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Abstract

Multiple functions of platelets in various physiological and pathological conditions have prompted considerable
attention on understanding how platelets are generated and activated. Of the adaptor proteins that are expressed in
megakaryocytes and platelets, Disabled-2 (Dab2) has been demonstrated in the past decades as a key regulator of
platelet signaling. Dab2 has two alternative splicing isoforms p82 and p59. However, the mode of Dab2’s action
remains to be clearly defined. In this review, we highlight the current understanding of Dab2 expression and function
in megakaryocytic differentiation, platelet activation and integrin signaling. Accordingly, Dab2 is upregulated when the
human K562 cells, human CD34+ hematopoietic stem cells, and murine embryonic stem cells were undergone
megakaryocytic differentiation. Appropriate level of Dab2 expression is essential for fate determination of mesodermal
and megakaryocytic differentiation. Dab2 is also shown to regulate cell-cell and cell-fibrinogen adhesion, integrin
αIIbβ3 activation, fibrinogen uptake, and intracellular signaling of the megakaryocytic cells. In human platelets, p82 is
the sole Dab2 isoform present in the cytoplasm and α-granules. Dab2 is released from the α-granules and forms two
pools of Dab2 on the outer surface of the platelet plasma membrane, one at the sulfatide-bound and the other at
integrin αIIbβ3-bound forms. The balance between these two pools of Dab2 controls the extent of clotting reaction,
platelet-fibrinogen interactions and outside-in signaling. In murine platelets, p59 is the only Dab2 isoform and is
required for platelet aggregation, fibrinogen uptake, RhoA-ROCK activation, adenosine diphosphate release and
integrin αIIbβ3 activation stimulated by low concentration of thrombin. As a result, the bleeding time is prolonged and
thrombus formation is impaired for the megakaryocyte lineage-restricted Dab2 deficient mouse. Although
discrepancies of Dab2 function and isoform expression are noted between human and murine platelets, the studies
up-to-date define Dab2 playing a pivotal role in integrin signaling and platelet activation. With the new tools such as
CRISPR and TALEN in the generation of genetically modified animals, the progress in gaining new insights into the
functions of Dab2 in megakaryocyte and platelet biology is expected to accelerate.
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Background
Platelets are the second most abundant blood cells and are
derived from the cytoplasm of megakaryocytes [1]. The
crucial role of platelet in haemostasis and thrombosis has
prompted extensive attentions on unveiling the underlying
mechanisms of platelet activation induced by soluble ago-
nists [2–4]. Platelet activation is mainly mediated by bind-
ing of ligands to the membrane receptors such as the
immunoglobulin family of glycoproteins for collagen and
the G-protein coupled receptors for thrombin, thromb-
oxane A2 (TXA2) and adenosine diphosphate (ADP) [5].
Collagen interacts with glycoprotein VI which contains an
immunoreceptor tyrosine-based activation motif (ITAM).
The ITAM is phosphoryated by two Src kinases (Lyn and
Fyn) and recruits the protein tyrosine kinase Syk to the
plasma membrane for phosphorylation of downstream
substrates at the tyrosine residue that are essential for
platelet activation [5]. Other soluble agonists such as
thrombin, TXA2 and ADP bind to the respective G
protein-coupled receptors and cause an increase in intra-
cellular calcium and protein kinase C (PKC) activity, Rho
activation, inhibition of adenylyl cyclase and activation of
phosphoinositide 3-kinase-Akt through the Gαq-, Gα12/13-,
Gαi-, and Gβγ-dependent pathway, respectively [5, 6]. The
inside-out signaling induced by different platelet agonists
activates integrin αIIbβ3 followed by the binding of fibrino-
gen to integrin αIIbβ3 and activation of outside-in signal-
ing. These intracellular events ultimately lead to platelet
activation, secretion and aggregation [7]. Despite extensive
studies, the underlying mechanisms of platelet signaling
networks still wait to be fully elucidated.
Adaptor protein is a type of proteins mediating protein-

