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Background: Brain tumor segmentation is critical in medical imaging due to its 
significance in accurate diagnosis and treatment planning. Deep learning (DL) 
methods, particularly the U-Net architecture, have demonstrated considerable 
promise. However, optimizing U-Net variants to enhance performance and 
computational efficiency remains challenging.

Objective: To develop an optimized Residual U-Net (Res-UNET) architecture 
enhanced by deep supervision techniques to improve segmentation accuracy of 
brain tumors on MRI datasets, specifically addressing challenges of conventional 
segmentation methods.

Methods: The study implemented a detailed evaluation of multiple U-Net 
variations, including basic U-Net, Res-UNet with Autoencoder regularization, 
and attention-enhanced U-Net architectures. Training was conducted using 
the BraTS 2018 public MRI dataset. Deep supervision was integrated to improve 
gradient propagation and segmentation accuracy. The model employed a 
Dice loss combined with focal loss to handle data imbalance effectively. The 
proposed network was evaluated using extensive ablation studies, examining 
the effects of encoder complexity, convolutional filter count, and strategic 
post-processing.

Results: The proposed Res-UNET with deep supervision outperformed other 
variants, achieving an average Dice score of 0.9498 through five-fold cross-
validation. Post-processing strategies improved the robustness of segmentation, 
particularly enhancing the accuracy of small tumor regions. Comparatively, 
conventional U-Net architectures yielded lower Dice scores and required 
significantly longer training times. The study indicates the benefit of integrating 
deep supervision and residual connections for enhanced model performance.

Conclusion: Optimized Res-UNET with deep supervision significantly enhances 
segmentation accuracy for brain tumors in MRI images, surpassing traditional 
U-Net models. This model addresses critical issues such as dataset imbalance, 
lack of annotated data, and computational inefficiencies. Future studies should 
consider the broader application of optimized U-Net variants across other 
medical imaging segmentation tasks.
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1 Introduction

Biomedical and human intelligence breakthroughs over the last 
several years have addressed many ailments, yet cancer remains a 
significant challenge due to its unpredictable nature. This disease 
continues to pose a considerable threat to humanity. Brain tumor 
malignancy is one of the most devastating new illnesses (1, 2). In 2015, 
there were around 23,000 cases of brain tumor malignancy in the 
United States. About 36.3 percent (29,320 cases) were meningiomas; 
26.5 percent (21,200 cases) were gliomas; about 16.2 percent (13,210 
cases) were pituitary tumors; and the remainder of the cases were 
other forms of brain tumors, such as malignant, medulloblastoma, and 
lymphomas (3, 4). Many factors contribute to cancer-related sickness 
and morbidity, but these are the main ones. Timely and accurate 
diagnosis of this disease is essential for effective management and 
prompt patient intervention.

Grade 1: It’s safe to say that they are benign tumors since the cells 
they contain look like the brain’s regular cells.

Grade 2: These may be benign or cancerous and seem somewhat 
different from normal cells.

Grade 3: These seem significantly different from conventional cells 
and are highly harmful to them.

Grade 4: The tumor is growing and spreading at an alarming rate. 
Cells of this kind have an unusual appearance, and they are dangerous.

Medical microscopy is becoming increasingly important in 
everyday medical diagnostics research as a result of the advancements 
in modern optics. So, data from medical imaging tests must be studied. 
Brain tumors have been a major focus of medical study because of their 
prevalence and complexity (5). Image data analysis of images of brain 
tumors is commonly used to diagnose brain cancers. To accurately 
assess a patient’s status, looking at images of brain tumors is necessary. 
Image findings may be inaccurately interpreted due to the accretion of 
clinicians’ personal medical information, variances in experience, and 

visual tiredness (6). It is possible to get information about the shape, 
size, and location of human tissues and organs without ionizing 
radiation using MRI (Magnetic Resonance Imaging) (7). A range of 
imaging techniques and strategies have been utilized for the diagnosis 
and treatment of a brain tumor. MRI images are segmented to isolate 
the affected area of brain tissue using image processing methods like 
segmentation. A conventional DL (Deep Learning) segmentation 
procedure begins with a compression of the raw images using many 
layers of convolution, activation, and pooling in a fully connected CNN 
(Convolutional Neural Network) (see Figure 1). As a management tool, 
automated segmentation methods help trace borders between distinct 
tissue sections with varying degrees of automation and allow automated 
volumetric pathological MRI signal interpretation.

DL (Deep Learning) has played a crucial role in the present rise 
of AI in almost every industry (8). Computer vision, natural language 
processing, particle physics, DNA analysis, and research on brain 
circuits are only a few examples of the wide variety of domains where 
it has recently made significant advances. Medical imaging researchers 
have also shown great interest in this field recently. Computers can 
learn complex mathematical data representation models, which can 
subsequently be  utilized for accurate data analysis, using the 
DL framework.

Hierarchical models produce non-linear and/or linear 
functions of incoming data, weighted by model parameters. An 
overarching goal of data-driven techniques is to utilize training 
data collection to improve the computer model’s performance, 
e.g., classification, by learning the model’s parameters 
progressively. ANN (Artificial Neural Network) is a learning 
algorithm that consists of several basic computational blocks 
(neuron/perceptron layers), while its structures (network weights) 
define the forte of interconnections between layers. A DNN (Deep 
Neural Network) (8) comprises numerous layers of neurons and 
perceptrons coupled in an inter-layer form as shown in Figure 2. 

FIGURE 1

Illustration a standard deep learning segmentation process with convolutional neural networks (CNN). The process begins with compression (encoder) 
of raw MRI images through convolution, activation, and pooling, followed by a decoder that expands the latent representation to achieve 
segmentation during inference. The condensed latent depictions are further extended using inverse techniques. Training is kept up-to-date on the 
network from beginning to finish. When testing, the segmentation labels are used in a forward pass.
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It is possible for the DL models to successfully execute the same 
job using unseen data (testing data) beforehand, after being 
trained for it (9). DL’s ability to forecast better than other ML 
algorithms makes it stand out. A back-propagation approach is 
used to learn the parameters of a deep model, allowing some 
variants of the standard GD (Gradient Descent) method to achieve 
the chosen feature values recursively. Only an epoch of model 
learning occurs when all training data is used to adjust the model’s 
parameters. Many current deep-learning models can be used for 
hundreds of epochs of training. The difficulty hampers diagnostic 
image processing in identifying attributes during pattern 
recognition (10). Figure 3 depicts the brain tumor segmentation’s 
crucial feature extraction and selection phases.

The remainder of the article is structured as follows: Section 2 
discusses how current limitations in brain tumor detection 
experiments may impact the entire model, including multi-
classification and segmentation. Section III focuses on the majority of 
the material studied. Section 4 offers insights and experimental results 
on future directions. The experimental steps are as follows: For the 
BraTS21 challenge, we conducted comprehensive ablation studies to 
identify the optimal U-Net version and training strategy. For U-Net 
variations, we  tested U-Net  alongside Res-UNet, utilizing deep 
supervision and various loss functions. Our framework has increased 
the encoder complexity and the number of CN filters. Section 5 
concludes the article.

2 Existing challenges

This section outlines some of the biggest obstacles to using DL in 
medical image analysis. Table 1 lists significant challenges faced in 
deep learning for medical image analysis.

