
region of the cadherin cytoplasmic tail is crucial for the 
surface stability of the cell-cell adhesion complexes.35 
However, there are other conserved residues closer to 
the membrane, whose functional roles have not been 
as clearly elucidated. We designed and synthesized 

overlapping peptides based on the E- and N-cadherin sequence 
(Fig. 1). The peptides were palmitylated at the N-terminus to 
facilitate tethering of the peptides to the plasma membrane.36-39 
A Ttds (1-amino-4,7,10-trioxa-13-tridecanamine succinimic 
acid) linker between the palmitic acid and the peptide sequence 
was used in Ecad-3 and Ecad-4 peptides to mimic partially the 
distance of the parent sequence from the plasma membrane. The 
peptide naming convention we adopted here was to number the 
peptide closest to the membrane as peptide 1 (e.g., Ecad-1), with 
increasing peptide numbers corresponding to further distance 
from the membrane. Subsequent sub-peptides of the initially 
investigated peptides were then labeled with the suffix a or b 

Figure 1. (a) Graphical presentation of human e-cadherin protein. C1-C5: extracellular 
cadherin domain, TM: transmembrane region, JMD: Juxtamembrane region, βCBD: 
β-catenin binding domain. (B) Multiple Sequence alignment of human Cadherin 
proteins. The region around the membrane is shown. The transmembrane region and 
the catenin p120 binding site are highlighted in gray and magenta, respectively. The 
dileucine (LL) endocytic motif is overlined. Peptide sequences synthesized based on 
e-cadherin and N-cadherin are highlighted below the multiple sequence alignment 
(C) and the sequences are shown on the table (D). yellow triangles on pane C show the 
point where ecad-1, ecad-2 and Ncad-1 peptides were split to generate the shorter 
peptides. Peptides that inhibit TGFβ responses are labeled as active on the table (D). 
Ttds: 1-amino-4,7,10-trioxa-13-tridecanamine succinimic acid.
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in addition to the name of the larger initial peptide 
(Fig. 1). All the peptides were C-terminally amidated.

Peptides from juxtamembrane region of cadherins 
inhibit TGFβ1 induced gene expression in human 
kidney epithelial cells

We evaluated the effect of TGFβ1 on kidney cell 
gene expression by treating human tubular epithelial 
cells (HK-2) with TGFβ1 for 24 and 48 h and using 
various TGFβ1 doses to stimulate characteristic 
responses (Figs. S3 and 4). Induction of the TGFβ1 
pathway was indicated by increased Jagged (Jagged 
1), N-cadherin and CTGF expression, and decreased 
E-cadherin expression. Real-time TaqMan PCR was 
performed using probes specific for each marker. 
An increase in expression of all three genes, Jagged, 
N-cadherin and CTGF, and a decrease in E-cadherin 
expression were evident 24 h after TGFβ1 stimulation 
of the cells (Fig. S3). A dose of 5 ng/ml of TGFβ1 was 
sufficient to induce the response (Fig. S4). Thus, we 
justified using 24 h as a time point and 5 ng/ml as a 
dose for TGFβ1 treatment in all the experiments in the 
present study.

In order to investigate whether the synthesized 
cadherin palmitylated peptides were able to influence 
the TGFβ1 response, HK-2 cells were pre-incubated 
with the relevant peptides prior to TGFβ1 stimulation. 
Interestingly, cells that were pre-incubated with 
Ecad-1, Ncad-1 and Ncad-2 peptides suppressed the 
expected upregulation of both Jagged and N-cadherin 
upon TGFβ1 stimulation (Fig. 2). The expression 
of both markers was reduced to normal untreated 
levels. Ecad-3 and Ecad-4 peptides did not show any 
noteworthy inhibitory effect on TGFβ1 response. 
Palmitic acid had no effect on TGFβ1 response 
(Fig. 2), nor did palmitic acid connected to a Ttds 
linker (data not shown).

When the peptides were added in the absence 
of TGFβ1, they failed to influence significantly Jagged and 
N-cadherin expression (Fig. 2).