protein and protein-lipid interactions. It has been clearly
demonstrated that adaptor proteins are essential for coup-
ling membrane receptors to intracellular signaling path-
ways and the assembly of signaling scaffolds within the
cells. Many adaptor proteins expressed in the platelets are
involved in inside-out and outside-in signaling of integrin
during platelet activation [8]. Disabled-2 (Dab2) is a newly
identified adaptor protein that is known to express in
megakaryocytes and platelets from a variety of species
[9, 10]. The current knowledge about the roles of Dab2 in
megakaryocytic differentiation and platelet signaling is still
in the beginning. This review will focus on the expression
and functional aspects of Dab2 in megakaryocytic differ-
entiation, platelet activation and integrin signaling.
Review
Discovery and the protein properties of Dab2
Human dab2 gene is located at the chromosome 5p13
and was first identified by Mok et al. as the tumor sup-
pressor gene of the ovary cancer in 1994 [11]. The mouse
Dab2 protein was then revealed in 1995 during the ana-
lysis of phosphoproteins induced by colony-stimulating
factor-1 (CSF-1) in macrophage [12]. In 1998, Tseng et al.
further defined rat dab2 as the differentially expressed
gene that was up-regulated in the castrated rat prostate
[13]. At least two Dab2 isoforms with the molecular
weight of 82 and 59 kDa, referred to p82-Dab2 and
p59-Dab2, respectively, are generated through alternative
splicing (Fig. 1) [14]. Because of the undefined post-
translational protein modification, the protein bands of
p82-Dab2 and p59-Dab2 are up-shifted to the positions at
96 and 67 kDa on sodium dodecyl sulfate-polyacrylamide
gel electrophoresis. Hence, p82-Dab2 and p59-Dab2
sometimes are referred to p96-Dab2 and p67-Dab2,
respectively. The ninth coding exon corresponding to the
amino acids 230–447 of p82-Dab2 is not present in the
protein of p59-Dab2. As a result, several binding sites for
endocytic proteins are absent in p59-Dab2. Particular mo-
tifs mediating protein-protein and protein-lipid interac-
tions are present in Dab2, allowing them to communicate
with other signaling molecules. The phosphotyrosine
binding (PTB) domain is located at the N-terminus of
Dab2, playing a role in the interaction of Dab2 with
DIP1/2, Smad2/3, Dishevelled-3, phosphatidylinositol
4,5-bisphosphate (PI(4,5)P2), and a subset of receptors
such as integrin, low density lipoprotein receptor, megalin
and related receptors that contain the non-tyrosine-
phosphorylated NPXY motif [14–21]. The aspartic acid-
proline-phenylalanine (DPF) motif of Dab2 interacts with
the α-adaptin subunit of the clathrin adaptor protein 2
(AP-2) [21]. The C-terminal proline-rich domain (PRD)
interacts with Grb2, c-Src, Akt and c-Cbl-interacting pro-
tein of 85 kDa [22–26]. By interacting with other cellular
factors through these motifs, Dab2 elicits its functions in
endocytosis, differentiation, and immune response and is
involved in the cell signaling pathways of Ras-mitogen
activated protein kinase (MAPK), Wnt, TGF-β, c-Src
and RhoA-ROCK [24, 27–36]. Dab2 is also known to
regulate cytoskeleton reorganization by binding to non-
muscle myosin heavy chain IIA, myosin VI, actin, and
dynein [12, 37–39].



Fig. 1 Schematic illustration for the primary protein structure of Dab2. The primary structures for both Dab2 isoforms p82 (p96) and p59 (p67) are
shown. The p59 (p67) isoform of Dab2 lacks the ninth coding exon corresponding to the amino acid residues of 230–447 and results in the deletion
of several binding sites for endocytic proteins. The N-terminus of Dab2 contains an actin-binding motif (25KKEK28), two sulfatide binding sites (amino
acid residues 24–32 and 49–54), an RGD motif (64RGD66), one thrombin cleavage site (64R) and the PTB domain (amino acid residues 45–196). Dab2-PTB is
the binding sites for PI(4,5)P2 and the tails of a subset of non-tyrosine-phosphorylated NPXY-containing receptors. The clathrin type I (236LVDLN240) and
type II (363PWPFS367) box sequences, and the two DPF motifs (293DPFRDDPF300) are located at the middle region of Dab2 protein. The DPF motifs bind
to the α-adaptin subunit of the clathrin adaptor protein AP-2. The five asparagine-proline-phenylalanine (NPF) motifs spanning the middle and C-
terminus of Dab2 possibly bind proteins containing Eps homology domain. The C-terminus of Dab2 contains the myosin VI binding domain and the
PRD for the binding of proteins containing SH3 domain
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Dab2 is a phosphoprotein with several phosphoryation
sites having been identified. Dab2 is phosphorylated at
serine residues in murine macrophage cell line in re-
sponse to mitogenic stimulation by CSF-1 [12]. Dab2-
Ser24 is phosphorylated by PKCβII, γ and δ but not by
casein kinase II, playing a critical role in the inhibition
of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced
AP-1 activity and integrin activation [33, 40]. Dab2 is
hyperphosphorylated by the cyclin-dependent serine/
threonine kinase Cdc2 during the mitosis phase of the
cell cycle in HeLa S3 cells [41]. The phosphorylated
Dab2 interacts with the peptidylprolyl isomerase Pin1
that facilitates Dab2 dephosphorylation immediately
after the end of mitosis phase [42]. Similarly, Akt inter-
acts with PRD domain of Dab2 and phosphorylates
Ser448/Ser449 to regulate albumin endocytosis and me-
diate albumin uptake in proximal tubule [25, 43]. These
distinct protein properties facilitate the involvement of
Dab2 in diverse signaling network in response to extra-
cellular responses.