2.1 Lack of datasets with appropriate 
annotations

As the DL model involves complex mathematical functions, it 
stands out from other Machine Learning algorithms. Generally, as 
models get more complicated, we add additional layers to the model - 
i.e., go deeper. For a model to be generalized, we would need to utilize 
a large quantity of data to determine the values of the parameters. 
Almost every machine-learning technique relies on this occurrence in 
some form or another. A sophisticated model built from a small 
amount of data typically overfits the information used and performs 
poorly on all subsequent data sets. Learning deep models in sectors 
where only a limited quantity of training data is available is intrinsically 
incompatible. PACS (Images Archiving and Communication System) 
and OIS (Oncology Information System) systems provide a lot of 
medical images, but they do not have enough annotations to train deep 
models effectively; thus (11), cannot utilize them to train deep models, 
either. Aside from that, the annotations required for deep models are 

FIGURE 2

Depiction of the hierarchical layered structure of a deep neural network (DNN). Neurons or perceptron layers process input signals hierarchically 
through linear and nonlinear transformations, showing how deep networks learn complex representations from input data.

FIGURE 3

Flow diagram showing a CNN-based classifier for detecting brain tumors. The input image passes through several convolutional and pooling layers, 
which are then fully connected layers to output the final configuration label.
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often incompatible with standard medical practice. This complicates 
matters even more for experts who need to incorporate noise-free 
notes. It is necessary to provide such public datasets for medical 
imaging to train Deep Learning models on large-scale training datasets.

2.2 Imbalanced data

Imbalanced datasets are more prevalent in medical imaging than 
in conventional computer vision tasks. Only a few positive samples 
may be included in the dataset when training a model to identify brain 
tumors, but significant exposure to negative samples is available. 
Training deep networks with unbalanced knowledge leads to biased 
models (12). Many diagnostic imaging operations have a low 
frequency of positive sample occurrences, which makes matching the 
original data challenging. Consequently, considerable care must 
be taken while running deep models for diagnostic tasks.

2.3 Lake of confidence interval

A neuron’s output signal could only be  viewed as a single 
likelihood; the DL’s recent work refers to a model’s output as “forecast 
confidence.” The absence of a confidence interval around a projected 
result is often not desired in medical imaging jobs. End-to-end deep 
learning approaches are becoming more popular in medical imaging, 
according to Litjens et al. (13). This problem has hampered Deep 
Learning’s extensive use in medical imaging.

2.4 Difficulty in understanding medicinal 
task CNN

Medical image analysis may benefit from transfer learning, and it 
is clear from the research that disentangling medical activities will 
be helpful in this endeavor. Transfer learning efficiency has recently 

been boosted by carefully selecting the source and destination 
domains/tasks (14). As a fundamental premise, disassociation 
facilitates the determination of source tasks about which reasonably 
substantial annotated data sets are accessible and the determination 
of target tasks, whereby the source models may deliver higher 
effectiveness if fine-tuned. Another method for dealing with less data 
is investigating transfer learning between medical imaging and natural 
image activities. The ability to transfer information to current natural 
image models may substantially impact patient MRI image analysis 
using DL.

2.5 Covering deep features for imaging 
tasks

According to current research, many medical task models are 
trained from beginning to end. End-to-end modeling is often more 
viable for DL in domains with large-scale annotated data. Using 
strategies that need fewer training samples for real images, a (15) 
established that parameters obtained from deep models may 
be utilized to learn more efficient higher-level features. Their deep 
characteristics were further tied together before being sent into a 
classifier. If this is the case, deep qualities are used as input samples for 
the wrapping method.

2.6 Training partially frozen DL

An essential concept in ML is that more training data is needed to 
develop increasingly complex computational models. The depths of a 
structure are typically a determinant of its intricacy in deep learning 
since deeper networks need more features and bigger training datasets. 
This technique of breaking down pictures from the most basic to the 
most complex levels of abstraction using neural networks for image 
processing is called CNN. Early CNN layers educate them to apply 
comparable filters to a range of natural pictures, which is well-known. 

TABLE 1 A comparative overview highlighting significant challenges faced in deep learning for medical image analysis, with detailed descriptions 
clarifying the nature of each issue.

Sr. No Challenges Description

1 Lack of appropriately annotated datasets We can only generalize an architecture with a high no. of features if we use a vast quantity of data 

to conclude the hyperparameters.

2 Imbalance data Although many samples are inconclusive, only a few positive results may be used in a dataset to 

retrain an algorithm to identify brain cancers.

3 Lack of confidence interval Only a single reliability coefficient may be deduced from the output waveform of a neuron.

4 Difficulty in understanding medicinal task CNN Identify the primary tasks with significant annotation material and the desired outcome.

5 Covering deep features for imaging tasks Techniques that need fewer training samples for natural images

6 Training partially frozen deep networks It has been possible to overcome the shortage of annotated large-scale datasets by training 

partially frozen networks to perform medical imaging.

7 Inter learning with heterogeneous deep modeling At which input vector could be controlled for each task, yet the tasks are interconnected?

8 Creating simulated data utilizing GANS Regarding medical imaging, the GAN structure should be utilized with extreme care. Keep in 

mind that GANs do not learn how images were originally distributed.

9 Variety of matrix factorization methods Methods are typically not as powerful as advanced techniques, such as using GANs to boost data 

samples

10 Wide-reaching perspective Experts do not readily understand medical literature in other areas.
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According to this, by freezing a few layers upon layers in a network, 
feature values for a collection of pictures that are likely to be similar, 
we may minimize the number of learning parameters in a network. 
Similar models learned on similar tasks may copy parameter values 
directly. The absence of annotated massive datasets could be mitigated 
by learning partly frozen networks for diagnostic imaging.

2.7 Inter learning with heterogeneous deep 
modeling

When it comes to Computer Vision online contests, it’s not 
uncommon for there to be  a lack of adequate instruction. Such 
tournaments tend to have the same winning methods. Rather than 
learning a single DL model, numerous deep models are trained and 
integrated to determine the final results. Network topologies (16), 
complexity, and loss functions are all considered while developing 
models to use the best data supplied. For example, the joint logit layer, 
or computing losses while accounting for all networks by integrating 
them at the output layer, are two methods used to merge several 
networks. Multi-task learning is also recognized to be efficient in the 
context of deep learning when training data is sparse. This way, 
models for several tasks may be learned using just a subset of the 
training data, but the tasks are still connected. Because of this, the data 
annotations of several jobs are intertwined. However, learning to do 
many things at once might be more difficult than learning to do one 
thing at a time.

2.8 Creating simulated data utilizing GANS

Currently, GANs (Generative Adversarial Networks) are 
paying close attention to the Computer Vision group because of 
the group’s capacity to mimic the distributions from which images 
are sampled. The GAN system may create synthetic images that 
seem realistic in any domain. Models trained using just (limited) 
original domain information often outperform those trained using 
these images. GANs have a unique attribute of importance to 
Medical Image Analysis. Additionally, these studies point out 
several possible issues in this regard and promising opportunities 
for GANs as a medical image analysis data production technique. 
For medical imaging, the GAN framework should be used with 
caution, according to (17). Keeping in mind that GANs mimic the 
original distribution of images is essential. As a result, the 
GAN-generated images may look much different from the 
originals. This means that fine-tuning a model using just the 
original photos is always preferable to training the final model 
using data that contains GAN-generated data.

2.9 Wide-reaching perspective

We can make a meaningful remark concerning DL research by 
studying the literature in diverse domains. To put it another way, as a 
result of advances in related domains, advancement in Deep Learning 
research has accelerated dramatically (18). Computer Vision literature 
was the first to establish the concept of ‘residual learning’, which 
allowed for deep networks. AlphaGo Zero’s tabula rasa algorithm was 

eventually made practical because of this notion. Medical literature in 
other fields is difficult for professionals to comprehend.

2.10 Variety of matrix factorization 
methods

It has also been proven that a few simple strategies for 
supplementing data have improved deep model performance generally 
in the literature on computer vision and pattern recognition, even 
though modern strategies, such as employing GANs to enhance data 
samples, are more powerful, these methods are still worth using.

