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Plant-associated microbiomes are key determinants of host-plant fitness, productivity,
and function. However, compared to bacterial community, we still lack fundamental
knowledge concerning the variation in the fungal microbiome at the plant niche
level. In this study, we quantified the fungal communities in the rhizosphere soil,
as well as leaf and root endosphere compartments of a subtropical island shrub,
Mussaenda kwangtungensis, using high-throughput DNA sequencing. We found
that fungal microbiomes varied significantly across different plant compartments.
Rhizosphere soil exhibited the highest level of fungal diversity, whereas the lowest
level was found in the leaf endosphere. Further, the fungal communities inhabiting the
root endosphere shared a greater proportion of fungal operational taxonomic units
(OTUs) with rhizosphere communities than with leaf fungal endophyte communities,
despite significant separation in community structure between the two belowground
compartments. The fungal co-occurrence networks in the three compartments of
M. kwangtungensis showed scale-free features and non-random co-occurrence
patterns and matched the topological properties of small-world and evidently modular
structure. Additionally, the rhizosphere network was more complex and showed
higher centrality and connectedness than the leaf and root endosphere networks.
Overall, our findings provide comprehensive insights into the structural variability, niche
differentiation, and co-occurrence patterns in the plant associated fungal microbiome.

Keywords: fungal community, fungal endophyte, Mussaenda kwangtungensis, high-throughput sequencing,
niche differentiation

INTRODUCTION

Plant associated fungal communities exert profound and crucial influence on plant survival, health,
productivity and even ecosystem functions (Berg et al., 2005; Rodriguez et al., 2009). Therefore,
plants may be viewed not as standalone entities but rather as holobionts consisting of the hosts
and their associated mycobiome that usually referred to as the host’s second genome, which are
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together cohesive evolutionary units of selection and
biological organization (Zilber-Rosenberg and Rosenberg,
2008; Bordenstein and Theis, 2015; Fonseca-García et al.,
2016; Beckers et al., 2017). A better understanding of the
community assembly and ecological interactions of plant
associated fungi could improve our ability to manipulate these
microorganisms to practical application, such as increasing
agricultural productivity, phytoremediation and providing
antimicrobial compounds (Waller et al., 2005; Tejesvi et al.,
2013). Although the plant holobiome is gaining increased
attention, little work has been conducted to explore the niche
differentiation in their community structure and co-occurrence
patterns associated with the leaf endosphere, root endosphere,
and the rhizosphere compartments.

Endophytic fungi are functionally dominant members of
plant microbiome; they are capable of occupying host tissues
asymptomatically without causing outward signs of disease or
overt negative symptoms (Arnold et al., 2007; Christian et al.,
2016). Endophytic fungi are often considered to be beneficial
to their host plants, because they may provide the plant with
protection against pathogens (Arnold et al., 2003), enhance
resistance of the host plant to insect herbivory (Tanaka et al.,
2005), confer salt and heat tolerance to native grass species from
coastal and geothermal habitats (Rodriguez et al., 2008), and
promote plant root formation and shoot growth (Sun et al.,
2010). However, Faeth and Sullivan (2003) challenged the notion
that systemic endophytic fungi should form a mutually beneficial
relationship with the host plant for infections to persist in nature.
Some endophytic fungi are capable of pathogenicity under
stressful conditions or have long latent periods (Arnold, 2007).
Thus, the interaction between endophytic fungi and host plants
can span the spectrum from mutualism to antagonism based on
the genetic and/or environmental context (Vincent et al., 2016).

Rhizosphere, which is a narrow zone surrounding the plant
roots, is a hot-spot of microbial activity and interactions
(Raaijmakers, 2015; Wang et al., 2017). The rhizosphere
microbial community harbors members that exert neutral,
deleterious, or beneficial effects on their host plants, but are all
part of the complex food web sustained by large amount of carbon
and other nutrients released by plant roots (Raaijmakers et al.,
2009; Raaijmakers, 2015). Therefore, the rhizosphere is akin to
a battlefield where the complex microbial community members
interact with each other and influence the outcome of pathogen
infection and host health and growth (Raaijmakers et al., 2009).
However, there is still limited understanding of the community
structure and function of the rhizosphere fungal microbiome.
Recently, based on high-throughput sequencing data, Zimudzi
et al. (2018) suggested that the dominant rhizosphere fungal
taxa potentially play either positive or negative functional roles,
but that none of the dominant taxa are “ecological passengers.”
Hence, similar to fungal endophytes, rhizosphere fungi are also
essential for plant fitness and indirectly affect the composition
and functioning of natural plant communities (Rudgers et al.,
2012; Jogaiah et al., 2013; Philippot et al., 2013). Understanding
the composition, dynamics, and activity of the endophytic
and rhizosphere fungal community is therefore critical for
the development of new strategies to promote plant growth

and health in both agro-ecosystems and natural ecosystems
(Raaijmakers et al., 2009).

Network analysis of taxa co-occurrence patterns revealing
potential biotic interactions, habitat affinities, or shared
physiologies among members, can offer new insights into the
structure and assembly of complex microbial communities
that cannot be obtained by the traditional suite of analytical
approaches (Barberan et al., 2012; Zhang et al., 2018). Recently,
with the advent of next generation sequencing, network analysis
has been applied to explore microbial interaction patterns across
a wide variety of habitats including soil (Ma et al., 2016; Rebollar
et al., 2017; Li and Wu, 2018), water (Milici et al., 2016; Hu et al.,
2017; Mikhailov et al., 2018), activated sludge (Ju et al., 2014),
and even the human gut (Baldassano and Bassett, 2016; Jackson
et al., 2018). In plant–microbe research, niche differentiation of
microbial co-occurrence patterns between rhizosphere and bulk
soil has attracted much attention (Mendes et al., 2014; Shi et al.,
2016; Fan et al., 2018). However, compared with the plant-soil
interface, we still lack basic understanding of co-occurrence
patterns of fungal communities present in different plant
compartments especially the leaf and root endospheres.