Expression pattern of Dab2 in megakaryocytes and
platelets
The first study addressing Dab2 expression and function
in megakaryocytes and platelets was published in 2001
[31]. Dab2 is upregulated when the human leukemic K562
cells, human CD34+ hematopoietic pluripotent stem cells,
and murine embryonic stem cells (ESCs) are undergone
megakaryocytic differentiation (Table 1) [31–33, 35].
Among the platelets from the species of murine, rat, and
human, murine platelets have the least amount of Dab2
[9]. This is in accord with the genome-wide RNA-seq ana-
lysis of platelet transcriptomes that revealed several
thousands-fold differences for the expression of Dab2
transcripts between human and mouse platelets [44].
Moreover, Dab2 isoforms are differentially expressed in
human, rat and murine platelets. Both p82-Dab2 and p59-
Dab2 are detectable in the rat platelets, while p82-Dab2
and p59-Dab2 is mainly expressed in the platelets from
human and murine, respectively [9].
The evolutionary roles for an increase in Dab2 expres-

sion from mouse to rat and human platelets and the
species-specific expression of Dab2 isoforms are not yet
understood. Distinctive functions of p82-Dab2 and p59-
Dab2 have been unveiled in several studies. p82-Dab2 is
known to regulate receptor-mediated endocytosis, while
p59-Dab2 is a transcriptional regulator when the F9 cells
are undergone differentiation [18, 20, 45, 46]. Knock-in
expression of p59-Dab2 only partially compromises the
absence of Dab2 in the Dab2-knockout mice [14]. The in-
creased expression of p82-Dab2 protein in human plate-
lets may fine tune platelet response to soluble agonists
and provide a superior way to prevent excessive blood loss
in the large mammals. Future study using an in vivo ani-
mal model expressing human platelet p82-Dab2 should
provide new insight for the aforementioned hypothesis.



Table 1 Dab2 expression and function in megakaryocytes and
platelets

Experimental systems Reported Dab2 expression/function References

Human K562 cells Increased Dab2 expression
during TPA-induced
megakaryocytic differentiation

[19, 31–34]

Positive regulation of fibrinogen
uptake

Dab2 interacts with integrin β3
and inhibits integrin αIIbβ3
activation

Human CD34+

stem cells
Increased Dab2 expression during
TPO-induced megakaryocytic
differentiation

[10]

Mouse embryonic
stem cells/OP9
co-culture

Increased Dab2 expression during
mesodermal and megakaryocytic
differentiation

[35]

Dab2 is required for mesodermal
differentiation

Human platelets High expression of p82-Dab2 in
the cytoplasm and α-granule

[10, 33,
47–49]

Dab2 interacts with the cytoplamic
tail of platelet integrin

Secreted Dab2 interacts with
integrin αIIb and sulfatide; is
a substrate of thrombin

Dab2 regulates fibrinogen binding
and homotypic and heterotypic
platelet interactions

Mouse platelets Low expression of p59-Dab2 [9]

Dab2-deficient mice display a
prolonged bleeding time and
impaired thrombus formation