3 Related work

This section summarizes the recent advances in brain tumor 
segmentation that use deep learning. We concentrate primarily on 
research articles released after 2017 while examining the most 
significant contributions from preceding years.

Multifunctional 3D CNN for tumor identification by Li (19) 
focuses on the poor accuracy outcomes of existing approaches for 
brain tumor detection. The Multidisciplinary 3D CNN employs a 
combination of three-dimensional spatial models with differing 
properties to identify brain lesions. Adding a normalization layer and 
max-pooling to the networks will help alleviate the issue of overfitting. 
The lost output may be improved to expand the function learning of 
the observed space using the weighted loss during activation. As an 
example of how these techniques may be used to increase what has 
previously been utilized to detect a tumor by a minimal and vast 
volume of the lesion space, a replacement loss performance and 
efficiency can be upgraded to reduce the non-focal space interference. 
Experiments show that the method aimed to locate tumor lesions with 
greater correlation coefficients is successful. By evaluating the 
two-dimensional and single-mode tumor detection approaches, 3D 
CNN approaches significantly improve detection accuracy.

When Ding uses (20), the findings of using a deep residual 
network to enhance multi-model tumor pictures in the section are 
outstanding. The receptive area may be increased without sacrificing 
resolution because of its ability to overcome the problem of 
VG. Specific data from areas with small tumors may be overlooked 
because of the reduction in picture resolution caused by convolutional 
techniques operating on a single pixel. These factors necessitated the 
usage of spatial unification blocks to capture just the tumor’s particular 
location. It analyzes the link between this pixel and the surrounding 
area to obtain information on the spatial arrangement of brain tumors. 
This intermediate supervision block also has a pyramid and multi-
hierarchical structure that lowers the accumulation of errors during 
network training. The “boost learning” concept ensures the network 
can produce more accurate forecasts. Multi-classified loss accounts for 
the loss of intermediate suggestions in the middle layers and the 
reduction of the output forecast to achieve the middle supervision 
effect. Based on the results of our tests, our system can transmit and 
expand the variety of information necessary to improve the hierarchy 
of medical picture recognition.

For tumor segmentation, the Dinga (21) network has been found. 
It is believed that the UNet has been frequently employed in medical 
image segmentation because of its link with up-sampling processes. 
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Complex medical images do not work correctly—the stacking process 
results in a disproportionate increase within specific parameters. 
Choosing between potency and dependability is a bad trade-off. For 
these reasons, UNet is improving its network design to be more suited 
for tumor detection. Our blocks, known as the Easy Reduction 
SMCSRNet (Spatial Multi-scale Content Aware Residual Network), 
form an SMCSRNet (SRNet) structure. The SRNet’s primary advantage 
is that the number of parameters is reduced by 4/5 compared to the 
original UNet. Certain bridge connections are implemented at some 
point during the down-sampling process. As a bonus, the projected 
method’s efficiency is higher than the stacked UNet’s. The outcome is 
virtually as excellent as the most popular Dense Net or ResNet after 
additional research on other PSNs.

Chen Jie Ge described an improved MRI image dataset for genetic 
tumor classification by pairwise GAN (22). Glioma datasets currently 
available include several scans with missing or incomplete data. To 
deal with the problem of tiny brain tumor datasets and an insufficient 
picture modality for DL, we adopted a paired Generative Adversarial 
Network (GAN) model. When used with other imaging modalities, 
pairwise GANs may produce synthetic MRI pictures (MRIs). The 
post-processing strategy leverages a majority vote to merge slice-level 
glioma subtype classification data for a patient-specific diagnosis. It is 
possible to fine-tune a training strategy for glioma using both 
GAN-augmented and actual MRIs. The recommended technique was 
evaluated on a brain tumor dataset for IDH1 mutation and IDH1 
wild-type gene variation to classify glioma molecular subtypes. The 
data has shown encouraging results in research (with an accuracy of 
88.82%).

Deep and handcrafted tomography brain imaging alternatives are 
described by Hasan (23) in an easy-to-understand manner. 
Classification using a scanner. Magnetic resonance imaging (MRI) 
brain scans may be classified based on their capacity to extract relevant 
characteristics, a critical first step in the process. This has led to several 
research proposals proposing different ways for extracting information 
from MRI images of the brain that may detect abnormal brain 
growths. A method known as the MGLCM is also used to find 
handcrafted characteristics. They exploited SVM to classify significant 
attributes collected from the MRI images to enhance the MRI brain 
image classification. This deep learning approach with handcrafted 
features, paired with an SVM classifier, achieved a classification 
accuracy of 99.30%.

Jia (24) identifies and categorizes the images using multiple deep 
learning algorithms for brain tumor image processing. A new 
automated technique based on structural, morphological, and 
relaxometry data has been developed to separate the central vascular 
system from the MRI images. The segmentation characteristic is 
distinguished by a high degree of homogeneity between the anatomy 
and the neighboring brain tissue. Hidden node layers are used in 
ELM, a type of learning algorithm. Prediction and classification 
networks, for example, are often used in various fields. Tumor 
identification accuracy in MRI images has been trained and verified 
using the probabilistic neural network classification technique. Nearly 
98.51% of aberrant and normal tissue may be  identified using 
Magnetic Resonance Imaging (MRI).

Liu (25) explains the Deep C-LSTM Neural Network for 
identifying epileptic seizures and tumors utilizing high-dimensional 
EEG inputs. Electrical impulses in the human brain may be studied 
and diagnosed using electroencephalography (EEG), a commonly 

used tool. The relatively short identifiable EEG portion hampers real-
time seizure detection. To identify seizures and malignancies in the 
human brain, a novel form of deep convolutional long-term memory 
(C-LSTM) has been developed (open and closed). Predicts results 
every 0.006 s, with a detection time of only 0.006 s (one second). Deep 
C-LSTM outperforms DCNNN and LSTM when compared to other 
deep learning algorithms. The total accuracy attained is more than or 
equal to 98.80%.

Mallick (26) used deep neural network-based deep wavelet 
autoencoders (DNN-DWAE) to classify brain images. The image 
processing technique is frequently employed in the medical profession 
to enhance the detection and treatment phases. Image compression 
using the Deep Wavelet Autoencoder (DWA) technology combines 
the autoencoder’s fundamental feature reduction function with the 
wavelet transform’s image decomposition property. The use of DNN 
for additional classification tasks significantly reduces the feature set 
size when these two methods are combined. Consideration was given 
to the proposed DWA-DNN image extractor. The DWA-DNN 
classifier’s performance indicators were compared to those of existing 
classifiers, including Autoencoder-DNN or DNN.

Tumor image analysis using concatenation will be discussed by 
Noreen (27) using DL. Deep learning models Inception-v3 and 
DenseNet201, which have already been trained, help this model. Two 
alternative situations for identifying and classifying brain tumors were 
investigated using these two principles. After that, the pre-trained 
model in Inception-v3 was used to extract the properties of numerous 
Inception modules and concatenate them to categorize brain tumors. 
The SoftMax classifier was given these characteristics to locate the 
tumor. A pre-trained DenseNet201 was used to extract properties 
from various DenseNet Blocks, and it performed well. The SoftMax 
classifier was then used to combine these attributes to identify the 
brain tumor. The publicly accessible three-class dataset for brain 
tumors was used to assess both situations in-depth and objectively. To 
identify brain cancers, this approach has a precision of 99.34% for 
Inception-v3 and a positive predictive value of 99.51% for 
DenseNet201, respectively. For the classification of brain tumors, 
researchers discovered that feature concatenation leveraging 
pre-trained models outperformed current deep learning and machine 
learning approaches.