Here, we explore the fungal community composition and co-
occurrence patterns associated with the rhizosphere, root and leaf
endospheres of Mussaenda kwangtungensis H. L. Li (Rubiaceae)
using next-generation sequencing of the fungal internal
transcribed spacer 2 (ITS2) region. We hypothesized that due
to distinct microenvironment filtering and different microbial
inoculum sources, fungal community composition and network
structure would differ significantly among the rhizosphere
soil, root endosphere, and leaf endosphere compartments.
M. kwangtungensis is a drought-resistant shrub that has
historically been used in Traditional Chinese Medicine as an
antichloristic and antipyretic agent against laryngopharyngitis,
acute gastroenteritis, and dysentery. Endophytic and rhizosphere
fungi are rich and relatively unsampled sources of novel bioactive
compounds that could be used to produce new, promising drugs.
Therefore, this study will not only advance our understanding
in assembly principles and ecological interactions of plant
associated fungal communities, but also may lay the foundation
for further exploitation and optimization of the community for
human advantage.

MATERIALS AND METHODS

Study Site and Sampling
This study was conducted on the Dajia Island (22.57 N, 114.65
E), Guangdong Province, China. Dajia Island has a subtropical
continental climate, with a mean annual temperature of 22.3◦C
and a mean annual precipitation of 1925 mm. M. kwangtungensis
H. L. Li is distributed naturally and widely in the study area,
which has no obvious environmental gradients. In September
2017, we selected ten healthy individual shrubs (>20 m apart
from each other) that were in anthesis.

To investigate foliar fungal endophyte communities, we
collected a random sample of nine mature and asymptomatic
leaves from the middle of three current-year shoots from each
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plant. Leaves from the same shrub were placed in individual
sterilized polyethylene bags and stored in coolers equipped with
ice packs. All leaves were surface sterilized within 48 h after
sampling to remove the presence of surface microorganisms. The
surface sterilization was processed by consecutive immersion for
30 s in sterile water, 1 min in 75% (vol/vol) ethanol, 3 min in
3.25% sodium hypochlorite, and 30 s in 75% (vol/vol) ethanol.
Sterilization was completed with three sequential 2 min rinses
in sterile water. The leaves belonging to the same individual
shrub were dried with sterile absorbent paper and pooled before
grinding with liquid nitrogen. To validate the effectiveness of
surface sterilization, the leaf surfaces were placed in each 90 mm
Petri dish containing malt extract agar (MEA, 2%) and cultured in
the dark for 48 h at 25◦C to check for the appearance of colonies.

To investigate rhizosphere soil and root fungal communities,
we extracted primary root samples at a depth of 5–10 cm below
ground, following Beckers et al. (2016, 2017). Sterilized gloves,
scissors, spades, and brushes were used to collect the samples,
and these tools were washed with distilled water and wiped
with 70% (vol/vol) ethanol at each sampling time to avoid cross
contamination. A minimum of 10 g of roots was collected from
three directions per individual plant. The soil that remained
tightly adhered to the root surface was defined as rhizosphere
soil (Fan et al., 2018). Therefore, after shaking off the loosely
bound soil, root samples were placed into 50 mL sterile centrifuge
tubes and were washed with 10 mM PBS buffer (130 mM NaCl,
7 mM Na2HPO4, 3 mM NaH2PO4, pH 7.4) on a shaking table
(80 rpm) for 15 min. The soil particles directly dislodged from
the roots represented the rhizosphere samples. Rhizosphere soil
samples were then pelleted by centrifugation (5000 × g for
15 min) in 50 ml tubes. The root samples were then separated,
surface-sterilized and verified as described above for leaf samples.
We finally pooled the separate samples from leaves, roots, and
rhizosphere soil from the same individual because our primary
interest was in variation of different communities across different
compartments instead of variation between individuals. In total,
we collected 30 samples (10 individual plants × 3 compartments)
for DNA Extraction, and all the samples were stored at −80◦C
until processing.

DNA Extraction, PCR Amplification, and
Illumina Sequencing
We homogenized the leaf and root samples mixed with liquid
nitrogen using sterilized mortars and pestles under aseptic
conditions in a laminar airflow to avoid external contamination.
We extracted total DNA from 500 mg of each sample
(rhizosphere soil, root, and leaf) using the PowerSoil DNA
Isolation kit (Mo Bio Laboratories, Carlsbad, CA, United States)
following the manufacturer’s instructions. DNA quality and
quantity were assessed on a NanoDrop 1000 spectrophotometer
(Thermo Scientific, Wilmington, DE, United States).

