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Abstract

Motivation: High throughput chromosome conformation capture (Hi-C) contact matrices are used to predict 3D
chromatin structures in eukaryotic cells. High-resolution Hi-C data are less available than low-resolution Hi-C data
due to sequencing costs but provide greater insight into the intricate details of 3D chromatin structures such as
enhancer–promoter interactions and sub-domains. To provide a cost-effective solution to high-resolution Hi-C data
collection, deep learning models are used to predict high-resolution Hi-C matrices from existing low-resolution
matrices across multiple cell types.

Results: Here, we present two Cascading Residual Networks called HiCARN-1 and HiCARN-2, a convolutional neural
network and a generative adversarial network, that use a novel framework of cascading connections throughout the
network for Hi-C contact matrix prediction from low-resolution data. Shown by image evaluation and Hi-C reproduci-
bility metrics, both HiCARN models, overall, outperform state-of-the-art Hi-C resolution enhancement algorithms in
predictive accuracy for both human and mouse 1/16, 1/32, 1/64 and 1/100 downsampled high-resolution Hi-C data.
Also, validation by extracting topologically associating domains, chromosome 3D structure and chromatin loop pre-
dictions from the enhanced data shows that HiCARN can proficiently reconstruct biologically significant regions.

Availability and implementation: HiCARN can be accessed and utilized as an open-sourced software at: https://
github.com/OluwadareLab/HiCARN and is also available as a containerized application that can be run on any
platform.

Contact: ooluwada@uccs.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromosome 3D conformation structures are important to consider
when exploring genomic processes within eukaryotic cell nuclei. Hi-
C is a biochemical technique that supports an all-versus-all mapping
of the interaction of the fragments in a chromosome and a genome.
This interaction between the pair read assays are further converted
to an n�n interaction frequency (IF) contact matrix, where n is the
number fragments in a chromosome or genome at a given Hi-C data
resolution (Lieberman-Aiden et al., 2009). Today, these data are
used as the input to many algorithms for advanced understanding of
the genome organization (Oluwadare et al., 2019).

However, a major problem in understanding the genome organiza-
tion is the lack of high-resolution (HR) data necessary for understanding
inherent topologies in the human genome such as enhancer–promoter
interactions or sub-domains (Zhang et al., 2018), which are only dis-
coverable at high resolutions such as �10 kb. Thus, the critical need
in the chromatin genomics field is the development of a cost-effective

method to increase the availability of HR Hi-C data for advanced
study and an in-depth elucidation of the genome organization.

Deep learning models are used to fill this demand by predicting
the HR data from low-resolution data (LR) with great accuracy.
Current models include HiCPlus (Zhang et al., 2018), HiCNN (Liu
and Wang, 2019a), hicGAN (Liu et al., 2019), Boost-HiC (Carron
et al., 2019), HiCSR (Dimmick et al., 2020), SRHiC (Li and Dai,
2020), HiCNN-2 (Liu and Wang, 2019b), VEHiCLE (Highsmith
and Cheng, 2021) and DeepHiC (Hong et al., 2020).

These models are categorized into three groups based on their
respective network architectures: convolutional neural networks
(CNNs), autoencoders and generative adversarial networks (GANs).

The first model used for Hi-C resolution enhancement was
HiCPlus (Zhang et al., 2018) which used a CNN to identify patterns
of IFs from neighboring reference regions to generate HR Hi-C data
from LR inputs. HiCNN improved the accuracy of Hi-C resolution
enhancement with a network composed of 54 convolution (Conv)
layers that consistently outperformed HiCPlus (Liu and Wang,
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2019a). This was shortly followed by HiCNN-2 where three models
were generated using a combination of one, two or three CNNs in
HiCNN2-1, HiCNN2-2 and HiCNN2-3, respectively (Liu and
Wang, 2019b).

HiCSR is another notable model that uses a denoising autoen-
coder consisting of five Conv layers preceding five deconvolutional
layers (Dimmick et al., 2020). HiCSR outperformed VEHiCLE, an-
other autoencoder-based model in overall GenomeDISCO, HiCRep
and QuASAR-Rep scores on four tested chromosomes (Highsmith
and Cheng, 2021).

Alternative network architectures besides CNNs have also been
utilized for Hi-C resolution enhancement. A GAN was used in the
hicGAN model where a generator and discriminator were imple-
mented to produce super-resolution Hi-C data and discriminate
against real HR data and the super resolution data (Liu et al., 2019).