Razzak (13) highlights the effective brain tumor segmentation 
with a multiscale two-pathway cluster CNN in neuroimaging. 
Precision and heftiness of brain tumor sectioning are crucial to 
diagnosis, therapy planning, and evaluation of treatment outcomes. 
Automated brain tumor segmentation generally relies on hand-
created characteristics. Even in the medical area, accessing labeled 
data is sometimes challenging for convolutional deep learning 
algorithms like Deep CNN. A CNN architecture incorporating local 
and global properties has been developed to segment brain tumors. 
Equivariance is enforced in the Two-sided CNN architecture to 
decrease the risk of overfitting. Cascade architecture is included in our 
two-pathway group CNN by using a rudimentary CNN as an extra 
source and concatenating it on the final layer. Group CNNs have been 
shown to improve the overall performance of the BRATS2013 and 
BRATS2015 datasets models, according to the validation of multiple 
architectural models.

Using DL approaches, Sultan (28) quantified multi-image 
categorization. MRI is frequently utilized because of its high-quality 
images and the fact that it uses no ionizing radiation. As a branch of 
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machine learning, DL has lately shown impressive results, particularly 
in classification and segmentation issues. A convolutional neural 
network-based DL model for detecting several forms of brain cancers. 
It first categorizes the tumor into meningioma, glioma, and pituitary 
tumor, and later, the Glioma grade (Grade II, Grade III, and Grade IV) 
is determined.

Transfer learning has been used by Swati (29) to improve brain 
tumor retrieval from MR images based on content. Using handmade 
features, we may create an extraction technique for low-level and 
high-level features that reduces their disparity. When it comes to 
feature representations, deep learning is an excellent option since it 
can include the extraction of features into the self-learning procedure. 
CFML, a deep convolutional neural network (CNN), and a VGG19-
based innovative parameter extraction method are utilized to 
determine whether the query and database images are comparable. 
Extensive research was done using a publicly available CE-MRI 
dataset comprising 3,064 images of 3 different forms of brain cancers 
(namely glioma, meningioma, and pituitary tumor) from 233 
individuals. This method requires a minimum preprocessing for the 
CE-MRI dataset and is resilient in 5-fold cross-validation tests. It can 
reach a 5-fold mean average accuracy of 0.9654 and beats current 
CBIR systems by a wide margin. No features are created in 
the procedure.

Wang (30) explains dynamic medical image segmentation by 
combining DL with fine-tuning. CNNs were integrated into a 
segmentation process that employed bounding boxes and scribble-
based classification to concentrate on deep learning. Network and 
interaction-based uncertainty is taken into account while fine-tuning. 
There are two new applications for this framework, such as the 2-D 
segmentation of various organs from fetal MR slices with only two 
annotated versions for testing, as well as the 3-D segmentation of a 
brain tumor core (excluding edema) and a whole brain tumor 
(including edema) from two separate MR sequences with only the 
tumor core annotated for training in one MR sequence each.

A deep learning system that uses transfer learning methods was 
employed by Rehman (31) to diagnose brain cancers. For example, 
Meningioma, glioma, and pituitary cancers may be detected using 
three different CNN designs (Alex Net, Google Net, and VGG Net). 
MRI slices of the brain tumor dataset are used in each research to 
explore transfer learning methodologies such as fine-tuning and 
freezing. Alex Net is tasked with investigating transfer learning 
mechanisms as part of its first inquiry. If a fine-tuned Alex Net 
technique is necessary, we have analyzed several criteria to ensure the 
finest possible execution and the most accurate results. SGDM, Adam, 
and Rms Prop are three key solutions created for the network with 
varying cluster sizes and approval frequencies. The Google Net model 
is utilized in the second review to explore the techniques of exchange 
learning illustrated. A few assessments use the pre-trained Google 
Net’s tweaking strategy to try to alter the limits. A remarkable 98.04 
percent success rate has been attained. This is the third and last 
examination of CNN’s VGG16 architecture, in which the effectiveness 
of the CNN techniques is examined. Using the calibrated VGG15 
classifier, the data reveals the accuracy of various companies using 
different solvers and different restrictions. Depending on VGG16, the 
best classifier can be found. In this case, 98.69 percent of the facts are 
distinguishing evidence.

Afshar (27) classified the tumor as a Brain Tumor with a Capsule 
Network. CNNs cannot handle input alterations very well if you do 

not have much training data. New architectures for machine learning, 
known as Caps Nets, have been developed to address the shortcomings 
of CNNs and revolutionize deep learning systems. In the context of 
medical imaging datasets, such as brain MRI images, CN is resilient 
to rotational and axial transformation and needs less training data, as 
is the case here. The activity vectors of neurons may represent different 
posture parameters in a capsule, and the longer these activity vectors 
are, the more likely an object is to exist. Many CNN flaws can be traced 
back to the level of pooling. A more appropriate criterion, known as 
routing by consensus, is instead employed in Capsule networks. 
Although their coupling coefficients vary, this criterion directs outputs 
to all parent capsules in the subsequent layer. The method effectively 
resolves CNNs in brain tumor categorization. Table  2 provides a 
comparative literature evaluation of notable segmentation of human 
brain tumor features, modalities, datasets, the technology used, 
and constraints.

Tumor segmentation in medical imaging is fundamental for 
computer-assisted diagnosis and treatment planning. In the past few 
years, a significant amount of work has been focused on optimizing 
neural architectures for this task, with Res-UNET variants and deep 
supervision strategies leading to substantial improvements (10, 32–
41). The work presented in (17), which spans 2022 to 2025, with 
enhanced Res-UNET frameworks, shows a significant advancement 
of tumor segmentation regarding accuracy, robustness, and 
computational efficiency. The Res-UNET architecture is an extended 
version of the classic U-Net architecture. Still, it adds residual 
connections, which allow gradients to propagate better during 
backpropagation and alleviate the vanishing gradient problem, 
allowing deeper networks to be  trained. Residual connections are 
particularly advantageous in medical image segmentation tasks, as 
fine-grained structural details must be captured at all scales. Sahayam 
et  al. (36) residual built a dual attention mechanism with deep 
supervision into hybrid multi-resolution U-Net models. They trained 
their model on brain tumor segmentation with MR images and 
substantially improved Dice Similarity Coefficient (DSC) and 
Intersection over Union (IoU) metrics. Residual and attention 
modules allowed for more fine-grained localization around tumor 
edges, and deep supervision facilitated fast convergence 
during training.

Wang et al. (37) performed liver segmentation and recently 
introduced a Multi-scale Attention and Deep Supervision-based 
3D UNet (MAD-UNet). Their architecture simultaneously 
improved spatial and contextual representation by replacing 
pooling layers with convolutional operations and adding long-
short skip connections. Their model was evaluated on datasets such 
as LiTS17 and 3DIRCADb, with DSC scores above 0.97, indicating 
a higher score than baseline U-Net and standard Res-UNET 
models. Deep supervision is adding auxiliary losses to an 
intermediate layer of a network. This can contribute functional 
gradients at each level of the encoder-decoder pathway, avoiding 
any instability in training and ensuring the hierarchical features 
can be learned. This is especially helpful to segment complex or 
small tumor regions that risk being overlooked in the final layer-
only supervision.

Ma et al. (38) designed an Attention R2U-Net-based Multi-
Task Deep Supervision (MTDS) framework for brain tumor 
subregion segmentation. Their model outperformed regional 
accuracy and refined the boundaries by incorporating auxiliary 
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TABLE 2 A comparative literature evaluation summarizes brain tumor segmentation methodologies, datasets employed, technologies utilized, and the 
limitations identified from recent notable studies.