We used a two-step PCR approach to prepare amplicon
libraries for the Illumina HiSeq sequencing platform. First,
we amplified the entire fungal ITS region using conventional
primers ITS1F (Gardes and Bruns, 1993) and ITS4 (White et al.,
1990). The first round of PCR amplification was performed in

25 µL reaction volumes including 250 µM of dNTP Mix, 1
unit Phusion DNA polymerase (New England Biolabs, Hitchin,
United Kingdom), 0.5 µM of each primer, 2.5 µL Phusion
HF Buffer and c. 10 ng DNA template. Cycling conditions
included 94◦C for 3 min, followed by 25 cycles of 94◦C for
50 s, 53◦C for 50 s, and 72◦C for 1 min, and a final extension
of 72◦C for 10 min. Second, we performed a second round of
PCR amplification with primer fITS7 (Ihrmark et al., 2012) and
reverse primer ITS4 to target the fungal ITS2 region. Both of
the primers were amended with Illumina Nextera transposase
sequence. PCR conditions were identical to those described
above, except for the cycle number, which was lowered to 20.
To minimize PCR biases, each sample was amplified in triplicate
and the replicate products were pooled together into a general
sample. We included negative controls (replaced DNA template
by ddH2O) to assess the presence of contaminating sequences
during the DNA extraction and PCR process, which were checked
by gel electrophoresis. PCR products were then cleaned and
purified using a MinElute PCR Purification Kit (Qiagen, Venlo,
Netherlands). Each cleaned PCR product from the same sample
received a unique combination of forward and reverse primers
from the Illumina Index Kit PCR primers to add a dual index
system. The PCR reaction to add index and sequencing adapters
was performed in 25 µL reaction volumes including 3 µL of
Illumina N7xx oligo, 3 µL of Illumina S5xx oligo and 13 µL
of HiFi ReadyMix. Thermal cycling conditions were as follows:
94◦C for 5 min, followed by 12 cycles of 98◦C for 20 s, annealing
at 55◦C for 30 s and 68◦C for 30 s. The resulting products
were then purified using Agencourt purification beads (Beckman
Coulter, Brea, CA, United States). We quantified the sequencing
libraries employing the Kapa qPCR-based quantification kit
(Kapa Biosystems, Boston, MA, United States). The library
concentration was adjusted to 14 pM. We clustered the libraries
according to Illumina protocol and sequenced the libraries by
an Illumina HiSeq 2500 platform using the paired end option
(2 bp × 250 bp) at Biomarker Technologies Co., Ltd., (Beijing,
China). The Illumina sequences were deposited in the NCBI
Sequence Read Archive (accession number SRP156485).

Bioinformatics Workflow
We processed the raw data with Trimmomatic (Bolger et al.,
2014) to trim and filter adapters, primer sites, and low quality
ends of reads. The overlapping paired-end reads were merged
to a single sequence using FLASH (Magoc and Salzberg, 2011).
Chimera sequences were detected and removed using the
UCHIME program (Edgar et al., 2011) referencing the UNITE
database1. We then employed the Uclust algorithm (Edgar,
2010) to bin the non-chimera sequences that passed the filtering
processes into the operational taxonomic units (OTUs) at a 97%
sequence similarity cutoff. Further, the taxonomic classification
of each OTU was carried out using RDP Classifier (Wang et al.,
2007) with a confidence threshold of 0.8. The taxonomic identity
of each OTU was determined based on a BLAST search against
the UNITE reference database (see text footnote 1). We excluded
the OTUs with less than 10 reads in all samples as their sequences

1https://unite.ut.ee/
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may contain PCR or sequencing errors (Eusemann et al., 2016).
To eliminate the effects of sequence number variation from
different samples, we rarefied each sample to the minimum
sequencing depth through a subset of randomly selected reads
prior to downstream analysis. This rarefaction was performed by
the “sub.sample” command in MOTHUR (Schloss et al., 2009).

Statistical Analysis
We used QIIME scripts (Caporaso et al., 2010) to plot and
calculate a rarefaction curve, rank abundance curve, and alpha
diversity index including ACE value (Chao and Lee, 1992),
Chao1 (Chao, 1984), Shannon index (Shannon, 2001), Pielou’s
evenness (Pielou, 1966), and Good’s coverage (Good, 1953) for
each compartment. We then performed one-way analysis of
variance (ANOVA) and subsequent post hoc Tukey’s honestly
significant difference (HSD) tests to compare differences in alpha
diversity across different plant compartments. To investigate
the patterns of fungal community structure, we performed
nonmetric multidimensional scaling (NMDS) ordination and
principle coordinate analysis (PCoA) with the Bray–Curtis and
Jaccard distance calculated from the OTU community matrix,
respectively. The Bray–Curtis matrix was also used to perform
hierarchical clustering analysis of different compartments.
Further, we conducted the mean nearest taxon distance (MNTD)
dividing the fungal communities into two groups to represent
the phylogenetic beta diversity indices (Stegen et al., 2012; Yang
et al., 2016). We tested the difference in the fungal community
composition among various plant habitats by conducting three
different permutation tests including permutational multivariate
analysis of variance (ADONIS), analysis of similarity (ANOSIM),
and multiple response permutation procedure (MRPP). To
identify OTUs that are correlated with community separation
between different compartments, we performed differential
OTU abundance analysis using a generalized linear modeling
(GLM) approach following Edwards et al. (2015). The statistical
analyses mentioned above were performed with vegan (Oksanen
et al., 2016), ape (Paradis et al., 2004), picante (Kembel et al.,
2010), and edgeR (Robinson et al., 2010) packages in R 3.4.32

(Ihaka and Gentleman, 1996).
We used the FUNGuild data base (Nguyen et al., 2016) to

assign each OTU to an ecological guild to examine if fungal
functional groups differed among plant compartments. We only
retained OTUs with a confidence ranking of “highly probable”
or “probable” in our analysis as per Cregger et al. (2018). Venn
diagrams of each class of trophic mode were visualized using
the VennDiagram R package (Chen and Boutros, 2011). We
also plotted ternary diagrams using ternary python scripts and
a network-like Venn diagram using the Cytoscape program
to show the distribution of total fungal OTUs across different
habitats (Shannon et al., 2003). Furthermore, we employed Linear
Discriminant Analysis (LDA) effect size (LEfSe3; Segata et al.,
2011) to test the significant taxonomic difference among the three
compartments. A logarithmic LDA score of 4.0 was set as the
threshold for discriminative features.