Dab2 is required for platelet
aggregation, fibrinogen
uptake, RhoA-ROCK activation,
ADP release and integrin αIIbβ3
activation stimulated by low
concentration of thrombin
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Dab2 functions in megakaryocytic differentiation and
platelet signaling
Dab2 has been shown to elicit multiple functions in mega-
karyocytic differentiation and platelet signaling (Table 1
and Fig. 2). The human K562 leukemic cells induced by
TPA to form megakaryocyte-like cells have been used to
define the role of Dab2 in integrin activation, cell adhe-
sion, fibrinogen uptake, and megakaryocytic differenti-
ation [31–34]. Dab2 is crucial in cell-cell adhesion of
K562 cells and negatively regulates integrin αIIbβ3 activa-
tion and cell adhesion to fibrinogen. A mutual regulation
between Dab2 and MAPK was also unveiled when the
K562 cells are undergone megakaryocytic differentiation
[31, 32]. Dab2 colocalizes with clathrin and mediates
fibrinogen uptake in the primary megakaryocytes and
megakaryocytic differentiating K562 cells [34]. Dab2-
associated regulatory circuit controls mesoderm and
megakaryocytic differentiation by regulating β-catenin and
plakoglobin cellular distribution through the interaction
between the PTB domain of Dab2 and the Asn-Pro-
Asp-Tyr motif of plakoglobin [35]. Accordingly, down-
regulation of Dab2 in murine ESCs disrupts cell-cell
adhesion and affects embryoid body and colony formation
leading to impaired mesodermal and megakaryocytic
differentiation. Multiple roles of Dab2 in intracellular
signaling, integrin activation and fibrinogen uptake of the
megakaryocytic cells, and the fate determination of
mesodermal and megakaryocytic differentiation were de-
fined by these studies.
Dab2 is present in the cytoplasm and α-granules of

human platelets and is released from the platelets in
response to platelet activation [10]. Dab2 is shown in a
number of studies playing a pivotal role in the activation
of human platelets. Dab2 interacts with the cytoplasmic
tail of the platelet integrin and regulates inside-out
signaling [33]. On the other hand, Dab2 released from
the α-granules is able to bind the extracellular region of
αIIbβ3 integrin through the Dab2 cell-adhesion Arg-
Gly-Asp (RGD) motif (amino acid residues 64–66) and
the fibrinogen binding region of integrin αIIb. Such in-
teractions compete for the integrin αIIb-fibrinogen
interactions and inhibit platelet aggregation induced by
soluble agonists except thrombin. Thrombin renders
Dab2 inactive by cleavage of Dab2 at the amino acid
residue 64 [10]. Notably, the action of thrombin on
Dab2 cleavage is suppressed when Dab2 binds to the
phospholipid sulfatide through four positively charged
residues (Lys25, Lys49, Lys51, and Lys53) located at the
PTB domain [47]. Hence, two pools of Dab2 is present
at the outer surface of the platelet plasma membrane,
one at the sulfatide-bound and the other at the integrin
αIIbβ3-bound states. The balance between these two
Dab2 states is involved in the regulation of clotting reac-
tion, platelet aggregation and the interactions of platelet
and fibrinogen in response to stimulation by platelet
agonists [10, 47–49].
Megakaryocyte/platelet lineage-restricted Dab2 knock-

out (Dab2-/-) mice have been generated by using the
Cre-loxP transgenic system driven by the platelet factor
4 promoter to elucidate Dab2 functions in vivo [9].
Dab2-/- platelets, when stimulated by low concentrations
of thrombin, are defective in platelet aggregation, clot
retraction, and spreading on fibrinogen. The functional
imperfection of Dab2-/- platelets is related to the defect-
ive responses to thrombin-induced RhoA-ROCKII and
Akt-mTOR activation, ADP release and integrin αIIbβ3
activation [9]. Although Dab2 elicits a restrictive func-
tion to the murine platelets stimulated by low concen-
trations of thrombin, defective Dab2 expression has
profound effects on hemostasis and thrombosis in vivo.



Fig. 2 Schematic representation of Dab2 functions in megakaryocytic differentiation and platelet activation. a Dab2 is upregulated during
megakaryocytic differentiation of K562 cells, mESC and CD34+ hematopoietic stem cells and is involved in fibrinogen uptake during megakaryocytic
differentiation. b Dab2 is present in the cytoplasm and α-granules of platelets. By interacting with the intracellular and extracellular portions of αIIbβ3
integrin, Dab2 regulates platelet aggregation and fibrinogen binding induced by various platelet agonists with the exception of thrombin which is the
protease of Dab2. The cleavage of Dab2 by thrombin is protected when Dab2 is associated with sulfatide. c Dab2 regulates the inside-out signaling of
mouse platelets stimulated by low concentrations of thrombin
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This is evidenced by the observations that bleeding time
is prolonged and thrombus formation is impaired in the
Dab2-/- mice. These findings are consistent with the per-
ception that protease-activated receptors (PAR) 3- and
PAR4-deficient mice, despite eliciting a partial decrease
in thrombin-induced platelet aggregation, are impaired
in hemostasis and are protected against thrombosis
[50, 51]. These studies support the notion that Dab2
is a key regulator in hemostasis and thrombosis.

