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Abstract

A new computational framework for FLow cytometric Analysis of Rare Events (FLARE) has

been developed specifically for fast and automatic identification of rare cell populations in

very large samples generated by platforms like multi-parametric flow cytometry. Using a

hierarchical Bayesian model and information-sharing via parallel computation, FLARE rap-

idly explores the high-dimensional marker-space to detect highly rare populations that are

consistent across multiple samples. Further it can focus within specified regions of interest

in marker-space to detect subpopulations with desired precision.

Introduction

Studies focusing on rare cell populations are becoming increasingly common owing to techno-

logical advances such as high-speed, multi-parametric flow cytometry, and emerging biomedi-

cal applications like stem cell therapy, and single cell analysis. Researchers in fields such as

hematology, cancer, immunology, pathology, stem cell biology, and regenerative medicine,

have focused on many interesting, yet relatively rare, populations of cells in blood and other

tissues and systems that have important biomedical functions and characteristics, e.g., long-

term hematopoietic stem cells.

Methods for accurate detection or automated isolation of rare therapy-resistant cells in

tumors with stem cell like properties, tumor cells circulating in blood, or regulatory T cells,

can have profound influence on basic and clinical research. Platforms like multi-color flow
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cytometry, in conjunction with the development of diverse panels of markers and antibodies,

have been used to establish signatures for various rare cellular species and lineages in terms of

the expressed surface and intracellular marker proteins [1]. Advances in mass cytometry have

promised the ability to determine 50-100 features per cell [2, 3]. To address such increasingly

multi-parametric and multiplexed immunoprofiling of each cell, studies have demonstrated

the critical need for systematic and automated multivariate analysis and visualization suitable

for high-dimensional data [4–6]. As the number of potential combinations of markers contin-

ues to grow exponentially (with the number of markers), a thorough search for rare events in

high-dimensional marker-space clearly gets difficult with the more subjective and painstaking

approach of traditional manual gating [7].

Analytically, a population of cells having similar, characteristic expression of k (> 1) mark-

ers can be measured as events with similar fluorescence intensities, i.e., as a cluster of points

located closely in k-dimensional marker-space [4]. However traditional clustering approaches

may not be adequate for identification of rare cell populations for several technical reasons.

The new data are not only high-dimensional (i.e., involving multi-parametric or multiplexed

panels) but simultaneously are also high-resolution (single cell level) and considerably high-

throughput (hundreds of thousands of cells per sample) by design. Typically, therefore, if a

population of interest is rare and consists of, say, fewer than 1% or 0.1% of the total number of

cells in a given sample, then for reliable detection of such a population, it is common to use a

sample size (N) in the order of 105 − 106 cells, each measured as a k-dimensional point. Thus a

large cytometric sample can present a “searching for a needle in a haystack” scenario for the

identification of any rare population therein, resulting either in inefficient coverage of the k-

dimensional marker-space (the volume of which increasing exponentially with k), or detection

of a number of spurious small populations (often outliers of larger, noisy populations). In gen-

eral, clustering methods like k-means or hierarchical clustering use some measure of distance

between every pair of points to determine their closeness for clustering assignment. While

effective for clustering a few thousands genes or features in omic data, clearly such quadratic-

time O(N2) approaches would be computationally inadequate for searching complex cyto-

metric datasets with much larger N.

Another practical challenge stems from biological and/or technological sources of inter-

sample variation including single cell level heterogeneity, individual subjects, different time-

points and conditions, and platform noise—all of which make consistent identification of

particularly the rarer populations difficult. Moreover, as cells undergo state transitions, for

instance during differentiation, the corresponding changes in marker-expressions result in

hierarchies of inter-connected clusters. Such clusters may contain complex high-dimensional

structures such as heavy tails or skewness, that present unique data modeling challenges for

computational analysis [5, 8]. Therefore, we developed FLARE as a new computational

framework that can simultaneously meet the somewhat conflicting requirements of (a) high

speed, (b) high precision, and (c) robust data modeling.