Ref. Propose 
model

Characteristics Modality Dataset Used 
technology

Limitations

Zhou et al. (1) CNN and MM data 

aquisition

 1. Expand the connection 

speed of the network

 2. Assuage the problem of 

overfitting

 3. Loss function improved

MRI MICCAI BraTS 

(2018).

Multimode state 3D 

CNNs

2D CNN on the 

training layer is 

problematic for 

adopting the image

Weinberger et al. (2) Improve the residual 

network to segment

Multi-model

 1. Shorten the distance 

between information 

paths and reduce 

cumulative error during 

training, increase 

information diversity

MRI BRATS2015 Residual DN with 

middle regulation

DSC Score with 

ResNet is lower

Sobhaninia et al. (3) Reduced architecture 

for multiple 

interconnection in 

stacks.

 1. Simple reducing Net 

(SRNet) is improved with 

the original UNet

 2. The number of 

parameters is reduced to 

4/5

 3. Improve the loss of 

information with SCN

MRI BRATS2015 Bridge connection 

method, Stacked 

Network, SRNet

Overfitting problem: 

stacked UNet RUnet 

uses too many 

parameters and more 

computation 

resources.

Liu et al. (42) Expand learning 

dataset with 

correlation GANs

 1. Generate synthetic MRIs 

of different modalities

 2. Combine the slice-level 

glioma subtype

 3. Classify the glioma 

molecular subtype

GAN augmented 

MRIs

TCGA-GBM and 

TCGA-LGG

GAN augmented MRI 

as a dataset with a 2D 

CNN

Signal-to-noise ratio 

(STNR) autoencoder 

feature with original 

MRIs, Accuracy is 

lower

Diaz-Pinto et al. (4) Combined deep 

handcraft parameters

 1. The classification process 

is improved with SVM as 

a classifier

MRI Collect from the 

Iraqi center for 

research and 

magnetic 

resonance of 

Al-Kadhimain 

Medical City.

MGLCM-DF method, 

convolutional filters, 

AlexNet, GoogleNet, 

SqueezeNet

A vast difference 

occurs in the 

inaccuracy results 

with the BRATS 2013 

datasets.

Goodenberger and 

Jenkins (5)

HS-SVM architecture  1. MRI slices pixel 

resolution processed at 

such a slow pace with the 

increment of iteration. 

Design an extreme 

learning machine 

algorithm

MRI Not mentioned Use ELM algorithm 

use FAHS-SVM

Tumor size affects the 

accuracy of 

segmentation

Menze et al. (6) Paroxysmal epilepsy 

with C-LSTM

 1. Detect seizures and 

tumors in the human 

brain. solve the 

overfitting problem

MRI Not mentioned Deep convolutional 

LSTM model

Measurement noise 

and accuracy are not 

improved

Bakas et al. (7) Deep ripple 

autoencoder 

approach

 1. Accuracy, Specificity, and 

sensitivity improve. 

Combining DNN and 

other autoencoders with 

the same dataset 

enhances the 

performance.

MRI RIDER DWA – DNN classifier Time-consuming 

process and handling 

problem.

(Continued)
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losses at different decoder levels corresponding to each segmentation 
task (i.e., edema, necrotic core, enhancing tumor). The attention 
helped achieve higher feature discrimination between different 
tumor types. Cui et al. (39) adopted a similar philosophy, which 

presented Encoding Feature Supervised UNet++. They introduced 
supervision signals for each encoder stage that encouraged several 
epochs of informative feature extraction at the start of the network. 
On liver tumor datasets, ES-UNet++ outperformed UNet++ by 

TABLE 2 (Continued)

Ref. Propose 
model

Characteristics Modality Dataset Used 
technology

Limitations

Myronenko (8) Concatenation-based 

approach

 1. The features from 

Inception are extracted 

and concatenated with 

classification

 2. DensNet201 is used to 

extract the features.

 3. Classification of different 

types of tumors

MRI CE-MRI DensNet deep learning 

model, inception 

model used

It blends the most 

suitable algorithms, 

AdaGrad and 

RMSprop.

Jiang et al. (9) Multiscale two-

pathway cluster CNN

 1. Exploit local features and 

global contextual features

 2. Reduce instabilities and 

overfitting by sharing

MRI BRATS2015

BRATS2013

Two-pathway CNN 

architecture

2PG-CNN gives low 

accuracy

Isensee et al. (10) Multiple classification 

and extraction

 1. Differentiate the three 

subdivisions of gliomas

 2. 100% accuracy achieved 

with 500 iterations. 

achieved lower loss 

(better)

MRI Collected from 

Nan Fang 

Hospital and 

General Hospital, 

Tianjin Medical 

University

Custom deep neural 

network, and two 

dropout layers used

Grade III glioma 

grade gives 95% 

accuracy, while other 

grades give 100% 

accuracy

Isensee et al. (11) Retrieval using 

evidenced learning

 1. Enhance retrieval 

performance by using a 

fine-tuning strategy. 

Require minimal 

preprocessing

MRI CE-MRI Deep CNN with 

VGG19-based 

parameter extraction 

construction

The tumor is roughly 

outlined

Oktay et al. (12) Image specific fine 

tuning

 1. Robust model

 2. Weighted loss function 

improves

 3. Memory Efficient

 4. Short influence time

MRI BRATS DL-based interactive 

segmentation 

framework, scribble-

based segmentation

Noise ratio and 

feature sharing, 

overfitting problem 

with High Res3DNet, 

deep medic gives 

lower performance

Zhou et al. (14) Automated 

classification With 

DL

 1. In-depth, perilous factors 

distressing the fine-tune 

approach

 2. Enhanced performance 

on image classification

 3. Beat the out-of-date ML 

models

MRI ImageNet Alex Net, Google Net, 

VGG Net

AlexNet and 

GoogleNet give lower 

accuracy

Hatamizadeh et al. 

(15)

Energized algorithms  1. Perfect fitting

 2. Reduce the number of 

parameters

 3. Reusability of weights

 4. Increase the efficiency 

and effectiveness of the 

image

 5. It creates more or 

supplementary data 

where limited data is 

provided

MRI Not mentioned 2D CNN The SVM classifier 

gives lower accuracy 

than expected
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5.7% in the Dice score. These findings reveal why deep supervision 
not only increases the accuracy of our models but also 
helps in generalizability across datasets with different 
imaging phenotypes.

Recent work has improved performance using attention modules, 
multi-scale processing strategies, and Res-UNET. This 
design incorporates attention mechanisms like channel and spatial 
attention blocks to encourage the network to pay attention to relevant 
tumor regions while ignoring the surrounding background. This is 
crucial in medical imaging, where tumors are usually of low contrast. 
Huang et al. (40) evaluated the brain tumor segmentation datasets 
with different architectures such as UNet, Res-UNET, Attention 
Res-UNET, and UNet. They found that integrating Res-UNET and 
attention mechanisms led to a marked improvement in performance 
compared to traditional architectures, especially concerning 
discriminating between overlapping tumor subregions. The attention 
significantly improved boundary detection and decreased 
false positives.

Another innovation in DeepLab is the Atrous Spatial Pyramid 
Pooling (ASPP), which helps obtain feature representations at multiple 
scales and captures context. It has been incorporated into Res-UNET 
architectures to manage tumors with irregular shapes and sizes 
effectively. Although ASPP has been more commonly deployed in 
segmentation tasks outside tumors (e.g., lung, pancreas), it is 
beginning to be  used in oncology, condensing local and global 
contextual features. Many of these streamlined architectures have been 
tested on public datasets (e.g., BraTS [brain tumors], LiTS 
[liver tumors], and ISLES [stroke lesions]). BraTS has become the 
canonical benchmark for evaluating the performance of glioma 
segmentation algorithms. In various challenges, the hybrid schema of 
Res-UNet with deep supervision and attention modules consistently 
yields the best solutions. For example, Behzadpour et  al. (41) 
proposed a model built upon an EfficientNet encoder within a 
Res-UNET architecture with additional deep supervision and 
attention blocks. On BraTS2021, their approach achieved a whole 
tumor Dice score of 0.91 and a tumor core score of 0.85. These results 
highlight the importance of encoder choice, intermediate supervision, 
and context-aware modeling in achieving clinically relevant 
segmentation performance.