The consensuses, controversies and future prospects
The study linking Dab2 functions with megakaryocytic
differentiation, platelet signaling and integrin activation
was first reported 15 years ago [31]. The studies up-to-
date support extensively that Dab2 is a regulator of
megakaryocytic differentiation and platelet function.
Nevertheless, distinctive functions of Dab2 in human
and mouse megakaryocytes and platelets are noted.
Knockdown of Dab2 results in an increase in αIIbβ3 ac-
tivation and cell adhesion to fibrinogen in the K562 cells
[33]. Dab2 is, however, required for murine platelet ag-
gregation and integrin αIIbβ3 activation when the plate-
lets are stimulated by low concentrations of thrombin
[9]. Dab2 negatively regulates human platelet-fibrinogen
interaction and platelet aggregation induced by soluble
agonists except thrombin [10, 47–49]. The complexity in
the abundance and species-specific expression of Dab2
isoforms and the diverse thrombin signaling in human
and murine platelets [6, 9] likely contribute to the
reported heterogeneity of Dab2 function. Alternatively,
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the discrepancy in these findings could be due to the
different assay systems being used in these studies. In
the studies of human platelets, recombinant Dab2 pro-
tein was the main tool for analyzing the effects of Dab2
function on platelet response by in vitro experiments
[10, 47–49]. There are no Dab2 mutants or Dab2-
deficient human platelets available for in vivo study. On
the other hand, Dab2-deficient murine platelets have
been generated for analysis of Dab2 function in vivo [9].
An animal model expressing human platelet Dab2
should help us to understand the distinctive Dab2 func-
tions in human and murine platelets.
Dab2 is known as a phosphoprotein in a variety of

cellular processes [12, 25, 33, 40–43]. Due to the lack of
appropriate tools, the physiological functions of Dab2
phosphorylation in platelet signaling have not yet been
elucidated. We have addressed these issues in our recent
work and revealed that Dab2 is phosphorylated during
agonist-stimulated human platelet activation (unpub-
lished data). With the new tools such as CRISPR and
TALEN [52–55] in the generation of genetically modi-
fied animals, the progress in gaining new insights into
the signaling network involving Dab2 expression and
phosphorylation in megakaryocyte, platelet biology and
integrin signaling is expected to accelerate.
Conclusions
Multiple functions of platelets in hemostasis, thrombosis,
immunology, cancer progression, microorganism infec-
tions call for considerable attention on understanding
how the activated platelets transmit intracellular signal to
elicit their roles in different biological responses. Extensive
evidence from the studies in the past decades demon-
strates that Dab2 is a key regulator of platelet signaling, in
particular, the endocytosis and the activation of thrombin-
stimulated inside-out signaling of platelet integrin. With
the complicated nature of the signaling network within
megakaryocytes and platelets, the definitive roles of Dab2
in megakaryocytic differentiation, platelet activation and
integrin signaling remain to be explored further.

Declaration
Publication fees for this article have been funded by APSTH 2016.
This article has been published as part of Thrombosis Journal Volume 14
Supplement 1, 2016. The full contents of the supplement are available at
https://thrombosisjournal.biomedcentral.com/articles/supplements/volume-
14-supplement-1

Funding
The work performed in the authors’ laboratory was supported in part by the
Ministry of Science and Technology grants MOST102-2628-B-182-009-MY3,
MOST102-2628-B-182-010-MY3, MOST105-2320-B-182-029-MY3, MOST105-2320-
B-182-030, the Chang Gung Memorial Hospital grants (CMRPD1C0551-3,
CMRPD1B0391-3, CMRPD1E0181-3, and BMRP466), and the Chang Gung
Molecular Medicine Research Center grant (EMRPD1E1491) to C.-P. Tseng; the
Ministry of Science and Technology post-doctoral fellowship grants 104-2811-B-
182-004 and 104-2811-B-182-006 to H.-J. Tsai.
Availability of data and materials
Not applicable.

Authors’ contributions
HJT and CPT contributed in the conception and the design of the article and
have given final approval of the version to be submitted.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Medical Biotechnology and Laboratory Science, Collage of
Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic
of China. 2Molecular Medicine Research Center, Chang Gung University,
Kweishan, Taoyuan 333, Taiwan, Republic of China. 3Graduate Institute of
Biomedical Science, Collage of Medicine, Chang Gung University, Kweishan,
Taoyuan 333, Taiwan, Republic of China. 4Department of Laboratory
Medicine, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan,
Republic of China.