Another high-performing model, DeepHiC, is also a GAN.
DeepHiC outperformed HiCPlus and HiCNN in SSIM score and
Pearson Correlation (Hong et al., 2020), while also outperforming
VEHiCLE and HiCSR overall in the previously cited structural simi-
larity scores (Highsmith and Cheng, 2021).

Currently, each of the Hi-C enhancement models have their vari-
ous strengths, but performance can still be improved. For example,
although HiCNN-2 and HiCSR achieve competitive performance,
they are burdened by their heavy frameworks. The varying combina-
tions of HiCNN-2’s CNNs and HiCSR’s 15 ResNet blocks and
DAE during training increase their predictive accuracies albeit at the
cost of training speed as is described in this article. This is also the
same problem that needs to be balanced for the GAN-based network
(Liu et al., 2021). As shown by DeepHiC where the model performs
well and is efficient during training, however the ratio between per-
formance and training time can continue to improve. In this work,
we provide a rationale for the need to develop a new and high-
performing framework, like HiCARN, by also using biological and
computational explanations (Supplementary Section S1). Hence, we
developed HiCARN based on the CARN model, proposed by (Ahn
et al., 2018), for LR Hi-C data. HiCARN is a lightweight algorithm
that achieves higher reproducibility and concordance scores in the
GenomeDISCO (Ursu et al., 2018) reproducibility metric and topo-
logically associating domain (TAD) predictions, respectively, com-
pared with existing enhancement approaches on publicly available
Hi-C datasets.

2 Materials and methods

2.1 Architecture
Here, we propose two architectures for HiCARN: a CNN-based
generator (HiCARN-1) and a GAN-based model with a CNN gener-
ator and a discriminator (HiCARN-2).

Our base model, HiCARN-1, is a configuration of five cascading
blocks that each contain three residual blocks and three 1�1 Conv
layers (Fig. 1A). Information from previous blocks is cascaded
through the entire network via third dimension concatenations of
each tensor. This process is perpetuated throughout each cascading
block and the entire network.

HiCARN-1 and HiCARN-2’s generators retain a similar archi-
tecture to CNNs, except each cascading block contains two residual
network (ResNet) blocks with a 1�1 Conv layer between both
ResNet blocks. Each ResNet block contains two 3�3 Convs and
two ReLU activation functions with local skip connections (Fig. 1B).
Intermediate outputs from each block cascade into the concaten-
ation function of the next block and parameters are shared between
cascading blocks.

HiCARN’s overall generator network shares the same connec-
tion properties as a single cascading block (Fig. 1C) which function
to maintain and reintroduce features from multiple layers. This not
only contributes to the performance of HiCARN, but the efficiency
as well since the multi-level connections act as forward and back-
ward propagation shortcuts (Ahn et al., 2018), thus allowing for
quick training and accurate predictions. Similarly to ResNet, the re-
sidual and cascading blocks of HiCARN use many skip connections

as well as ReLU activation functions to solve the vanishing gradient

problem.
The discriminator of HiCARN-2 (Fig. 1D) consists of a series of

seven Convs, leaky ReLU’s, and batch normalizations preceded by a

3�3 Conv and leaky ReLU, followed by a 3�3 Conv, sigmoid acti-

vation and average pooling. There are no global or cascading con-

nections between or within blocks.

2.2 Loss functions
The HiCARN-1 loss function (Equation 1), utilizes mean squared
error (MSE) (Equation 3), perceptual loss from the pretrained

VGG16 CNN(VGG) via MSE loss of its extracted features, and
total variation (TV) loss (Equation 5). HiCARN-2 adds an add-
itional adversarial (AD) loss (Equation 4), from the discriminator

to the generator loss function (Equation 2); and uses the binary
cross entropy (BCE) loss function (Equation 9) for the

discriminator.
Generator loss for HiCARN-1 and HiCARN-2 are, respectively,

defined by the following equations (Equations 1 and 2) where
a; b; and c are scalar weights ranging from 0 to 1:

LG ¼ lMSE þ a lVGGð Þ þ b lTVð Þ (1)

Fig. 1. Overview of the cascading block architecture. (A) Cascading block architec-

ture with local and skip connections. Features extracted from previous layers are

propagated through the end of the cascading block via concatenation. The features

are then condensed into a single channel as the output. Optimal hyper-parameters

for the batch size passed through the network were identified via a hyper parameter

search (Supplementary Table S1). (B) Each residual block follows standard ResNet

architecture; however, an additional skip connection from the input to the block

output is added before the convolution. (C) Cascading residual network architecture

with local and global cascading layers modified for application of Hi-C data. (D)

HiCARN-2 GAN architecture with a cascading block generator and discriminator.