4 Proposed methodology

For this study, we exploited a publicly available dataset (32). In the 
recent literature, we have found several improvements to the original 
U-Net architecture to try to build upon its basic strengths. These are 
introducing attention mechanisms, residual connections, and multi-
scale feature integration. We further evolve our traditional U-Net 
with residual blocks to improve gradient propagation and extract 
more levels of features. Additionally, we employ deep supervision to 
enforce learning at intermediate decoder layers. The presented 
evolution of U-Net, leading to our proposed Res-UNET with deep 
supervision, gives a systematic approach to improving accuracy while 
remaining computationally efficient in training encounters. U-Net 
has been analyzed to find the most effective NN design. Each model 
is described briefly in the sections that follow. The U-Net design 
(Figure 4) separates the encoder and decoder by a symmetric U shape. 
Initially, the input space is transformed into a smaller space by the 
shrinking route (encoder). The encoder’s modular structure is made 
up of repeated convolution blocks. The transformations are divided 
into two smaller blocks. A convolutional layer with features 3 × 3 × 3 
and a cadence of 2 × 2 × 2 is used to reduce the feature space of the 
input matrix by a factor of two, then occurrence normalizations and 
Leaky ReLU activation with a negative slope of 0.01 are used (dark 
blue block). A similar set of operations is used to modify the following 
subset of features, but the convolutional layer has a stride of 1 × 1 × 1 
(light blue). The decoder begins after the featured graph’s spatial 
dimensions are reduced to 2 × 2 × 2.

However, the decoder aims to improve the spatial dimensions by 
lowering the encoder feature space. Three smaller blocks combine to 
form the decoder block. There are two methods for extending the 
feature map’s spatial dimensions. The first uses an inverted convolution 
with kernels and strides of 2 × 2 × 2 and 2 × 2 × 2. A convolutional 
layer with filter size 3 × 3 × 3 and a cadence of 1 × 1 × 1 is used to 
convert the up-sampled feature map, which is then combined with the 
encoder feature space from the same spatial level. Then, instances of 
normalizations and Leaky ReLU activation with a negative slope of 
0.01 are used (light blue) (32). In contrast, deep supervision can 
be  employed to compute loss functions for outcomes from lower 
decoding levels.

FIGURE 4

Demonstration of a conventional U-Net model combined with CNN layers and an attention mask for emphasizing important features to improve 
segmentation precision during training and inference phases.
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BraTS 2018 contest winner Residual Autoencoder U-Net is an 
AS-U-Net with autoencoder regularization that re-engineers the 
encoder frames and attaches a VAE subsidiary in the demultiplexer 
that recreates the input and has a regularization impact (see Figure 5). 
There are two convolutions with class normalization and activation of 
the ReLU in each frame, accompanied by an additional identity 
backpropagation. The decoder has a striking resemblance to the 
encoder, but each spatial layer only has one unit. Before adding an 
encoder extracted features from a higher spatial layer, each decoder 
block reduces the number of bands by a factor of 2 and doubles the 
spatial dimension. A low-dimensional vector of 256 is used in the 
decoder’s VAE section to decrease the congestion of extracted features. 
Samples from the Gaussian distribution with specified mean and 
standard deviation are then selected from this distribution to rebuild 
input image dimensions, similarly to decoder construction.

In UNETR (see Figure 6), three-dimensional CN is replaced by 
attention, which postpones ViT to three-dimensional convolution 
layers. An input area is partitioned into a series of non-overlapping 
chunks and placed onto a subspace (with 768 parameters) using a 
sequential layer, and the positional embedding is provided. A multi-
head self-attention encoder then processes this data.

The decoder portion of the Attention U-Net adds an attention gate 
to the basic U-Net, increasing its functionality. Before concatenating in 
the decoder phase, the concentration gate transforms the subset of 
features from the encoder. It uses the environment of the preceding 
decoder block’s feature map to understand which portions of the 
encoder feature space are most significant. The encoder feature map is 
multiplied by the attention gate’s parameters to accomplish this. Put 
another way, the NN weights fall between 0 and 1, indicating how much 
attention it gives every pixel. Motivated by the Reset paradigm in which 
residual interconnections were presented, a Res-UNet was created. 
Because of improved gradient flux, residual links assist in training a 
DNN. There is just one distinction between the basic U-Net and the 
R-U-Net. Our trials have shown that a simple U-Net produces the most 
significant outcomes. Next, the encoder depth and convolution effective 
parameters were optimized. There were six convolution channels at 
each encoder level, and the depths of the NN U-Net model’s default 

U-Net structure were utilized as a benchmark. According to our 
research, raising the encoder’s level to seven and changing the frequency 
band to 96 to 512 further enhances the baseline rating.

TC represents classes 1 to 4; expanding tumor (ET) represents class 
4, and WT represents classes 1 to 2. These three sections partly overlap. 
Rather than relying on the labeling, the challenge scoreboard depends 
on the corresponding points. For this reason, we constructed the output 
feature vector to include three channels (one for each class), which are 
then converted using sigmoid activation to create the prediction error. 
The Dice loss was used to optimize each area using a sum of binary 
cross-entropy or Focal loss. Rather than summing the Dice loss across 
each sample individually, we utilized the batch form of Dice loss to 
calculate the loss across all items in the group. Deep supervision is a 
method that uses several decoder levels to compute the loss function 
and improve gradient flow. The green bars depict the insertion of two 
new output units in this study. Labels were quantized using the nearest 
neighbor approximation to match the spatial morphologies of extra 
outputs before calculating the more profound supervision loss. In this 
case, the final loss factor is determined as follows for labeling Yi and 
forecasts pi for A = 1 to 3, where A = 1 represents the final projection 
header, A = 2 shows the output head on the subsequent decoding level, 
and A = 3 represents the output head well before preliminary.

5 Experimental results and discussion

Throughout inference, the input quantity may be of any size rather 
than the predetermined patch size of 128 × 128, as during the training 
stage. Because of this, we employed a feature extraction inference 2 
with a training patch as the frame and consecutive frames overlapped 
by exactly half of a patch. Consequently, as in the initial NN-U-Net 
study, the values of the center voxels are given a larger relevance than 
the weights of the overlapping areas when averaging the predictions. 
A segmentation-specific loss function arises from the Dice Similarity 
Coefficient (DSC), which assesses the overlap between predicted and 
ground truth segmentation masks. Incorporating a combination of 
class weights made the most impactful performance improvement. 