Published: 4 October 2016

References
1. George JN. Platelets. Lancet. 2000;355:1531–9.
2. Chong AJ, Pohlman TH, Hampton CR, Shimamoto A, Mackman N, Verrier ED.

Tissue factor and thrombin mediate myocardial ischemia-reperfusion injury.
Ann Thorac Surg. 2003;75:S649–55.

3. Schonberger T, Ziegler M, Borst O, Konrad I, Nieswandt B, Massberg S,
Ochmann C, Jurgens T, Seizer P, Langer H, et al. The dimeric platelet
collagen receptor GPVI-Fc reduces platelet adhesion to activated
endothelium and preserves myocardial function after transient ischemia in
mice. Am J Physiol Cell Physiol. 2012;303:C757–66.

4. White HD. Oral antiplatelet therapy for atherothrombotic disease: current
evidence and new directions. Am Heart J. 2011;161:450–61.

5. Li Z, Delaney MK, O’Brien KA, Du X. Signaling during platelet adhesion and
activation. Arterioscler Thromb Vasc Biol. 2010;30:2341–9.

6. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature.
2000;407:258–64.

7. Shen B, Delaney MK, Du X. Inside-out, outside-in, and inside-outside-in:
G protein signaling in integrin-mediated cell adhesion, spreading, and
retraction. Curr Opin Cell Biol. 2012;24:600–6.

8. Leo A, Schraven B. Networks in signal transduction: the role of adaptor
proteins in platelet activation. Platelets. 2000;11:429–45.

9. Tsai HJ, Huang CL, Chang YW, Huang DY, Lin CC, Cooper JA, Cheng JC,
Tseng CP. Disabled-2 is required for efficient hemostasis and platelet
activation by thrombin in mice. Arterioscler Thromb Vasc Biol. 2014;34:
2404–12.

10. Huang CL, Cheng JC, Stern A, Hsieh JT, Liao CH, Tseng CP. Disabled-2 is a
novel alphaIIb-integrin-binding protein that negatively regulates platelet-
fibrinogen interactions and platelet aggregation. J Cell Sci. 2006;119:4420–30.

11. Mok SC, Wong KK, Chan RK, Lau CC, Tsao SW, Knapp RC, Berkowitz RS.
Molecular cloning of differentially expressed genes in human epithelial
ovarian cancer. Gynecol Oncol. 1994;52:247–52.

12. Xu XX, Yang W, Jackowski S, Rock CO. Cloning of a novel phosphoprotein
regulated by colony-stimulating factor 1 shares a domain with the
Drosophila disabled gene product. J Biol Chem. 1995;270:14184–91.

13. Tseng CP, Ely BD, Li Y, Pong RC, Hsieh JT. Regulation of rat DOC-2 gene
during castration-induced rat ventral prostate degeneration and its growth
inhibitory function in human prostatic carcinoma cells. Endocrinology.
1998;139:3542–53.

14. Maurer ME, Cooper JA. Endocytosis of megalin by visceral endoderm cells
requires the Dab2 adaptor protein. J Cell Sci. 2005;118:5345–55.

15. Wang Z, Tseng CP, Pong RC, Chen H, McConnell JD, Navone N, Hsieh JT.
The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate

https://thrombosisjournal.biomedcentral.com/articles/supplements/volume-14-supplement-1
https://thrombosisjournal.biomedcentral.com/articles/supplements/volume-14-supplement-1


The Author(s) Thrombosis Journal 2016, 14(Suppl 1):28 Page 53 of 163
cancer. Characterization of a novel GTPase-activating protein associated
with N-terminal domain of DOC-2/DAB2. J Biol Chem. 2002;277:12622–31.

16. Hocevar BA, Smine A, Xu XX, Howe PH. The adaptor molecule Disabled-2
links the transforming growth factor beta receptors to the Smad pathway.
EMBO J. 2001;20:2789–801.

17. Hocevar BA, Mou F, Rennolds JL, Morris SM, Cooper JA, Howe PH.
Regulation of the Wnt signaling pathway by disabled-2 (Dab2). EMBO J.
2003;22:3084–94.

18. Mishra SK, Keyel PA, Hawryluk MJ, Agostinelli NR, Watkins SC, Traub LM.
Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin
adaptor. EMBO J. 2002;21:4915–26.