LR images are passed through the generator where predicted HR images are created.

The predicted HR images then are passed through the discriminator along with the

real HR images where the discriminator attempts to classify them as real or fake
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LG ¼ lMSE þ a lVGGð Þ þ b lTVð Þ þ c lADð Þ: (2)

In LG, both lMSE and lVGG compute MSE loss. MSE measures the
cross entropy of the distributions of the generator HR output and
the real HR image by computing the average squared difference be-
tween the two images (Equation 3), where y is a real HR matrix and
ŷ is the predicted matrix.

MSE ŷ; yð Þ ¼ 1

N

XN

i¼1
ŷi � yið Þ2: (3)

AD loss of the HiCARN discriminator represents the probability
of discriminator classification error of the generated fake HR images
and real HR images (Equation 4).

lAD ¼ 1�
PN

i ŷi

N
: (4)

TV loss functions to remove noise within the generated HR
image. Total generator TV loss is defined by the following function
(Equation 5), where w is a weight scalar, F is the number of filters in
a tensor of dimensions [F, C, H, W], and hTV (Equation 6), and wTV

(Equation 7), are the TV losses of the H and W dimensions,
respectively:

lTV ¼
2w � hTV þwTVð Þ

F
: (5)

H and WTV loss are calculated by the sum of the squared differ-
ence of the generator output matrix y divided by the respective
dimensions of hTV and wTV. For hTV, ŷð2:iÞj is the generator output
with the first row removed and ŷ 1:i�1ð Þj is the same output with the
last row removed. A similar computation is repeated for wTV where
the first and last columns are removed.

hTV ¼
P
ðŷ 2:ið Þj � ŷ 1:i�1ð ÞjÞ

2

C � H � 1ð Þ �W
(6)

wTV ¼
P
ðŷi 2:jð Þ � ŷið1:j�1ÞÞ

2

C �H � ðW � 1Þ : (7)

The discriminator of HiCARN-2 utilizes the BCE loss function
(Equation 8), to penalize the discriminator for misclassifying fake
HR images from real HR images. Total discriminator loss is com-
puted as the sum of the BCE losses for the classification of fake HRs
images and real HR images (Equation 9).

Hp qð Þ ¼ � 1

N

XN

i¼1
yi�logðp yið Þ þ 1� yið Þ�logð1� p yið ÞÞ (8)

LD ¼ HpðqÞreal þHpðqÞfake: (9)

2.3 Hi-C data and preprocessing
Hi-C data was collected from the Restructured Gene Expression
Omnibus database. Data for the GM12878, K562, and CH12-LX
cell lines was collected from Rao et al. (2014), GEO accession code
GSE63525. Data for HCT-116 chromatin loop detections was col-
lected from Rao et al. (2017), GEO accession code GSE104334. The
training dataset was obtained from the human GM12878 cell line,
the most common training data across all Hi-C resolution enhance-
ment models. All chromosomes from each dataset were randomly
selected. From the GM12878 cell line, chromosomes 1, 3, 5, 7, 8, 9,
11, 13, 15, 17, 18, 19, 21 and 22 were used for training and chro-
mosomes 2, 6, 10 and 12 were used for validation. The datasets
used to test the HiCARN model were GM12878 chromosomes 4,
14, 16 and 20; and the human K562 cell line; and the CH12-LX
mouse embryonic stem cell (mESC) line. The mESC data functioned
to test the model’s accuracy across species. A table displaying all
training, validation and test sets is provided in Supplementary Table
S2. All datasets were preprocessed according to the method used by
DeepHiC (Hong et al., 2020).

The existing models tested in this work were trained on 40�40
sub-matrices as LR inputs. To ensure competitive fairness, HiCARN
was trained on 40�40 sub-matrices divided by a window of 40 and
stride of 40 with no overlap of sub-matrices.