Identifying bioactive regions of the cadherin peptides
As shown above, Ecad-1 peptide acts as a potent inhibitor of 

TGFβ1 responses and Ecad-2 peptide has a minor inhibitory 
effect. Both of those peptides derive from the juxtamembrane 
region of E-cadherin and they share an overlapping sequence 
(KEPLLP) (Fig. 1). We hypothesized that there is a primary 
sequence present in one or both of the peptides that drives the 
observed inhibitory effect, and we synthesized palmitylated and 
C-terminally amidated peptides for each half of each of the Ecad-1 
and Ecad-2 peptides (Fig. 1). We examined the effect of those 
short peptides on Jagged and N-cadherin transcripts (Fig. 3). The 
two short peptides for Ecad-1 peptide (Ecad-1a and Ecad-1b), 
both effectively inhibited TGFβ1 response similarly to the full 
Ecad-1 peptide. Ecad-2b peptide did not show any inhibitory 
effect. As the Ecad-1 and Ecad-2 peptides are overlapping, 
Ecad-1b and Ecad-2a peptides correspond to the same sequence 
(KEPLLP), and they are only shown once, as Ecad-1b. The fact 

that both Ecad-1a and Ecad-1b peptides but not Ecad-2b peptide 
are capable of inhibiting the TGFβ1 response indicates that the 
observed effect derives from a sequence that is proximal to the 
membrane.

Similarly, for Ncad-1 peptide, Ncad-1a peptide that is closer 
to the membrane appeared to hinder TGFβ1 effect, whereas 
the more distant portion Ncad-1b was not effective (Fig. 4). 
Interestingly, Ecad-1b and Ncad-1b peptides derive from the 
same homologous region of cadherins and they both possess 
the dileucine endocytic motif (LL). The fact that those peptides 
have different effects suggests that the charge or other general 
properties of the flanking residues are crucial for function.

According to the dose-response experiments we conducted 
(Figs. S5–8) all peptides behave in a dose-dependent manner.

Mapping critical residues within the Ecad-1b peptide
Ecad-1b peptide is able to inhibit TGFβ1 responses and 

contains the dileucine endocytic motif (LL), which is involved in 
clathrin mediated E-cadherin internalization.40,41 We wished to 
examine if the presence of the dileucine motif is responsible for 

Figure 2. effect of peptides on the expression of Jagged and N-cadherin. a dose of 
50 μM of peptide was used. (Pal: Palmitic acid). *P < 0.05, Student’s unpaired t test 
compared with TGFβ treatment alone, n = 4 per group.
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the TGFβ1 response inhibition and we synthesized palmitylated 
peptides with several residues substituted to alanine (A) or 
glutamic acid (E) (Fig. 5). Replacing the first leucine of the LL 
motif to alanine resulted in loss of inhibition. Mutation of the 
second leucine did not influence the peptide effect, indicating 
that the first leucine of the motif is important. Replacing the 
positive lysine (K) with neutral alanine (A) did not reduce 
bioactivity. The peptide partially lost activity when lysine was 
replaced with a negatively charged glutamic acid. These data 
suggest that the effect of the Ecad-1b peptide is likely to derive 
in part from at least one residue of the dileucine motif and that 
a presence of a neutral or a positive charge at the N-terminus is 
important.

Cadherin peptides influence primary Smad dependent 
TGFβ1 signaling

We further corroborated the effect of the two peptides with 
the strongest inhibitory effect on TGFβ1 response, Ecad-1, 
Ecad-2 and Ncad-1 peptides, at the protein level.

Binding of TGFβ1 ligand induces the assembly of the type 
I and type II serine/threonine kinase receptors to the TGFβ1 
receptor complex. The type II receptor phosphorylates type 

I in the juxtamembrane region, which is an essential step for 
TGFβ1 signaling.14 The activated receptor propagates the signal 
intracellularly through phosphorylation of Smad proteins. 
Phosphorylation of Smad3 is among the first phosphorylation 
steps in this signal propagation.42 Interestingly, the expected 
increase of Smad3 phosphorylation after TGFβ1 stimulation 
was inhibited by Ecad-1 and Ncad-1 peptides and to a lesser 
extent by Ecad-2 peptide, whereas total Smad3 levels remained 
unaffected (Fig. 6). These data suggest that the peptides may 
act at the very early stages of the pathway, likely proximal to the 
TGFβ receptor.