FIGURE 5

Representation of the proposed deep Residual U-Net autoencoder architecture utilized in experiments, highlighting encoder-decoder structures with 
autoencoder regularization, employing residual connections to enhance gradient flow and improve training efficiency.
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This is particularly beneficial in medical image segmentation since 
there is often class imbalance, and it weighs the importance of smaller, 
pertinent areas (like tumors) in prediction. Deep Supervision is 
achieved by adding other loss functions to intermediate layers of the 
network. Guided back-propagation passes the gradient back through 
all layers to provide hints of a CNN spread over most levels instead 
of merely relying on guidance from the output layer. These strategies 
benefit deep architectures like Res-UNET, which suffer severely from 
vanishing gradients and need robust multi-scale learning. One 
recognized strategy to increase the reliability of forecasts is to improve 
the time spent in the test environment. Since there are eight different 
x, y, and z axis combinations, we produced eight variants of the input 
volume during inferences. To turn the predictions back to the original 
input volume orientation, we execute inference for each iteration of 
the input volume and utilize flips on forecasts used for the input 
volume. Finally, we calculated the average of all forecasts’ probabilities. 
It returned the three interrelated areas to their respective classes after 
optimizing them. Classes are returned to their original state by using 
the following techniques: If the WT likelihood is less than 0.45, the 
voxel is assigned the category of “background.” Alternatively, if the 
probability of TC is less than 0.40, the voxel is assigned the category 
of ED. Finally, if the probability of ET is less than 0.45, it is assigned 
the category of 1 or NCR, respectively (ET). The accompanying post-
processing approach was also used: For constituents with a mean 
likelihood of fewer than 0.9, change their category to NCR. Next, 
change all ET voxels into NCR if there are generally just under 73 
voxels with those, and their mean likelihood is lower than 0.9. The 
edge scenario where the prediction of a few voxels with enhanced 
tumors was avoided using such post-processing, but there were none 
in the underlying data. As a result of this post-processing, the Dice 
value for a zero high false forecast was 1, as well as a 0 otherwise, 
which was helpful to the total result. A systematic hyperparameter 
tuning process was undertaken to optimize the performance of the 
proposed Res-UNET model.  We first performed a grid search over 
various learning rates, weight decay values, and loss function weights. 
We explored learning rates in the range of 1e-2 to 1e-5 and found the 
best performance using 1e-4 with the Adam optimiser. Weight decay 
is a kind of regularization, and we tested weight decay values between 

0 and 1e-4 before selecting 1e-5 to balance the overfitting trade-off 
while keeping convergence stable. Segmentation loss was calculated 
as a composite of Dice Loss and Cross-Entropy Loss, with the 
weighting ratio for Dice Loss (α) sweeping between 0.5 and 0.8, 
where the optimal setting of α = 0.7 produced the best trade-off 
between region-wise segmentation correctness and boundary  
sharpness.

Hyperparameter tuning for batch and input patch sizes improved 
memory utilization and contextual representation. Without 
exhausting the memory in the GPU, a batch size of 2 and a 3D patch 
size of 128 × 128 × 128 provided the most stable training. 
Furthermore, early stopping with a patience of 10 epochs was 
employed to prevent overfitting, and a ReduceLROnPlateau learning 
rate scheduler was applied to decrease the learning rate if the 
validation loss showed no improvement. The final hyperparameters 
were validated on a hold-out set of 20% of the training data, and 3-fold 
cross-validation was utilized to assess the extent of generalizability and 
stability of the chosen configuration.

Our experiments with three different U-Net versions led us to use 
the better method for input rebuilding: foundation U-Net, UNETR, 
and U-Net plus autoencoder normalizations, which all use the same 
U-Net structure but use a ViT interpretation for 3D convolution 
operation instead of U-Net. Basic U-Net received the highest, 
according to the findings. Residual Autoencoder U-Net’s learning 
duration is 3 times higher than that of U-Net, even though the rating 
is almost the same. As a result, we chose to focus our research on the 
U-Net structure. Several U-Net design adjustments, including decoder 
attentiveness, deep supervision, residual links, and a drop clog, were 
evaluated in the following experiments. The updated loss function has 
also been tested using Focal loss rather than cross-entropy, such that 
Focal loss with Dice is the error term. The deep supervision was the 
sole addition to the U-Net 91%, which improved the 5-fold average 
Dice score by 91%, according to the data provided. Table 3 shows 
comparative results between the implemented Conventional U-Net 
and Residual Autoencoder U-Net, detailing Dice scores across various 
cross-validation folds. Figure 7 depicts the experimental outcomes of 
brain tumor segmentation, visually demonstrating performance 
differences across various tested U-Net architectures.

FIGURE 6

Illustration of an enhanced attention unit utilized in the experiments, emphasizing the weighted selection of relevant features in the decoder block of 
attention U-Net to improve segmentation accuracy.

https://doi.org/10.3389/fmed.2025.1593016
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Maqsood et al. 10.3389/fmed.2025.1593016

Frontiers in Medicine 13 frontiersin.org

Lastly, we evaluated the encoder modifications for the U-Net with 
deep oversight. It adopts the architectural rationale from the NN 
U-Net platform, where the network depth is six and the number of 
convolution units at every encoder level is 32 to 320. We used a depth 
seven encoder, expanded the number of layers from 64 to 512, and 
used a one-hot encoder for salient voxels to validate the input 
space-Net with deep supervising 91% has a slightly better rating if 
each one of the adjustments is applied individually, but if all 
adjustments are used together and the score improves further 91%. A 
post-processing method was also tested. Table 4 illustrates epoch-wise 
validation losses for different layers (L1, L2, L3) and total loss across 
training epochs. To make sure the clinical or real-time use of the 
proposed Res-UNET with deep supervision is usable, we assessed the 
computational performance. We trained the model on an NVIDIA 
RTX 3090 GPU with a batch size of 2, with convergence around 75 
epochs. The average inference time for each volume was 1.8 s. The 
introduction of deep supervision and residual connections added 
extra complexity. At the same time, reviews demonstrated that the 
model achieved efficient memory usage and a manageable number of 
parameters, thus allowing for scale across high-resolution MRI scans. 
Additionally, we include deep supervision from intermediate decoder 
stages to improve our proposed architecture’s learning power and 
convergence property. This method uses auxiliary loss functions on 
specific layers, incentivizing early feature maps to contribute 
meaningfully to the final prediction. In theory, deep supervision 

enhances gradient flow in deep networks by supplying direct 
supervision signals to preceding layers, helping to alleviate the 
vanishing gradient issue and promoting faster and more stable 
training convergence. The performance of deep supervised models 
based on empirical results shows lower training loss and better 
segmentations in all the different tissue types/tumor subregions. These 
advantages can be  seen in a comparative visualization of loss 
convergence with and without deep supervision. Apart from 
architectural enhancements, we also utilize targeted post-processing 
techniques to improve segmentation robustness. In particular, 
connected component analysis is used to discard the small isolated 
false-positive spots that could occur in non-tumoral regions. 
Moreover, morphological actions like dilation and erosion 
improve tumor borders and maintain small or divided tumor 
predictions. This can significantly enhance the detection of smaller 
tumor regions and diminish false positive rates, leading to much 
neater and clinically consistent segmentation outcomes. These design 
choices collectively allow us to build a more reliable segmentation 
framework closer to being suitable for deployment in high-stakes 
medical imaging settings.

In past BraTS versions, it has been shown that eliminating tiny 
areas of increased tumor may improve the ultimate result. So, since 
the Dice score for predicting zero false positives is one if there is no 
enhancing tumor present in the label, and zero if there is. After 
performing five-fold cross-validation, we  discovered that the best 

TABLE 3 A comparative performance analysis between the implemented Conventional U-Net and Residual Autoencoder U-Net, detailing Dice scores 
across various cross-validation folds, indicating that conventional U-Net generally achieved higher Dice scores, outperforming Residual Autoencoder 
U-Net.

Experiment model implementation Conventional U-Net Residual Autoencoder U-Net

Fold 0 0.9297 0.8977

Fold 1 0.9698 0.8999

Fold 2 0.9189 0.9092

Fold 3 0.9387 0.9398

Fold 4 0.9456 0.9433

FIGURE 7

Experimental results of brain tumor segmentation: tumor segmentation results using optimal Res-UNET with deep supervision show high alignment 
with ground truth. Figure 1 L1, L2, L3 metrics and total loss visualization over epochs.
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TABLE 5 Cross-validation results incorporating deep supervision and encoder optimizations, revealing the proposed model’s superiority in 
segmentation performance compared to state-of-the-art approaches, with a consistent Dice score averaging above 91%.