2https://www.r-project.org/
3http://huttenhower.sph.harvard.edu/galaxy/

To better understand the connectedness within the fungal
communities, we constructed the co-occurrence networks
by calculating all possible Spearman’s correlation coefficients
between OTUs across different compartments. We corrected
P-values for multiple testing using the false discovery rate (FDR)
according to Benjamini and Hochberg (1995). We considered a
valid relationship to be statistically robust if the rank correlation
coefficient r > |0.6| and if it was significant at P < 0.05
(Widder et al., 2014). The network of each compartment was
visualized using the software Gephi (Bastian et al., 2009). The
nodes in the networks represent fungal OTUs, and the edges
correspond to strong and significant correlations among nodes
(Mendes et al., 2014). Meanwhile, 10000 Erdös–Rényi model
random networks (Erdös and Rényi, 1960), which had the same
number of nodes and edges as the observed networks, were
constructed for each compartment. We employed the igraph
package (Csardi and Nepusz, 2006) to test whether the network
degrees fit a power-law distribution (Clauset et al., 2009) with
the Kolmogorov–Smirnov test. We then calculated a set of
network parameters including average path length, clustering
coefficient, number of clusters, and modularity for both
observed networks and random networks to investigate their
structure complexity and topology characteristics. Node-level
topological properties (betweenness and degree) were also
calculated in the same package to compare the differences in
measured node-level attributes across different compartments
according to Xue et al. (2018) and to determine the keystone
OTUs in each network with high degree (>100) and low
betweenness centrality values (<5000) following Ma et al. (2016)
and Xue et al. (2018).

RESULTS

Fungal Community Diversity
High-throughput Illumina sequencing resulted in a total of
2,424,236 raw reads. Quality filtering reduced the dataset to
2,301,895 high quality reads. These reads were clustered into
2490 OTUs at a 97% sequence similarity level. We removed
OTUs that have fewer than 10 reads, and kept 2,242,941 fungal
ITS2 reads. As the remaining numbers of reads ranged from
45,787 to 114,146 among samples, we rarefied each sample to
the minimum size (45,787), resulting in a normalized dataset
comprising 1,542 fungal OTUs (from 1,373,610 high-quality
sequences). We found an average of 388 ± 184 OTUs (mean ± sd)
per sample, with 156 ± 32 OTUs per leaf endophyte sample,
430 ± 53 OTUs per root endophyte sample, and 579 ± 57 OTUs
per rhizosphere soil sample.

Our rarefaction curves of OTU richness and Shannon
diversity per compartment reached a saturation plateau,
suggesting that we had sampled the majority of the diversity
in the M. kwangtungensis mycobiome. The shape of the curves
demonstrated that the OTU richness and Shannon diversity
was consistently highest in the rhizosphere community followed
by that of the root endosphere (Supplementary Figure S1).
Good’s coverage scores of all of the compartments were very
high ranging from 99.82% ± 0.0218% to 99.97% ± 0.0004%
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FIGURE 1 | Alpha diversity estimates of the fungal communities in different plant compartments. (A) Number of observed OTUs. (B) Shannon diversity. (C) Chao1.
(D) ACE value. (E) Pielou’s evenness. (F) Good’s coverage scores. One-way ANOVA with Tukey’s HSD tests were performed to reveal significant differences in alpha
diversity among the plant compartments. O, No significant; ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.

(Figure 1F), which further indicated that the sequencing depths
were sufficient to reliably describe the fungal microbiome. The
slope of the rank abundance curve for the leaf endosphere was
greater than the two belowground compartments, indicating
a lower relative abundance within the leaf endophytic fungal
community (Supplementary Figure S2).

Our measures of the alpha diversity within each compartment
showed that OTU richness, ACE, Chao1, and Shannon diversity
were all highly dependent on the compartment (Tukey’s HSD
test: P < 0.01) with the highest fungal alpha diversity in
the rhizosphere soil and consistently lower fungal diversity
in the root endosphere and leaf endosphere compartments
(Figures 1A–D). Similarly, we found higher Pielou evenness
value in the rhizosphere soil samples compared to the leaf and
root endosphere compartments (Figure 1E).

Fungal Community Composition
We were able to assign phylum to 87.03% of the OTUs. As
expected, M. kwangtungensis associated fungal communities
were dominated by the phyla Ascomycota (66.81% of all
sequences) and Basidiomycota (24.37%), Neither phylum
differed significantly in relative abundance across the three

compartments (Wilcoxon test, P > 0.05). Other minor phyla
such as Chytridiomycota, Glomeromycota, Kickxellomycota,
Mortierellomycota, Mucoromycota, and Rozellomycota were
mostly found in the belowground compartments (Figure 2A
and Supplementary Figure S3A). Variation in community
composition among the three plant compartments was also
observed at the class level (Figure 2B and Supplementary
Figure S3B). The three most abundant classes (Sordariomycetes,
26.9%; Dothideomycetes, 26.4%; and Agaricomycetes,
15.1%) showed different patterns of relative abundance.
Dothideomycetes (Ascomycota) was most abundant in the leaf
endosphere compared to belowground compartments (Wilcoxon
test, P < 0.05), but did not differ significantly between the roots
and rhizosphere. Conversely, Sordariomycetes (Ascomycota)
had lower abundance in the leaf endosphere than in the root
endosphere and rhizosphere (Wilcoxon test, P < 0.01), as
were Agaricomycetes (Basidiomycota). In total, 288 genera
were identified in our study. The top 10 genera for the three
different plant compartments are listed in Supplementary
Table S1. Aureobasidium, Delicatula, and Mortierella were
the most abundant genera in leaves, roots and rhizosphere
soil, respectively.
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FIGURE 2 | (A,B) Taxonomic composition of the fungal communities associated with Mussaenda kwangtungensis at the phylum and class level, respectively. The
hierarchical clustering dendrograms based on Bray–Curtis dissimilarity are shown. (C) Nonmetric multidimensional scaling (NMDS) ordinations based on Bray–Curtis
dissimilarity of fungal communities across the three habitat classifications. (D) Variation of standardized effect sizes of the mean nearest taxon distance among
different compartments.