19. Calderwood DA, Fujioka Y, de Pereda JM, Garcia-Alvarez B, Nakamoto T,
Margolis B, McGlade CJ, Liddington RC, Ginsberg MH. Integrin beta
cytoplasmic domain interactions with phosphotyrosine-binding domains:
a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci
U S A. 2003;100:2272–7.

20. Keyel PA, Mishra SK, Roth R, Heuser JE, Watkins SC, Traub LM. A single
common portal for clathrin-mediated endocytosis of distinct cargo
governed by cargo-selective adaptors. Mol Biol Cell. 2006;17:4300–17.

21. Morris SM, Cooper JA. Disabled-2 colocalizes with the LDLR in clathrin-
coated pits and interacts with AP-2. Traffic. 2001;2:111–23.

22. Zhou J, Hsieh JT. The inhibitory role of DOC-2/DAB2 in growth factor
receptor-mediated signal cascade. DOC-2/DAB2-mediated inhibition of ERK
phosphorylation via binding to Grb2. J Biol Chem. 2001;276:27793–8.

23. Xu XX, Yi T, Tang B, Lambeth JD. Disabled-2 (Dab2) is an SH3 domain-binding
partner of Grb2. Oncogene. 1998;16:1561–9.

24. Zhou J, Scholes J, Hsieh JT. Characterization of a novel negative regulator
(DOC-2/DAB2) of c-Src in normal prostatic epithelium and cancer. J Biol
Chem. 2003;278:6936–41.

25. Koral K, Erkan E. PKB/Akt partners with Dab2 in albumin endocytosis.
Am J Physiol Renal Physiol. 2012;302:F1013–24.

26. Kowanetz K, Terzic J, Dikic I. Dab2 links CIN85 with clathrin-mediated
receptor internalization. FEBS Lett. 2003;554:81–7.

27. Huang CH, Cheng JC, Chen JC, Tseng CP. Evaluation of the role of
Disabled-2 in nerve growth factor-mediated neurite outgrowth and
cellular signalling. Cell Signal. 2007;19:1339–47.

28. Jiang Y, He X, Howe PH. Disabled-2 (Dab2) inhibits Wnt/beta-catenin
signalling by binding LRP6 and promoting its internalization through
clathrin. EMBO J. 2012;31:2336–49.

29. Jain N, Nguyen H, Friedline RH, Malhotra N, Brehm M, Koyanagi M, Bix M,
Cooper JA, Chambers CA, Kang J. Cutting edge: Dab2 is a FOXP3 target
gene required for regulatory T cell function. J Immunol. 2009;183:4192–6.

30. Penheiter SG, Singh RD, Repellin CE, Wilkes MC, Edens M, Howe PH, Pagano RE,
Leof EB. Type II transforming growth factor-beta receptor recycling is
dependent upon the clathrin adaptor protein Dab2. Mol Biol Cell. 2010;21:
4009–19.

31. Tseng CP, Huang CH, Tseng CC, Lin MH, Hsieh JT, Tseng CH. Induction of
disabled-2 gene during megakaryocyte differentiation of k562 cells.
Biochem Biophys Res Commun. 2001;285:129–35.

32. Tseng CP, Huang CL, Huang CH, Cheng JC, Stern A, Tseng CH, Chiu DT.
Disabled-2 small interfering RNA modulates cellular adhesive function and
MAPK activity during megakaryocytic differentiation of K562 cells. FEBS Lett.
2003;541:21–7.

33. Huang CL, Cheng JC, Liao CH, Stern A, Hsieh JT, Wang CH, Hsu HL, Tseng
CP. Disabled-2 is a negative regulator of integrin alpha(IIb)beta(3)-mediated
fibrinogen adhesion and cell signaling. J Biol Chem. 2004;279:42279–89.

34. Hung WS, Huang CL, Fan JT, Huang DY, Yeh CF, Cheng JC, Tseng CP. The
endocytic adaptor protein Disabled-2 is required for cellular uptake of
fibrinogen. Biochim Biophys Acta. 1823;2012:1778–88.

35. Huang CL, Cheng JC, Kitajima K, Nakano T, Yeh CF, Chong KY, Tseng CP.
Disabled-2 is required for mesoderm differentiation of murine embryonic
stem cells. J Cell Physiol. 2010;225:92–105.

36. Tseng CP, Chang P, Huang CL, Cheng JC, Chang SS. Autocrine signaling of
platelet-derived growth factor regulates disabled-2 expression during
megakaryocytic differentiation of K562 cells. FEBS Lett. 2005;579:4395–401.