Figures 6 and S9 also shows that several markers of TGFβ1 
responses were upregulated upon TGFβ1 stimulation. Smad3 
levels were used as an internal loading control. This TGFβ1 
induced protein overexpression was abolished after pre-
incubation of the cells with the cadherin peptides. Ecad-1 and 
Ncad-1 were the most potent inhibitors, successfully suppressing 
Jagged, N-cadherin and fibronectin upregulation (Figs. 6 and 
S9). Ecad-2 peptide inhibitory effect was more prominent in 
fibronectin expression, having no significant effect on Jagged 
and N-cadherin expression. These results suggest that the 
cadherin peptides inhibit the expression of mesenchymal 
markers, keeping the cells in the epithelial state even after 
TGFβ1 stimulation.

TGFβ1 is part of a superfamily of transforming growth 
factors that include activins and bone morphogenetic proteins 
(BMPs). We investigated the effect of the peptides in BMP4 
pathway using western blot analysis for the phosphorylation 
levels of Smad-1/5/8 (Fig. S9). We observed that Ecad-1 
peptide inhibited BMP4 induced phosphorylation of Smad-
1/5/8, similarly to Noggin, a BMP4 inhibitor. Noggin is a small 
glycoprotein (32 kDa), which binds to BMP4 and antagonizes 
BMP signaling by blocking BMP4 receptor interaction.43 
Ncad-1 peptide showed less potency to inhibit BMP4 responses 
compared with its effect on TGFβ1. Therefore, we suggest that 
the peptides probably affect signaling by all TGFβ superfamily 

receptors but with an intensity that is peptide dependent or 
specific.

Discussion

In the present study we tried to identify functional motifs in 
the cytoplasmic regions of E-cadherin and N-cadherin. Cadherins 
are Ca2+-dependent molecules present on the cell surface that are 
involved in adherens junctions and intercellular recognition. The 
extracellular segments of E-cadherins are involved in intercellular 
homophilic binding with E-cadherins present on neighboring 
cells, whereas the intracellular parts interact with catenins, such 
as p120 catenin, β-catenin and α-catenin. The latter interactions 
connect the intracellular segments of E-cadherins with actin, 
thus controlling cytoskeletal changes. The interactions that 
involve cadherin-catenin complexes constitute the adhesion 
dependent functions of cadherins. Other roles of cadherins do 
not require adhesion and they form the adhesion independent 
functions (reviewed in ref. 44). Cadherins may interact with 

Figure  3. effect of deletion peptides of ecad-1 and ecad-2 on the 
expression of Jagged and N-cadherin. a dose of 50 μM of peptide was 
used. Note that as ecad-1 and ecad-2 are peptides with overlapping 
sequence, deletion peptides ecad-1b and ecad-2a depict the same 
sequence (KePLLP) and thus only the ecad-1b peptide is shown on the 
graph. (n = 4). The ecad-2b peptide was reconstituted in 0.5% DMSO 
(Dimethyl sulfoxide). (Pal: Palmitic acid). *P < 0.05, Student’s unpaired t 
test compared with TGFβ treatment alone, n = 4 per group.
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growth factor receptors, in a ligand-independent 
manner, regardless of the formation of adherens 
junction.45

We provided data that our peptides inhibited 
TGFβ1 responses at the gene expression and at 
the protein level. Of the tested peptides those 
derived from sequences most proximal to the 
membrane were more potent inhibitors of the 
TGFβ1 responses. Ecad-1 and Ncad-1 peptides 
inhibited Smad3 phosphorylation, as well as 
other TGFβ1 responsive proteins, suggesting 
that the peptides inhibit the TGFβ1 signaling 
at the initial steps of the pathway. As expected, 
Jagged1 levels were also downregulated. Jagged1 
increase upon TGFβ1 treatment is dependent 
on Smad3 phosphorylation.23 The transcription 
of Jagged1 requires crosstalk between TGFβ1 
and Wnt/Notch signaling.23 Activation of Notch 
signaling has been shown to regulate EMT 
genes in mammary and kidney epithelial cells,46 
propagating in this way the TGFβ1 response. 
Thus, the peptide induced decrease in Jagged1 
expression could potentially influence the 
Notch pathway indirectly. Prevention of Smad3 
phosphorylation leading to inhibition of TGFβ1 
responses has been reported after direct interaction 
of Akt with Smad3.47,48

However, we were not able to identify if this 
inhibition was due to a direct interaction of the 
peptides with Smad3, or more likely as a result 
of indirect interaction through other proteins. 
It is well established that inhibition of TGFβ1 
signaling is associated with a sustained epithelial 
phenotype, highlighted by the maintenance 
of a stable adherens junction mediated by 
E-cadherin.21,49 Therefore, we discuss below 
possible ways that the peptides could assist the 
cells to retain their epithelial phenotype.