The network-like Venn diagram showed the number of
specific and shared fungal OTUs of M. kwangtungensis across
different compartments (Figure 3). Shared OTUs (839) between
the root endosphere and rhizosphere accounted for the
largest component (54.4%) of total OTUs, followed by 335
OTUs (21.7%) shared across the three compartments. Pairwise
OTUs coexisting in leaf and root endosphere accounted for
the lowest proportion (1.4%). We also observed a relatively
low number of compartment-specific fungal OTUs in all
compartments: rhizosphere (12.5%), leaf endosphere (3.2%),
and root endosphere (2.5%). Differential OTU abundance
analysis using an adjusted P-value cutoff of 0.01 was then
conducted to further classify OTUs that are significantly
correlated with community separation among the three plant
habitats (Figure 4). There were 758 and 986 fungal OTUs
that were significantly enriched in the root endosphere and
the rhizosphere, respectively, when using leaf endosphere as a

control, (Figures 4A,B). The fungal communities in the two
belowground compartments were much more similar with each
other, as indicated by the lowest number of deleted and enriched
OTUs and the relatively long insignificant tail (Figure 4C). It
is worth noting that 627 out of the 758 fungal OTUs enriched
in the root endosphere were also enriched in rhizosphere soil,
when using the leaf endosphere as a control (Figure 4D).
In contrast, only a small number of OTUs (21) were shared
between enriched in rhizosphere vs. leaf endosphere and vs. root
endosphere (Figure 4E).

Many fungal taxa at different taxonomic levels were
significantly associated with different compartments (LEfSe
analysis, Figure 5 and Supplementary Figure S5). The
phyla Mortierellomycota and Glomeromycota appeared as
the main discriminant phyla for the rhizosphere and root
endosphere, respectively. Dothideomycetes, Eurotiomycetes, and
Tremellomycetes were the three most abundant fungal classes
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FIGURE 3 | Network-like Venn diagram showing overlap and partitioning of
the OTUs among the different plant compartments.

in the leaf endosphere, while Sordariomycetes, Agaricomycetes,
and Glomeromycetes were differentially enriched in the root
endosphere. We detected a total of four indicator species
[Rhytidhysteron rufulum (Spreng.) Speg., Saitozyma podzolica
(Babeva & Reshetova) Xin Zhan Liu, F.Y. Bai, M. Groenew. &
Boekhout, Mortierella alpina Peyronel, and Arthropsis hispanica
Gené, Ulfig & Guarro] that were significantly associated with
rhizosphere soil; two indicator species [Fusarium oxysporum
sensu Smith & Swingle, and Delicatula integrella (Pers.) Fayod]
associated with the root endosphere, and only Strelitziana mali
Rong Zhang & G.Y. Sun was a significant indicator for the
leaf endosphere.

The NMDS plots depicting fungal communities combined
with hierarchical clustering analysis based on the Bray–Curtis
dissimilarity revealed that there was a clear distinction among
the three plant compartments. In addition, the plots indicated
that rhizosphere soil communities clustered close to the root
endosphere communities, while leaf endophytic samples
were grouped separately (Figures 2A–C). In addition, the
two belowground compartments exhibited relatively higher
between-sample variation, while leaf endosphere samples
clustered more closely together (Figures 2C,D). Similar patterns
of clustering were also observed in the PCoA analysis using
Jaccard distance (Supplementary Figure S4). The result of
standardized effect size of MNTD (ses.MNTD) showed that
the root endosphere and rhizosphere had a more similar
phylogenetic community structure than the leaf endosphere
did (Figure 2D). All of the ses.MNTD values from the leaf
endosphere samples were significantly negative, indicating
that the fungal communities in this compartment were more
phylogenetically clustered than expected by chance. Three
non-parametric multivariate statistical tests, which were
performed with ADONIS, ANOSIM, and MRPP based on
both Bray–Curtis dissimilarity and MNTD distance, further
confirmed significant differentiation of fungal community
structure between different compartments (Table 1).

The seven main fungal trophic guilds (symbiotroph,
pathotroph, saprotroph, symbiotroph-pathotroph,
symbiotroph-saprotroph, saprotroph-pathotroph, and
symbiotroph-saprotroph-pathotroph) were all detected in the
analyzed plant compartments, and their abundance distribution
showed greater or lesser extent of compartment-specificity
(Supplementary Figure S6A). Pathotrophic fungi were the most
abundant functional group (13.31% of all sequences), followed
by saprotroph (6.49%), symbiotroph-pathotroph (5.46%), and
symbiotroph (4.23%) groups. The OTU richness of trophic
guilds was also different between habitats (Supplementary
Figures S6B–H). The majority of saprotroph species existed
in the compartment shared between the root endosphere and
rhizosphere soil, as were the symbiotroph species, due to the
majority of this guild being mycorrhizal fungi. We also observed
many shared OTUs with unique or multiple functional guilds
co-existing in all the three habitats.

Fungal Networks
Construction of correlation-based networks of the fungal
communities resulted in three networks, consisting of 173,
219, and 517 nodes connected by 285, 230, and 1085 edges,
respectively (Table 2 and Figure 6). The composition of nodes
and edges differed strikingly within each network: no links
and only ten nodes were shared in all three networks. Each
network had a much higher number of strongly positive
correlations (93.68, 87.39, and 86.36% in leaf endosphere, root
endosphere, and rhizosphere network, respectively) than negative
correlations. We found that we could not reject the null
hypothesis that the network data were drawn from the fitted
power-law distribution (Kolmogorov–Smirnov test, P > 0.05).