37. Morris SM, Arden SD, Roberts RC, Kendrick-Jones J, Cooper JA, Luzio JP,
Buss F. Myosin VI binds to and localises with Dab2, potentially linking
receptor-mediated endocytosis and the actin cytoskeleton. Traffic.
2002;3:331–41.

38. Inoue A, Sato O, Homma K, Ikebe M. DOC-2/DAB2 is the binding partner of
myosin VI. Biochem Biophys Res Commun. 2002;292:300–7.
39. Hosaka K, Takeda T, Iino N, Hosojima M, Sato H, Kaseda R, Yamamoto K,
Kobayashi A, Gejyo F, Saito A. Megalin and nonmuscle myosin heavy chain
IIA interact with the adaptor protein Disabled-2 in proximal tubule cells.
Kidney Int. 2009;75:1308–15.

40. Tseng CP, Ely BD, Pong RC, Wang Z, Zhou J, Hsieh JT. The role of DOC-2/
DAB2 protein phosphorylation in the inhibition of AP-1 activity. An
underlying mechanism of its tumor-suppressive function in prostate cancer.
J Biol Chem. 1999;274:31981–6.

41. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F,
Cox J, Jensen TS, Nigg EA, et al. Quantitative phosphoproteomics reveals
widespread full phosphorylation site occupancy during mitosis. Sci Signal.
2010;3:ra3.

42. He J, Xu J, Xu XX, Hall RA. Cell cycle-dependent phosphorylation of
Disabled-2 by cdc2. Oncogene. 2003;22:4524–30.

43. Koral K, Li H, Ganesh N, Birnbaum MJ, Hallows KR, Erkan E. Akt recruits Dab2
to albumin endocytosis in the proximal tubule. Am J Physiol Renal Physiol.
2014;307:F1380–9.

44. Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC,
Zimmerman GA, Weyrich AS. Genome-wide RNA-seq analysis of human
and mouse platelet transcriptomes. Blood. 2011;18:e101–11.

45. Teckchandani A, Toida N, Goodchild J, Henderson C, Watts J, Wollscheid B,
Cooper JA. Quantitative proteomics identifies a Dab2/integrin module
regulating cell migration. J Cell Biol. 2009;186:99–111.

46. Cho SY, Jeon JW, Lee SH, Park SS. p67 isoform of mouse disabled 2 protein
acts as a transcriptional activator during the differentiation of F9 cells.
Biochem J. 2000;352(Pt 3):645–50.

47. Drahos KE, Welsh JD, Finkielstein CV, Capelluto DG. Sulfatides partition
disabled-2 in response to platelet activation. PLoS One. 2009;4:e8007.

48. Welsh JD, Charonko JJ, Salmanzadeh A, Drahos KE, Shafiee H, Stremler MA,
Davalos RV, Capelluto DG, Vlachos PP, Finkielstein CV. Disabled-2 modulates
homotypic and heterotypic platelet interactions by binding to sulfatides.
Br J Haematol. 2011;154:122–33.

49. Xiao S, Charonko JJ, Fu X, Salmanzadeh A, Davalos RV, Vlachos PP,
Finkielstein CV, Capelluto DG. Structure, sulfatide binding properties, and
inhibition of platelet aggregation by a disabled-2 protein-derived peptide.
J Biol Chem. 2012;287:37691–702.

50. Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis
in mice lacking PAR3. Blood. 2002;100:3240–4.

51. Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR. Role of
thrombin signalling in platelets in haemostasis and thrombosis. Nature.
2001;413:74–8.

52. Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V,
Smith A. Advances in CRISPR-Cas9 genome engineering: lessons learned
from RNA interference. Nucleic Acids Res. 2015;43:3407–19.

53. Gaj T, Gersbach CA, Barbas 3rd CF. ZFN, TALEN, and CRISPR/Cas-based
methods for genome engineering. Trends Biotechnol. 2013;31:397–405.

54. Flintoft L. Animal models: mastering RNAi in mice. Nat Rev Genet. 2011;12:380.
55. Singer O, Verma IM. Applications of lentiviral vectors for shRNA delivery

and transgenesis. Curr Gene Ther. 2008;8:483–8.
•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Review
	Discovery and the protein properties of Dab2
	Expression pattern of Dab2 in megakaryocytes and platelets
	Dab2 functions in megakaryocytic differentiation and platelet signaling
	The consensuses, controversies and future prospects

	Conclusions
	Declaration
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