2.4 Enhancement pipeline
For HiCARN-1, N 40�40 LR sub-matrices of batch size N are
passed through the network, outputting a predicted HR contact
map (Fig. 1C). HiCARN-2 follows the same process; however, the
predicted HR and real HR sub-matrices are passed through the dis-
criminator where they are determined to be real or predicted contact
maps (Fig. 1D). A full diagram of HiCARN pipelines and hyper
parameters is provided (Supplementary Table S3).

2.5 Existing model implementations
All models were trained on our generated datasets for 1/16, 1/32,
1/64 and 1/100 downsampled inputs. Python source code for
DeepHiC, from which we used their code for data preprocessing
and network architecture, was obtained from https://github.com/
omegahh/DeepHiC. Source code for HiCSR, HiCNN-2 and
HiCPlus were obtained from https://github.com/PSI-Lab/HiCSR,
http://dna.cs.miami.edu/HiCNN2/ and https://github.com/wang
juan001/hicplus, respectively. To compare against HiCNN, we
used HiCNN-2: an improved version of HiCNN (Liu and Wang,
2019b). Network parameters can be found in Supplementary
Table S4.

2.6 Evaluation and validation
The model was trained and validated on the GM12878 cell line
using a holdout cross validation method. Here, chromosomes 2, 6,
10 and 12 were used, according to Supplementary Table S2, and
were tested at the end of each training epoch to record the best
Structural Similarity Index Measure (SSIM) scores over time

During testing, Pearson Correlation Coefficient (PCC),
Spearman Correlation Coefficient (SPC), MSE, SSIM and Peak
Signal to Noise Ratio (PSNR) scores were calculated for each
40�40 sub-matrix predicted by HiCARN, DeepHiC, HiCSR,
HiCNN-2 and HiCPlus. Novel Hi-C analysis metrics such as
GenomeDISCO (Ursu et al., 2018) and HiCRep (Yang et al., 2017)
were used to calculate the reproducibility of the generated 40�40
sub-matrices. The models were tested across four randomly selected
chromosomes to compare the efficiency and accuracy of HiCARN
to state-of-the-art models. To ensure generalizability of HiCARN,
the human K562 and mESC cell lines were not seen by the model
until training was complete.

2.7 Image evaluation metrics
The following equations define PCC, SCC, SSIM and PSNR where y
denotes the real HR target and ŷ represents the enhanced LR input.
For MSE see Equation (3).

PCC calculates the correlation coefficient r of two matrices along
the matrix diagonal (Equation 10).

PCCr ŷ; yð Þ ¼
P

ŷi �ŷð Þ yi �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ŷi ŷð Þ2

P
yi ��yð Þ2

q : (10)

SCC is also calculated along the matrix diagonal and computes
the strength and direction of the monotonic relationship be-
tween the two matrices q, whereas PCC is the linear relationship
strength (Equation 11). Here, d represents the difference be-
tween two observation rankings and n is the number of
observations.

SCCq ŷ; yð Þ ¼ 1� 6
P

d2
i

n n2 � 1ð Þ : (11)

SSIM computes the similarity of two given images. We used
DeepHiC’s implementation of SSIM scoring (Hong et al., 2020).
The function (Equation 12), compares structure, contrast and
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luminance across the two images via a moving convolution window,
extracting the values ly and lŷ : The values ry and rŷ are computed
by moving a convolution window across y2 and ŷ2 and subtracting
their respective l values. The constants C1 and C2 were set to 0.012

and 0.032, respectively.

SSIM ŷ; yð Þ ¼
ð2lŷ ly

þC1Þð2rŷ y
þ C2Þ

ðl2
ŷ þ l2

y þ C1Þðr2
ŷ þ r2

y þ C2Þ
: (12)

PSNR measures the ratio of the maximum signal power to the
power of corrupting noise in the image (Equation 13).

PSNR ŷ; yð Þ ¼ 10�log10

N

MSE ŷ ;yð Þ

 !
: (13)

2.8 Hi-C reproducibility metrics
GenomeDISCO and HiCRep provide a more biologically significant
analysis measure compared to standard image evaluation metrics.
GenomeDISCO uses a random walk of t steps to denoise Hi-C con-
tact matrices from which a difference vector is computed. The con-
cordance score is calculated by subtracting the difference vector
from 1 in the range [-1, 1], where larger values indicate increased
similarity. We used the optimal step value t¼3 as cited (Ursu et al.,
2018).