The average path length, number of clusters, and clustering
coefficient of the observed networks were all significantly
higher than those of Erdös–Rényi random networks (Table 2).
The values of network modularity were also higher than
their corresponding random networks and larger than 0.4.
Further, we found more modular structure in leaf and
root endosphere networks due to their larger modularity
values (Table 2). The node betweenness and degree were
significantly larger for rhizosphere network than for the leaf
and root endosphere networks (Figures 6B,C), suggesting lower
centrality and connectedness in the two endosphere networks.
Interestingly, no fungal OTU was a keystone taxon for any
co-occurrence networks.

DISCUSSION

Distinct Community Structures Among
Compartments
We found that the leaf endosphere, root endosphere, and
rhizosphere fungal communities differed significantly with all
of the various indices of alpha diversity used in this study.
Similar results were found for the bacterial microbiome of
poplar trees (Beckers et al., 2017), which also showed that
the rhizosphere harbored strikingly higher OTU richness than
the endophytic compartments. The rhizosphere forms a highly
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FIGURE 4 | (A–C) Enrichment and depletion of the fungal OTUs in the three compartments compared with each other as determined by differential abundance
analysis. (D–E) Numbers of differentially enriched OTUs and depleted OTUs between each compartment compared with each other.

active transition zone between the root surface and bulk soil,
through root exudates, mucilage produced by the root caps,
and the release of sloughed-off root cells, which all provide
suitable ecological niches for the growth, development, and
reproduction of microbial communities (Buée et al., 2009).
In contrast, successful endophytic colonization involves the
expression of genes associated with the production of cell-
wall-degrading enzymes and resistance to a range of plant
innate immune responses (Jones and Dangl, 2006; Hardoim
et al., 2008). Furthermore, the microorganisms inhabiting leaf
environments are constantly exposed to harsh conditions such
as ultraviolet radiation exposure, low nutrient availability, and
high temperature fluctuations throughout the diurnal rhythm
(Remus-Emsermann and Schlechter, 2018). These environmental
filters would suggest a lower diversity of leaf endophytic fungi
than that in belowground habitats.

Additionally, the more phylogenetically clustered community
structure we found in the leaf fungal communities further
confirmed a filtering process allowing only specific fungal
members to successfully colonize the inside of the leaf tissues.
The markedly lower diversity and evenness between the
rhizosphere to endophytic habitats suggest that relatively few
microbial species can adapt to the endophytic environment and
these microorganisms will therefore dominate the endophytic
communities (Beckers et al., 2017).

We also found clear separations among the fungal community
composition of the three plant compartments, indicating
that different micro-environments may be a main driver for
selection (Fonseca-García et al., 2016). Such differences between
compartments in fungal communities were also found in species
of Agave (Coleman-Derr et al., 2015), Salix (Tardif et al.,
2016), Cactaceae (Fonseca-García et al., 2016), and Betula

Frontiers in Microbiology | www.frontiersin.org 8 May 2019 | Volume 10 | Article 1015

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01015 May 9, 2019 Time: 14:35 # 9

Qian et al. Fungal Communities of Mussaenda kwangtungensis

FIGURE 5 | Cladograms of LEfSe showing fungal indicator taxa at each compartment. The filled circles from inside to outside indicate the taxonomic levels with
phylum, class, order, family, genus, and species. Circles or nodes shown in color corresponding to different plant compartments represent a significant association.

TABLE 1 | Fungal community dissimilarity comparison among different plant compartments using three non-parametric statistical methods.

ADONIS ANOSIM MRPP

Multiple comparison R2 P R P δ P

Bray–Curtis dissimilarity Rhizosphere vs. Root vs. Leaf 0.399 0.001 0.8756 0.001 0.2035 0.001

Rhizosphere vs. Root 0.141 0.001 0.4833 0.001 0.0480 0.001

Rhizosphere vs. Leaf 0.411 0.001 0.9993 0.001 0.2144 0.001

Root vs. Leaf 0.425 0.001 0.9978 0.001 0.2241 0.001

MNTD dissimilarity Rhizosphere vs. Root vs. Leaf 0.902 0.001 0.8027 0.001 0.6707 0.001

Rhizosphere vs. Root 0.301 0.008 0.2953 0.002 0.1547 0.004

Rhizosphere vs. Leaf 0.932 0.001 0.9947 0.001 0.7235 0.001

Root vs. Leaf 0.913 0.001 0.9722 0.001 0.6995 0.001

TABLE 2 | Key topological properties of the fungal communities in the leaf
endosphere, root endosphere, and rhizosphere.

Network properties Leaf
endosphere

Root
endosphere

Rhizosphere

Observed networks

Number of nodes 173 219 517

Number of edges 285 230 1085

Clustering coefficient 0.9302 0.7007 0.5564

Number of clusters 46 64 81

Average path length 5.6818 6.9502 7.3709

Modularity 0.8942 0.9293 0.8143

Random networks

Clustering coefficient 0.0188 ± 0.0075 0.0096 ± 0.0078 0.0081 ± 0.0024

Number of clusters 7.5 ± 2.2570 32.12 ± 3.9784 8.772 ± 2.5998

Average path length 4.3181 ± 0.0884 6.4652 ± 0.3677 4.4797 ± 0.0279

Modularity 0.5468 ± 0.0124 0.7221 ± 0.0160 0.4933 ± 0.0056

(Yang et al., 2016). The fungal microbiome of the leaf endosphere
was mainly comprised of Ascomycota taxa and dominated by
members of Dothideomycetes, which was also the indicator
fungal class for leaf endophytes. These taxa were previously found