Experiment model 
implementation

Deep supervision Deeper UNET Channels results Mean

Fold 0 0.9251 0.9217 0.9227

0.9089

Fold 1 0.9365 0.9270 0.9335

Fold 2 0.9435 0.9343 0.9443

Fold 3 0.9698 0.9635 0.9575

Fold 4 0.9494 0.9135 0.9672

approach was to look for ET-connected components, then swap out 
smaller than sixteen voxel elements with a mean likelihood lower than 
0.9 for NCR-class parts, and finally, swap out all ET-class voxels with 
a probability lower than 0.9 for NCR. Table  5 summarizes cross-
validation results incorporating deep supervision and encoder  
optimizations.

6 Discussion

This study aimed to present an improved brain tumor 
segmentation framework, which has been built upon an Optimal 
Res-UNET-based architecture combined with deep supervision, 
particularly for effective and robust brain tumor segmentation during 
multi-modal MRI. The architecture employs residual learning, multi-
scale feature fusion, and auxiliary loss supervision for effective feature 
representation, improved gradient flow, and efficient segmentation 
performance. Residual connections mitigate one of the fundamental 
problems with deep networks: vanishing gradients. Residual blocks 
help gradients to propagate through networks more easily via shortcut 
connections, with activated identity mappings. In contrast, gradients 
are backpropagated (32)—supporting the training of deeper models 
without performance degradation. This modification adds to 
structural stability, requiring only a few fine-tunings while retaining 
semantical information and low-level features important in 
medical imaging.

Deep supervision (e.g., auxiliary losses applied at intermediate 
decoder stages) is an essential architectural innovation. For example, 
deep supervision reduces overfitting and enhances generalization by 
propagating error signals to several network depths, motivating the 
first layers to learn discriminative visual features (32). The introduction 

of deep supervision led to significantly faster convergence and better 
DSC values across the tumor subregions, with particular improvement 
for tumor core detection, where the irregular shape and small size can 
lead to false negatives during detection. The metric we used to assess 
segmentation performance is known as Dice Loss. This differentiable 
metric is based on the Dice Similarity Coefficient, a measure of the 
overlap between the predicted and the true mask. Dice loss is more 
suited for tasks with a high-class imbalance in medical segmentation 
as it supports high weight on correct smaller structure segmentation 
(34). In addition, we used post-process techniques to further clean up 
the segmentation results. Through connected component analysis, 
small disconnected false positives were eliminated, and morphological 
operations (dilate and erode) reduced spatial incoherence in predicted 
masks. These were important to remove noise and increase the 
identification of small tumor areas, which are usually missed in 
coarse segmentations.

Traditional U-Net offers a solid yet straightforward baseline for 
biomedical image segmentation, but performance-increasing 
architectures have been presented. Example configurations have 
learned to work well on a given dataset, as in the case of nnU-Net, 
which is set out of the box and can be trained without user-defined 
outcomes (10). In contrast, TransUNet integrates transformer-based 
encoders into the U-Net to capture long-range dependencies, 
resulting in better contextual reasoning (35). Similarly, the Attention 
U-Net uses attention to guide the network toward relevant regions of 
interest. Compared to these, our model achieves a good trade-off 
between architectural sophistication and performance using residual 
learning and deep supervision. The proposed solution is the Optimal 
Res-UNET with Deep supervision; it successfully tackles the 
abovementioned problems in medical image segmentation. These 
architectural improvements enhance the learning dynamics of the 

TABLE 4 Epoch-wise validation losses for different layers (L1, L2, L3) and total loss across training epochs, showing continuous improvement and 
validation accuracy incrementally through training epochs.

L1 L2 L3 Total loss

Epoch 0 72.81 72.71 85.23 0.9542

Epoch 5 74.22 76.79 83.33 0.7793

Epoch 10 84.49 80.92 89.63 0.5207

Epoch 15 87.2 80.88 90.63 0.4771

Epoch 18 86.58 83.46 89.31 0.4728

Epoch 22 88.7 84.11 91.81 0.4033

Epoch 26 89.98 85.97 91.22 0.3924

Epoch 28 90.79 87.35 95.06 0.3694

Epoch 29 91.69 89.5 96.88 0.3132
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model, sharpen boundary segmentation, and improve the accuracy 
of heterogeneous tumor subregion segmentation. Moving forward, 
we  hope to validate the generalizability of our model across 
institutions and Supplements to other organ-specific 
segmentation tasks.

7 Conclusion

In this work, we  have overcome the limitations of traditional 
UNet-based architectures for tumor segmentation through our 
optimal Res-UNET integrated with deep supervision. We enhance 
segmentation by utilizing residual connections for floating gradients 
within the decoder and introducing a series of auxiliary loss functions 
throughout the sequential decoder. This deep supervision approach 
alleviates the vanishing gradient issue, boosts the convergence rate, 
and better delineates tumor boundaries more clearly in heterogeneous 
and low-contrast areas. We conducted a thorough literature review, 
particularly focusing on recent developments after 2017, including 
nnU-Net, Attention U-Net, and TransUNet, which employ novel 
approaches such as dynamic configuration, attention mechanisms, and 
transformer-based feature extraction. Built on these architectures, our 
approach was compared to others and demonstrated that integrating 
residual learning with deep supervision and post-processing 
operations, such as connected component analysis and morphological 
refinement, significantly enhanced the model’s robustness and 
sensitivity to small tumor regions. Moreover, experimental results 
show that the proposed method achieves higher Dice accuracy and 
boundary precision than conventional UNet and its variants. More 
expressive feature learning via enriched input representation, 
increased convolutional channels, and structured post-processing to 
reduce false positives improved the overall F1 score. By integrating 
deep supervision, residual encoding, and tailored post-processing, this 
work illustrates the positive impact of these elements on brain tumor 
segmentation. It offers a more robust solution with achievable 
scalability. We anticipate that our future work, including designing 
more sophisticated politeness models, will validate its performance 
across multi-institutional and other multi-domain datasets and 
demonstrate the effectiveness of techniques like domain adaptation 
and advanced architectures such as hybrid CNN-transformer models. 
A greater collaboration between machine learning and computer 
vision researchers will also be essential to bridge the gap between these 
advancements and the establishment of clinically robust systems. Deep 
Learning principles were introduced utilizing UNET-based models 
and similar methodologies. This research concentrated on the key 
challenges neural network-based UNETs face in brain tumor 
segmentation and future strategies for overcoming those challenges. 
Subsequently, in the study section, we  provided a comprehensive 
review of existing literature, emphasizing works published post-2017. 
Another distinction of this article from other papers is its use of Deep 
Learning-based UNET to identify and classify brain tumors from a 
Computer Vision/Machine Learning perspective. From this 
standpoint, we highlight the root causes of the difficulties encountered 
in this approach and propose effective future directions based on 
insights from diverse scientific fields. We  have examined and 
advocated several solutions to analogous issues in related scientific 
domains. Finally, different U-Net variations have been tested, 
including the standard U-Net and Attention U-Net, along with various 

architectural modifications and training scheduling adjustments, such 
as deep supervision and Focal loss. Combining U-Net with deep 
supervision and an additional salient input channel encoded using 
one-hot decoding, an increased number of convoluted channels, and 
an appropriate post-processing technique is the most effective method 
to achieve even better results. We  conclude that brain tumor 
segmentation can significantly benefit from NN-based UNET through 
increased collaboration with Computer Vision and ML 
research groups.
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