Similarly, HiCRep denoises the contact matrices prior to
analysis. A Pearson correlation coefficient is calculated for each
stratum. Coefficients are then combined via a weighted average
producing a stratum adjusted correlation coefficient. Scores are
in the range [-1, 1]. We used the R implementation of this
method.

3 Results

HiCARN-1 and HiCARN-2 were trained on 40�40 sub-matrices in
100 epochs using the Adam optimizer with a batch size of 64 and an
initial learning rate of 1.0�10�3 based on a hyper parameter search
(Supplementary Table S1) and hyper parameters from Ahn et al.
(2018). A variable learning rate was used and is defined by the fol-
lowing (Equation 14) where lrn and En are the current learning rate
and epoch, respectively:

lrn ¼ lrn¼1� 0:1En=30ð Þ: (14)

The variable learning rate allows for increased learning in early
epochs after-which it stabilizes. Due to the lightweight framework
of HiCARN, it learns and converges quicker than all other models
in SSIM scores during validation for 1/16 downsampled data
(Fig. 2A). Validation SSIM scores for 1/32, 1/64 and 1/100 down-
sampled data are provided in Supplementary Figure S1.

All models were individually trained using an Nvidia Titan RTX
GPU with 24219.0 Mb of memory. HiCARN’s lightweight network
and quick convergence in validation is also reflected in its training
time compared to other models. As shown in Figure 2B and C and
Supplementary Figure S2, HiCARN maintains superior performance
with efficient memory and time management.

3.1 HiCARN frequently outperforms existing models in

image-based and Hi-C biological-based metrics
A visual comparison of predicted contact maps is provided for
chromosome 4 from the GM12878 cell line (Fig. 3). The most easily
identifiable structures are TADs which appear as the high-contrast
square regions along the contact map diagonal seen within the out-
lined square in the second row of Figure 3. When zooming in on the
40.8–41.5 Mb region, it is observed that both HiCARN models are
able to detect and replicate not only TADs, but subTADs as well,
identified by the high contrast corners of the TADs that appear as
‘dots’. Within the GM12878 cell line, each of the models recon-
structs a contact map fairly comparable to the HR target, however
the robustness of each model is evident in the K562 and mESC cell

lines. HiCARN-1 and HiCARN-2 produce nearly identical contact
maps to each other that, overall, outperform all existing models
which is confirmed by the image evaluation (Table 1) and Hi-C re-
producibility metrics (Fig. 4A and B). (See Supplementary Figure S3
for PCC and SCC scores.)

Overall, HiCARN-1 produces the top results for PSNR, SSIM,
MSE, PCC and GenomeDISCO. HiCARN-2 scores are quite close
with very minimal difference. HiCSR achieved top scores in SCC
and HiCRep.

Downsampling ratios of 1/32, 1/64 and 1/100 were also
tested. Average GenomeDISCO values for GM12878 are pre-
sented for each ratio (Fig. 4C) where both HiCARN-1 and
HiCSR achieved top scores and HiCARN-2 following through-
out. HiCARN-1 and HiCARN-2, overall, persisted in maintain-
ing state-of-the-art performance compared to all other models,
although HiCSR maintained high competitiveness throughout
(Supplementary Fig. S4).

3.2 HiCARN performance across unseen cell lines
HiCARN and existing models were tested on chromosomes 3, 11, 19
and 21 from the K562 human cell line and chromosomes 4, 9, 15 and
18 from the mESC cell line. GenomeDISCO scores are provided for
K562 at 1/64 downsampling (Fig. 5A) and mESC at 1/32 downsam-
pling (Fig. 5B) predictions. Overall, HiCARN-1 outperforms all other
models for the K562 cell line and maintains competitiveness for the

Fig. 2. (A) Validation SSIM scores for 100 epochs of training. Results are shown for

all tested models for 1/16 downsampled Hi-C data. HiCARN-1 and HiCARN-2 dis-

play the quickest convergence of SSIM validation scores. (B) SSIM test scores per

model training time. (C) SSIM test scores per model memory usage during training

(% gpu)
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mESC cell line with HiCARN-2 following close behind. DeepHiC and
HiCNN-2 also produced comparable results in reproducibility scores
and image reconstruction HiCPlus scores for the 1/32 downsampled
mESC cell line all converge to -1, therefore they are not represented in
Figure 5B.