Model

In this section, we describe the our new hierarchical Bayesian model, FLARE, for FLow cyto-

metric Analysis of Rare Events, to identify cell populations from multiple samples and detect-

ing rare cell populations. Given the increasing high-dimensionality of cytometric data, there

is a critical need to assist the manual gating procedure using unsupervised computational

approaches to explore the marker-space, especially to identify specific cell populations that

may appear at unknown locations under certain conditions such as drug-resistant cells or a

rare signature of disease prognosis.

High-speed automatic characterization of rare events in flow cytometric data
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To this end, we designed a hierarchical Bayesian model that can share information across

multiple samples to substantiate the occurrence of any genuine rare cluster of events. First, we

model the cell populations in each sample by a mixture of probability distributions, say, multi-

variate Gaussian components, so that we can assign a probability score to associate each cell

with a population, thus reflecting the underlying structures of individual samples. Second, we

let the Gaussian components—corresponding to cell populations in different samples—be

similar to each other via common prototype populations up to certain small variations, so that

we can capture the minor differences between individual samples. Third, we allow some

Gaussian components to appear only in certain—but not necessarily all—samples, and report

these populations, even if they are rare events.

Let us denote the cytometric data by X and the cell memberships by H ¼ hðmÞnk where hðmÞnk

denotes the membership of the n-th cell in the m-th sample to that sample’s k-th Gaussian

component with mean μðmÞk and precision λðmÞk . Then the data likelihood is

PðXjΘ;HÞ ¼
YM

m¼1

YNm

n¼1

YK

k¼1

N ðxðmÞn jμ
ðmÞ
k ; ðΛðmÞk Þ

� 1
Þ
hðmÞnk ð1Þ

where M is the number of samples, Nm the number of cells in sample m, K the maximal num-

ber of cell populations for each sample, and Θ ¼ fμðmÞk ;ΛðmÞk gm;k. Each data point xðmÞn has

dimension D.

The latent membership indicators H has a factorized discrete prior distribution:

PðHjπÞ ¼
YM

m¼1

YNm

n¼1

YK

k¼1

ðp
ðmÞ
k Þ

hðmÞnk ð2Þ

where p
ðmÞ
k is the probability of the k-th population appearing in sample m and

P
kp
ðmÞ
k ¼ 1. If

p
ðmÞ
k ¼ 0, then the k-th population does not exist in the m-th sample. To model the uncertainty

in πðmÞ ¼ ½pðmÞk ; . . . ; p
ðmÞ
k �, we use a symmetric Dirichlet prior distribution:

PðπÞ ¼
YM

m¼1

Cða0Þ
YK

k¼1

ðp
ðmÞ
k Þ

a0 � 1
ð3Þ

where α0 is a hyperparameter and Cða0Þ ¼
GðMa0Þ

Gða0Þ
M .

To share information between clusters of different samples, we let the mean parameter,

μðmÞk , of each cluster in a sample follow a Gaussian prior distribution common to all samples:

PðμðmÞk jηkÞ ¼ N ðμðmÞk jηk; ðb0IÞ
� 1
Þ ð4Þ

where ηk is the mean parameter of the k-th prototype cluster—which is estimated from data as

μðmÞk —and β0 is a hyperparameter. Similar, the covariance matrix, ΛðmÞk , of each cluster in a sam-

ple follows a Wishart prior distribution common to all samples:

PðΛðmÞk jΩkÞ ¼WðΛðmÞk jΩk; s0Þ ð5Þ

where Ok is a symmetric, positive definite matrix—estimated from data just as ΛðmÞk —and σ0 is

the degree of freedom.

Since we need to estimate the parameters of the prototype clusters from data as well, we

assign a Gaussian hyper-prior distribution over the mean of each prototype cluster, ηk:

PðηkÞ ¼ N ðηkj0; IÞ
� 1
Þ ð6Þ
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Also, we assign an Inverse-Wishart hyper-prior distribution over the shape of each each proto-

type cluster, O:

PðΩkÞ ¼W � 1
ðΩkjΦ0; n0Þ ð7Þ

where F0 and ν0 are hyperparameters. In our experiments, we setF0 = I and ν0 = 6D to obtain

a diffuse prior overOk.