within leaves via high-throughput sequencing. For instance,
Zimmerman and Vitousek (2012) found that Ascomycetes
were the most abundant endophytic fungi recovered from
Metrosideros polymorpha Gaudich. leaves, with major fungal
reads assigned to the Dothideomycetes. Kemler et al. (2013)
also revealed a dominance of Ascomycota abundance and
especially of Dothideomycetes taxa in the leaf endophytic fungal
community of Eucalyptus grandis W.Hill. Similar observations
have also been reported in the phyllosphere fungal communities
of Sequoia sempervirens (D.Don) Endl. (Harrison et al., 2016),
Hopea ferrea Laness. (Izuno et al., 2016), Picea glauca (Moench)
Voss (Eusemann et al., 2016) and some mangrove species
(Yao et al., 2019). Interestingly, we also detected abundant
Basidiomycota leaf endophytes, which were often absent
from previous studies based on culturing-dependent methods.
High-throughput sequencing thus provides us the capability
to detect uncultivable taxa (Rajala et al., 2014; Eusemann
et al., 2016). The most abundant genus (Aureobasidium)
in M. kwangtungensis leaf has been known as a group of
black yeasts with high ability of stress-tolerance, which can
help host plant to withstand high ultraviolet (UV) radiation
and moderately osmotic condition in the island environment
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FIGURE 6 | (A) Correlation-based networks of fungal communities in the leaf endosphere, root endosphere, and rhizosphere. Fungal OTUs are represented as
nodes and significant correlations as edges. The node color indicates the corresponding taxonomic assignment at the phylum level. The size of each node is
proportional to the OTU abundances and the color of each line reflects positive (yellow) or negative (blue) associations. (B,C) Comparison of node-level betweenness
centrality and degree among the different compartments. Different letters indicate the significance level at P < 0.05.

(Li et al., 2015; Turk and Gostinčar, 2018). It is noteworthy
that S. mali, which has been documented as a plant pathogen
(Zhang et al., 2009), was significantly enriched in the leaf
endosphere. Several studies have addressed the issue that
some fungal endophytes may be latent pathogens (Carroll,
1988; Photita et al., 2004). Many plant pathogens such as
Zymoseptoria tritici (Roberge ex Desm.) Quaedvl. & Crous,
Microdochium nivale (Fr.) Samuels & I.C. Hallett, and Ramularia
collo-cygni B. Sutton & J.M. Waller have also been classified
as indicator fungal species inhabiting the cereal phyllosphere
habitat (Sapkota et al., 2015). Many fungal OTUs were
shared between the leaf endosphere and the two belowground
compartments, which could be explained by the horizontal
transmission of these endophytic fungi that may originate from
the soil, which serves as a primary reservoir for potential
plant-associated fungi, through the roots to aboveground parts
(Zarraonaindia et al., 2015). This hypothesis was supported
by the differential OTU abundance analysis, showing that the
belowground compartments played an enriching role for the

plant associated fungal taxa relative to the leaf endosphere.
Additionally, some endophytic fungi may also colonize the leaf
surface via aerosols and subsequently penetrate into the leaf
endosphere as evidenced by fungal OTUs uniquely found in the
leaf endosphere.

In addition to the rhizosphere fungal microbiome, various
ecological guilds could also be detected in the leaf and root
endosphere mycobiome, consistent with a recent study on the
fungal endophyte community of Fagus sylvatica L. (Siddique
et al., 2017). Thus, plant fungal endophytes might involve
a much wider functional range than previously thought. For
example, several saprotroph or saprotroph-containing groups
in the plant endosphere, usually act as the primary colonizers,
initiating decomposition of cellulose in senescent leaves and
young litter; they also play an important role in nutrient
cycling and in the functional coupling of terrestrial ecosystems
(Vacher et al., 2016).

In the belowground habitats, Glomeromycota was identified
as the indicator phylum in the root endosphere. These
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ancient fungi have coevolved with plants for the last 400
million years and are the typical root symbiont (arbuscular
mycorrhiza) in ∼80% of land plants (Bonfante and Genre,
2008; Davison et al., 2015). Arbuscular mycorrhizal fungi
(AMF) can provide mineral nutrients to their plant hosts
in exchange for reduced carbon (Rich et al., 2017), and
could also act as a biostimulant that help host plant to
enhance salt tolerance in island habitat (Zhang et al., 2017).
In addition, the most abundant genus found in rhizosphere
soil of M. kwangtungensis is Mortierella spp., which could
interact with AMF to alleviate the deleterious effects of salt on
plants growth and soil enzyme activities (Zhang et al., 2011).
The indicator phylum in the rhizosphere compartment was
Mortierellomycota, which was formerly classified to Zygomycota
(Geml, 2018) and is usually found in the soil (Anslan et al.,
2018). The physical proximity and close connection between
root endosphere and rhizosphere soil leads to a considerable
overlap in fungal community members and more similar
community structure and phylogenetic relatedness across those
two belowground compartments. Roots can recruit microbial
members from the rhizosphere zone through a selective barrier
(the root–soil interface) (Hardoim et al., 2008; Compant et al.,
2010). Differential OTU abundance analysis showed that the
vast majority of OTUs enriching the root endosphere was
simultaneously enriched in the rhizosphere soil relative to leaf
endophytic communities. These findings support a recruitment
model in which factors induced by the roots attract fungal
microorganisms that can then successfully colonize into the
endosphere compartments (Edwards et al., 2015). The shared
OTUs with unique or multiple functional guilds co-existing in
multiple habitats indicate their highly complex life history and
strong dispersal capability (Yang et al., 2016).