3.3 Differences among varied cascading blocks

quantities
We also trained HiCARN with varying numbers of cascading blocks.
Using five cascading blocks proved sufficient for outperforming state-
of-the-art models, however when more blocks are added, almost all
evaluation metric scores slightly increase, especially when predicting
across unseen cell lines and species (Fig. 5C and D). We tested the per-
formance of 5, 7 and 10 cascading block networks. HiCARN with 10
cascading blocks outperformed all other architectures at the cost of
training and predicting speed. Results for the GM12878 cell line are
presented in Supplementary Figure S5. A network of five cascading
blocks was chosen to balance the added accuracy of higher block
counts and reduced computational cost of lower block counts.

3.4 TAD predictions
TADs are regions on a chromosome generated by chromatin loop
extrusions and are contained by boundaries formed from architec-
tural proteins (Beagan and Phillips-Cremins, 2020; Dixon et al.,
2016). These structures are helpful for identifying biologically sig-
nificant regions such as subTADs, microTADs and enhancer–pro-
moter interactions. HiCARN’s TAD reconstructions were analyzed
using the TopDom TAD detection method (Shin et al., 2016).

HiCARN is also able to closely retain the number (Fig. 6A) and
size (Fig. 6B) of HR TADs. Average concordance scores for this

Fig. 4. (A) GenomeDISCO scores from chromosomes 4, 14, 16 and 20 from the

GM12878 cell line for 1/16 downsampled data. HiCARN-1 achieves an average

score (mean 6 SD) of 0.9173 6 0.0092 and HiCARN-2 achieves 0.9144 6

0.0093. (B) HiCRep scores from the GM12878 cell line. HiCRep scores were cal-

culated for the entire matrix. HiCARN-1 achieves an average score (mean 6 SD)

of 0.7338 6 0.0997 and HiCARN-2 achieves 0.7299 6 0.0978 across the chromo-

somes. (C) Average (mean 6 SE) GenomeDISCO scores from chromosomes 4, 14,

16 and 20 from the GM12878 cell line across downsampling ratios 1/16, 1/32, 1/

64 and 1/100

Table 1. Image evaluation metrics as averages across GM12878

test chromosomes

Model PSNR MSE SSIM

HiCSR 30.7317 0.0009 0.9005

DeepHiC 34.3431 0.0004** 0.8975

HiCNN-2 33.5231 0.0005 0.8988

HiCPlus 30.8278 0.0008 0.8752

HiCARN-1 35.0714* 0.0003* 0.9119*

HiCARN-2 34.9109** 0.0003* 0.9069**

Note: All scores were calculated from predicted 40�40 sub-matrices during

testing. Top and second-best scores are represented by * and **, respectively.

Fig. 3. Heat map diagram of GM12878 chromosome 4 predictions from HiCARN and existing models. Three regions are displayed: 40–45 Mb (top), 40–41.5 Mb (middle)

and 40.8–41.5 Mb (bottom). The outlined box in the target heat map indicates the 40–41.5 Mb region and the outlined box in the second row indicates 40.8–41.5 Mb. The

bottom heatmap is the zoomed image of the blue box region
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region are reported in Table 2. Visualization of the real and pre-
dicted TADs within the 40–42.5 Mb region of chromosome 4 dis-
plays high overlap between the two (Fig. 7).

3.5 Chromosome 3D structure reconstruction
We also reconstructed 3D chromatin models using the GenomeFlow
structure prediction tool. Models were generated for the 1/16 down-
sampled matrix, the real HR target, HiCARN-1 and HiCARN-2’s

Fig. 6. Comparisons of the number (A) and size (B) of predicted chromosomes

compared to the real HR data

Table 2. Average TAD concordance score for chromosome 4 (40–

42.5 Mb) of the GM12878 cell line

Model Average concordance score

HiCSR 0.7761

DeepHiC 0.7834

HiCNN-2 0.7322

HiCPlus 0.7112

HiCARN-1 0.8697*

HiCARN-2 0.84**

Fig. 7. Overlap comparison of Real HR TAD locations, HiCARN-1 and HiCARN-

2’s predictions from GM12878 chromosome 4 (40–42.5 Mb). HiCExplorer was

used for this visualization

Fig. 5. (A) GenomeDISCO scores for 1/64 downsampled K562 Hi-C data for chro-

mosomes 3, 11, 19 and 21. HiCARN-1 achieves an average score (mean 6 SD) of

0.8301 6 0.0070 and HiCARN-2 achieves 0.8210 6 0.0072. (B) GenomeDISCO

scores for 1/32 downsampled mESC Hi-C data for chromosomes 4, 9, 15 and 18.