Combining the data likelihood, the priors and the hyper-priors, we obtain the following

joint distribution for our model:

PðX; μ;Λ; η;Ω; h; πÞ

¼ PðXjμ;Λ; hÞPðhjπÞPðμjηÞPðΛjΩÞPðηÞPðΩÞPðπÞ

¼ ð
YM

m¼1

YNm

n¼1

YK

k¼1

N ðxðmÞn jμ
ðmÞ
k ; ðΛðmÞk Þ

� 1
Þ
hðmÞnk
YM

m¼1

YNm

n¼1

YK

k¼1

ðp
ðmÞ
k Þ

hðmÞnk Þ

ð
YK

k¼1

N ðηkj0; IÞ
� 1
ÞW � 1

ðΩkjΦ0; n0ÞÞ

ð8Þ

The joint distribution is depicted in Fig 1.

With the priors specified over the cluster parameters in multiple samples and the hyper-pri-

ors over the parameters of the prototype clusters, we constructed a hierarchical Bayesian

model, FLARE. The model allows the cluster locations (given by the means) and the shapes

(given by the covariance matrices) of each sample to be similar to those of their prototype clus-

ter so that the information from multiple samples could be combined for accurate and robust

estimation of clusters. At the same time, FLARE allows the clusters of each sample to be

slightly different from their prototypes, accounting for the variations among different biologi-

cal samples. In our experiments, we set β0 = 500 and σ0 = 6D so that the stochastic variation

between a sample cluster mean and its prototype cluster mean is reasonable small.

Notably, in our model, a cluster can also not contain any data point in a particular sample,

and thus, the cluster may be absent in certain samples. From our estimation results, we can

easily distinguish which clusters are common to all samples and which only appear in certain

samples.

Variational inference

In this section, we present a variational approach to efficiently learn the approximate posterior

distribution of the FLARE parameters from data.

Since there is no analytical solution to compute, the exact posterior distributions of the

latent variables, a fast compilation solution is necessary. Given the large-volume of a typical

cytometric data and the high-dimensionality nature of multiparametric measurements, classi-

cal Monte Carlo methods, such as Markov Chain Monte Carlo (MCMC), can be computation-

ally costly. Thus, we resort to fast approximate Bayesian inference; in particular, we apply the

Variational Bayesian method to calculate the approximate posterior distributions.

The idea of the variational inference method is to use a simpler distribution to approximate

the exact posterior distribution. Specifically, the log marginal distribution can be decomposed as

ln pðXÞ ¼ LðqÞ þ KLðq; pÞ ð9Þ

It consists of two parts: the lower bound LðqÞ and the KL divergence between p and q:

LðqÞ ¼
Z

qðZÞ ln
pðX;ZÞ
qðZÞ

� �

dZ ð10Þ

High-speed automatic characterization of rare events in flow cytometric data

PLOS ONE | https://doi.org/10.1371/journal.pone.0228651 February 11, 2020 4 / 18

https://doi.org/10.1371/journal.pone.0228651


Fig 1. The probabilistic graphical model representation of FLARE. x is the cell, μ and Λ are the mean and

covariance of the parent clusters, η andO are the mean and covariance of cluster k, π is the membership distribution, h
is the membership indicator and α is the hyperparameter for π. The superscript m indicates the mth sample.

https://doi.org/10.1371/journal.pone.0228651.g001
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KLðq; pÞ ¼ �
Z

qðZÞ ln
pðZjXÞ
qðZÞ

� �

dZ ð11Þ

where X represents the data and Z represents the random variables for which we need to calcu-

late the posterior.