Fungal Networks
Analysis of co-occurrence patterns can offer an in-depth and
unique insight into the interactions between plant associated
fungal communities and corresponding ecological assembly rules
beyond those of community diversity (Xue et al., 2018). We
found that the interrelationships between fungal OTUs in each
network were predominantly positive, which suggested the
potential for extensive cooperative and syntrophic interactions
between most fungal taxa in their respective micro-environment.
Similarly, this has also been observed in microbial networks
in the bulk soil and rhizosphere habitats of wild oats (Shi
et al., 2016), in mosses, lichens and the bark of maple trees
(Aschenbrenner et al., 2017), and in the ocean surface (Chow
et al., 2014). However, Deng et al. (2016) found a greater
proportion of negative correlations in groundwater bacterial
networks, suggesting that emulsified vegetable oil injections
triggered fierce and intense competition among different
bacterial species.

We showed that fungal co-occurrence networks have
considerably different structure properties in the rhizosphere,
leaf endosphere, and root endosphere. The niche differentiation
among these plant compartments with substantially
distinct micro-environments can explain this topological
distinction. In the rhizosphere, the nutrients including

volatile organic compounds, trace elements, and other
metabolites deposited by plant roots are able to attract
abundant microorganisms including fungi, making the
rhizosphere to be one of the most dynamic interfaces
on the earth (Philippot et al., 2013; Raaijmakers, 2015).
Resource and food availabilities are important drivers of
both macro- and microbiological network structures (Zhou
et al., 2011; Foster et al., 2012). Therefore, the observation
that rhizosphere soil was the most complex and connected
compartment should come as no surprise. In addition, Shi
et al. (2016) also suggested that some of the covariations
detected represent guilds or niche-sharing within the gradients
surrounding the roots, and could also be interpreted as
evidence for the strong centrality and high complexity of the
rhizosphere compartment.

The habitat-specific networks constructed here for fungal
communities exhibited a highly modular architecture. One
possible explanation for this structure feature is the lack of
keystone taxa (no keystone species were detected in any of
the three networks), which usually play disproportionately
important roles in maintaining network structure relative to
the other taxa in the network structure. The disappearance
of these keystone taxa may segregate networks into more
modules (Shi et al., 2016). Modules within networks could be
considered as functional units due to niche partitioning under
some conditions (Eiler et al., 2011; Wu et al., 2016). The
modularity values of leaf and root endosphere networks were
higher than that in the rhizosphere, which may be attributed to
the more heterogeneous and disconnected substrate architecture
in leaf and root tissues compared to rhizosphere soil. In a
typical dicotyledon plant species, the leaf endosphere tissues
are largely composed of xylem, phloem, palisade cells, and
spongy mesophyll cells, while the cortical layer and vascular
tissues are the main components of the root endosphere. This
greater partitioning into higher congested, compartmentalized
and separate environments may not only reduce the diversity
of fungal community but also decrease the interactions between
endophytic fungal members, resulting in less complex and
tangled and more modular and fragmented networks of the leaf
and root endosphere habitats.

In summary, our study characterized the fungal microbiome
associated with M. kwangtungensis in the rhizosphere, leaf, and
root endospheres using community profiling of ITS2 amplicons.
We demonstrated that the associated fungal assemblages
possessed high diversity in taxonomic classification and trophic
guilds, and that the fungal diversity, community composition,
and topological properties of the co-occurrence network varied
significantly across different compartments. In particular, the
rhizosphere fungal microbiome showed higher taxonomic
diversity, and a more complex and connected network, than
the plant endophytic microbiome did. This study provides a
holistic perspective of the co-occurrence patterns, structure,
and assembly of fungal communities found on and within
plants, which will contribute to a better understanding of how
the structural processes, interaction and relationships within
and between mycobiomes impact the fitness and function of
the overall plant holobiome. However, amplicon analysis does
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not offer any direct information of the natural history or life
cycles of detected fungi (Toju et al., 2016). Therefore, further
investigation using other technologies, such as fluorescence
in situ hybridization, confocal laser scanning microscopy,
metagenome or metatranscriptome approaches will be necessary
to deeply understand niche differentiation and interspecific
interactions in plant associated fungal communities.
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FIGURE S1 | (A) Rarefaction curves of OTU richness and (B) Shannon index of
fungal microbiome at each plant compartment.

FIGURE S2 | Rank abundance curves for each plant compartment.

FIGURE S3 | Ternary plots showing the distribution pattern of the fungal
communities at the (A) phylum level and (B) class level. Each point represents an
OTU, with its size corresponding to the abundance of the OTU.

FIGURE S4 | Principal Coordinate Analysis (PCoA) using Bray–Curtis dissimilarities
of fungal communities associated with Mussaenda kwangtungensis. (A) PCoA
plot of first axis and second axis and (B) PCoA plot of second axis and third axis.

FIGURE S5 | Histogram of the LDA scores computed for differentially abundant
fungal taxa for each plant compartment.

FIGURE S6 | (A) Trophic guilds of fungal communities in the three plant
compartments. The trophic guilds were assigned through the FUNGuild data
base. (B–H) Venn diagrams of the seven trophic guilds among compartments.
Green, pink, and blue circles represent leaf endosphere, root endosphere and
rhizosphere, respectively. Sy, symbiotroph; Pa, pathotroph; Sa, saprotroph; Sy-Pa,
symbiotroph-pathotroph; Sy-Sa, symbiotroph-saprotroph; Sa-Pa, saprotroph-
pathotroph; Sy-Sa-Pa, symbiotroph-saprotroph-pathotroph.

TABLE S1 | The 10 most abundant genera for the three different
plant compartments.
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