HiCARN-1 achieves an average score (mean 6 SD) of 0.5971 6 0.0569 and

HiCARN-2 achieves 0.5802 6 0.0582. HiCPlus scores are not included for the 1/32

mESC results as they converge to �1, and thus interfere with the scaling of the

graph. (C) GenomeDISCO scores from 1/64 downsampled chromosomes 3, 11, 19

and 21 from the K562 cell line across 5, 7 and 10 cascading blocks. (D)

GenomeDISCO scores from 1/32 downsampled chromosomes 4, 9, 15 and 18 from

the mESC cell line across 5, 7 and 10 cascading blocks
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predictions for every 5Mb of chromosome 4 (40–190 Mb) from the
GM12878 cell line (Fig. 8). PCC and SCC values of HiCARN-1’s pre-
diction to the HR target were calculated for each 5-Mb region
(Supplementary Fig. S6). HiCARN can produce 3D conformations
similar to those of the target contact maps.

3.6 Chromatin loop detections
Chromatin loops are key regulators in genome transcription (De
Laat and Duboule, 2013), thus it is important for enhancement
models to accurately detect and predict chromatin loops. At the
anchors of these loops are two proteins CTCF and cohesion which
have been shown to aid in the formation of loops (Merkenschlager
and Nora, 2016).

3.6.1 GM12878 loop detections

Chromatin loops and CTCF anchors were detected for chromo-
somes 4, 14, 16 and 20 from the GM12878 cell line using the
HiCExplorer software (Wolff et al., 2020). We observed that
HiCARN models do not overestimate the number of loops detected,
thus, maintaining consistency with the number of detected loops in
the HR dataset. Supplementary Tables S5–S8 show that HiCARN
achieved top performance across three of the four chromosomes
tested and second-best performance in the fourth chromosome.
Specifically, HiCARN detects >2% of CTCF anchor matches com-
pared to the next performing model on chromosomes 14 and 16, and
>1% for chromosome 20. For chromosome 4, HiCARN found 40%
CTCF peaks for detected loops, second to HiCSR which found 43%
CTCF anchor match. Overall, it was found that HiCARN maintained
consistency with the high-resolution data for the number of loops and
the percent CTCF matches compared to all other models.

3.6.2 HCT-116 loop detections

To see if our models were able to capture structural genomic differ-
ences, HICARN was also trained and tested on cohesion-depleted
and untreated HCT-116 cells where cohesion-depleted cells were
shown to eliminate loop domains (Rao et al., 2017). After detecting
chromatin loops and CTCF anchor matches, we found that
HiCARN maintained consistency in the number of loops predicted
with CTCF anchors for both cell groups compared to the HR data
(Supplementary Tables S9–S12).

4 Conclusion

In this work, we present a novel framework for HR Hi-C contact
map predictions. Variations in the number of cascading blocks and
the overall framework (CNN versus GAN) do not significantly hin-
der or improve the performance of HiCARN. However, if the user
requires a quick training process, HiCARN-1 with five cascading
blocks should be used to reduce computational load during training
and predicting.

We also demonstrated HiCARN’s superior performance over
most existing models in both image and Hi-C evaluation metrics

for 1/16, 1/32, 1/64, 1/100 downsampled HR contact maps. The
1/100 downsample results particularly displayed the robustnesses

of HiCARN-1, HiCARN-2 and HiCSR for predicting high fidelity
images from very low-resolution data. The existing models per-

formed well throughout; however, our network outperformed
these models across all tested cell lines. To further confirm the
performance consistency of our algorithm, we deliberately

selected different chromosomes than our original training, valid-
ation and test sets—the chromosome selection for this second test
are provided in Supplementary Table S2—and retrained all mod-

els. Our results show that HiCARN maintained superior perform-
ance, thus showing HiCARN’s robustness across datasets

(Supplementary Fig. S7).
TAD, 3D genome structure, and chromatin loop predictions also

confirm that HiCARN can proficiently reconstruct biologically sig-
nificant regions. Overall, HiCARN contributes further to the devel-
opment of high-fidelity predictions of HR Hi-C contact maps from

state-of-the-art resolution enhancement models.
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