The bioactive juxtamembrane cadherin-derived peptides 
may mimic the parent protein that they are derived from. The 
juxtamembrane region of E-cadherin has been previously shown 
to be crucial for the accumulation of E-cadherins in clusters and 
for the formation of tight adherens junctions, involving binding of 
p120-catenin and β-catenin to the cadherin cytoplasmic tail.35,50 
Our membrane tethered peptides (via N-terminus palmitic acid) 
do not span the known binding region of either the p120-catenin 
or the β-catenin, but they derive from a region closer to the 
membrane that forms a dynamic interaction with p120-catenin.51 
If this short region can independently interact with p120-catenin, 
it could provide a reason for the p120-catenin to remain in the 
membrane proximal environment even after a TGFβ1 induced 
E-cadherin depletion. Non-cadherin-associated-p120 catenin 
has been shown to exhibit GTPase effects, inhibiting RhoA and 
activating Rac1,52-54 and thus facilitates increased cytoskeletal 
changes and cell motility, usually seen upon TGFβ treatment. 
Therefore, it would be interesting to examine the possibility 

that the presence of those peptides reduce the free p120 catenin 
population in the cell, thus causing reduced TGFβ responses.

Of the shorter active peptides, the Ecad-1b peptide (KEPLLP) 
appeared potent to inhibit TGFβ1 responses even in lower doses. 
The Ecad-1b peptide contains the dileucine (LL) motif, which 
plays a role in the intracellular accumulation of E-cadherin and 
its targeting to lysosomes for degradation.40 The dileucine motif 
is recognized by the AP2 clathrin adaptor complex and targets 
the protein that carries the motif to clathrin-coated vesicles.55 
E-cadherin constructs that had the dileucine motif substituted 
to Alanine escaped internalization and remained on the cell 
surface.40 The fact that a dileucine containing peptide, like the 
Ecad-1b, is able to inhibit TGFβ1 responses could potentially 
be attributed to action of the peptide keeping the endocytic 
machinery of the cell occupied, allowing the E-cadherin to 
escape internalization. When we replaced the Leucine to Alanine 
the peptide showed reduced activity, whereas substitution of the 
second Leucine to Alanine did not affect the peptide function. 

Figure  4. effect of deletion peptides of Ncad-1 on the expression of Jagged and 
N-cadherin in the presence and in the absence of TGFβ. a dose of 50 μM of peptide was 
used. (n = 4). The Ncad-1b peptide was reconstituted in 0.5% DMSO. (Pal: Palmitic acid). *P 
< 0.05, Student’s unpaired t test compared with TGFβ treatment alone, n = 4 per group.



108 Bioarchitecture Volume 4 Issue 3

Since functionality does not require conservation of both 
of these hydrophobic amino acids typically required for 
AP2 binding,55 we suspect that the mechanism of action is 
therefore more likely to rely on another mechanism.

Methods

Bioinformatics analysis
Protein sequences of human E- and N-cadherin were 

analyzed using the Gopher algorithm (http://bioware.
ucd.ie) for the identification of orthologous proteins in 
metazoan proteins contained in the EnsEMBL sequence 
database of sequenced genomes. Gopher used Muscle56 
to generate multiple sequence alignment of each human 
protein with each orthologs. These alignments were then 
used for the calculation of Relative Local Conservation 
(RLC) score.2 The software used IUPred57 to estimate the 
disorder score for each residue in the human proteins. For 
the identification of conserved residues among cadherins 
a multiple protein sequence alignment was generated with 
Muscle.

Cell culture
Human kidney epithelial cells were cultured at 37 °C 

in a humidified atmosphere of 95% air/5% CO2. Culture 

Figure 5. effect of ecad-1b (KePLLP) peptide and its control peptides on the 
expression of Jagged. a 12.5 μM dose of peptide was used. replacing the 
second leucine of the endocytic dileucin motif does not affect the function 
of the peptide, whereas an alanine substitution of the first leucine hinders the 
ability of the peptide to inhibit TGFβ. (Pal: Palmitic acid). *P < 0.05, Student’s 
unpaired t test compared with TGFβ treatment alone, n = 4 per group.

Figure 6. (a)effect of peptides on the protein levels of pSmad3 and Jagged. HK-2 cells were treated with 50 μM of the indicated peptides for 24 h before 
cells were lysed and protein extract was collected. (B) Quantification of protein bands using Smad3 as loading control. (Pal: Palmitic acid). *P < 0.05, 
Student’s unpaired t test compared with TGFβ treatment alone, n = 3 per group.



www.landesbioscience.com Bioarchitecture 109

medium contained Dulbecco’s modified Eagle’s medium 
(DMEM-F12, Sigma) supplemented with 2 mM L-glutamine, 
100 U/ml penicillin, 100 μg/ml streptomycin, 10 ng/ml EGF, 
36 ng/ml hydrocortisone, 4 pg/ml triidothyronine and 5 μg/ml 
insulin-transferin-selenium solution (ITS, Sigma).

For TGFβ1 treatments, HK-2 cells were cultured in 12-well 
plates and treated with 5 ng/ml recombinant human TGFβ1 
(R&D Systems) or vehicle for 24 h. Palmitylated peptides were 
added 45 min prior to TGFβ1 addition at either 50 μM, 25 μM, 
12.5 μM or 1 μM.

RNA extraction and Real-time PCR of HK-2 cells
RNA was extracted using the RNeasy mini kit (Qiagen) 

following the manufacturer’s protocol. The concentration of RNA 
was estimated on a NanoDrop® ND-1000 spectrophotometer 
and cDNA was synthesized using Superscript III Reverse 
Transcriptase (Invitrogen). For real-time TaqMan PCR analysis 
specific probes for Jagged (Hs00164982_ml), N-cadherin 
(Hs00169953_ml), E-cadherin (Hs00170423) and CTGF 
(Hs00170014_ml) were used. TaqMan Universal PCR Master 
Mix (Applied Biosystems) was used for the reactions and samples 
were analyzed on an ABI Prism 7700 sequence detection system 
at defaults thermal cycling conditions: 2 min at 50 °C, 10 min at 
95 °C and then 40 cycles of 15 s at 95 °C for denaturation and 1 
min at 60 °C for annealing and extension. Results were analyzed 
using the ΔΔCt method and normalized to 18S rRNA levels.

Protein extraction and western blotting
For protein analysis, HK-2 cells were cultured in 10 cm 

petri dishes and they were harvested in RIPA buffer containing 
50 mM TRIS-HCl pH 7.4, 1% (v/v) Nonidet P-40, 150 mM 
NaCl, 1 mM Na

2
VO

4
, 1mM NaF, 1mM PMSF, and 1/100 

dilution of protease inhibitor cocktail (Sigma). Samples were 
incubated on ice for 40 min, agitating regularly. Samples were 
then centrifuged at 14,000 rpm at 4 °C for 12 min to remove 
cell debris. The determination of protein concentration was 

performed using the method of Bradford58 with the protein 
assay concentrate (BioRad). The absorbance of the suspension 
at 595 nm was read in a Beckman UV/VIS spectrophotometer 
(DU530). Proteins were resolved using 10% SDS-PAGE for 1h at 
20 mA constant current and then transferred to a polyvinylidene 
diflouride membrane (PVDF, Whatman) at 110 V for 60 min. 
Membranes were blocked with 5% (w/v) milk in TBS-T [20mM 
Tris-base, 137mM NaCl, 0.1% (v/v) Tween-20] for 60 min at 
room temperature. Membranes were incubated with primary 
antibodies for Jagged1, N-cadherin, fibronectin, phospho-
Smad3, Smad3, phospho-Smad1/5/8 and GAPDH diluted in 
5% milk in TBS-T overnight at 4 °C. The following day primary 
antibodies were removed by washing the membranes in TBS-T 
[3 × 15 min washes at room temperature (RT)] and they were 
then incubated with HRP-coupled anti-rabbit or anti-mouse 
secondary antibodies at 1:2000 dilution in 5% milk for 1 h at 
RT. Secondary antibodies were removed by washing with TBS-T 
(3 × 15 min washes at RT) and membranes were developed by 
incubation with enhanced chemiluminescence ECL solution 
(Supersignal West Dura) and exposed to X-ray film to reveal the 
reactive bands. Membranes were stripped by incubation with 
Restore PLUS Western Blot Stripping buffer (Thermo Scientific) 
for 15 min at RT. The stripping buffer was removed by washing 
with TBS-T and membranes were then re-blocked with 5% milk 
and re-probed with appropriate primary antibodies.
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