The distribution q(Z) is the approximation of the true posterior p(Z|X). To this end, some

assumptions should be exerted to the approximate posterior q(Z). One commonly used

assumption is that q can be factorized as:

qðZÞ ¼
YL

i¼1

qiðZiÞ ð12Þ

Hence, by minimizing (11) given (12), we can obtain the optimized form of each factor of

q(Zi) by:

ln qjðZjÞ ¼ Ei6¼j½ln pðX;ZÞ� þ const ð13Þ

In the case of our model, we assume q can be factorized as

qðμ;Λ;η;Ω;h; πÞ ¼ qðμÞqðηÞqðΛÞqðΩÞqðhÞqðπÞ ð14Þ

Then by using (13), we can obtain the optimized approximated posteriors as follows:

qðhðmÞÞ ¼
YNm

n¼1

YK

k¼1

ðrðmÞnk Þ
hðmÞnk ð15Þ

qðπðmÞÞ ¼ CðαðmÞÞ
YK

k¼1

ðp
ðmÞ
k Þ

a
ðmÞ
k � 1

ð16Þ

qðμðmÞk Þ ¼ N ðωðmÞk ;ΓðmÞk Þ ð17Þ

qðηkÞ ¼ N ðξk;UkÞ ð18Þ

qðΛðmÞk Þ ¼WðΛðmÞk jΨ
ðmÞ
k ; sm:kÞ ð19Þ

qðΩkÞ ¼W � 1ðΩkjΦk; νkÞ ð20Þ

The parameters in these distributions are:

rðmÞnk ¼
r
ðmÞ
nk

PK
j¼1
r
ðmÞ
nj

ð21Þ

ln rðmÞnk ¼
1

2
E½lnjΛðmÞk j� �

1

2
E½ðxðmÞn � μðmÞk Þ

TΛðmÞk ðx
ðmÞ
n � μðmÞk Þ�

�

�
D
2
ln 2p

�

þ E½ln pm:k�

ð22Þ

a
ðmÞ
k ¼ a0 þ NðmÞk ð23Þ
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NðmÞk ¼
XNm

n¼1

rðmÞnk ð24Þ

ωðmÞk ¼ ðN
ðmÞ
k E½Λ

ðmÞ
k � þ b0IÞ

� 1
ðNðmÞk E½Λ

ðmÞ
k �E½x

ðmÞ
k � þ b0E½ηk�Þ ð25Þ

G
ðmÞ
k ¼ ðN

ðmÞ
k E½Λ

ðmÞ
k � þ b0IÞ

� 1
ð26Þ

ξk ¼ ð�0ξ0 þ b0

XM

m¼1

E½μðmÞk �Þ=ð�0 þ b0MÞ ð27Þ

Uk ¼ ðð�0 þ b0MÞIÞ
� 1

ð28Þ

ðΨðmÞk Þ
� 1
¼ s0E½Ω

� 1

k � þ NðmÞk ðS
ðmÞ
k þ

ðE½xðmÞk � � E½μ
ðmÞ
k �ÞðE½x

ðmÞ
k � � E½μ

ðmÞ
k �Þ

T
Þ

ð29Þ

SðmÞk ¼ ð
XNm

n¼1

rðmÞnk ðx
ðmÞ
k � E½x

ðmÞ
k �Þðx

ðmÞ
n � E½x

ðmÞ
k �Þ

T
Þ=NðmÞk ð30Þ

s
ðmÞ
k ¼ NðmÞk þ s0 ð31Þ

Φk ¼ Φ0 þ s0

XM

m¼1

E½ΛðmÞk � ð32Þ

nk ¼ n0 þMs0 ð33Þ

And the expectations in the above equations are:

E½xðmÞk � ¼
XNm

n¼1

rðmÞnk x
ðmÞ
n =NðmÞk ð34Þ

E½lnjΛðmÞk j� ¼
XD

i¼1

ψð
s
ðmÞ
k þ 1 � i

2
Þ þ D ln 2þ lnjΨðmÞk j ð35Þ

E½ðxðmÞn � μðmÞk Þ
TΛðmÞk ðx

ðmÞ
n � μðmÞk Þ�

¼ D=b0 þ s
ðmÞ
k ðxðmÞn � ωðmÞk Þ

TΨðmÞk ðxðmÞn � ωðmÞk Þ þ trðΓðmÞk ΨðmÞk Þ
ð36Þ

E½ln pðmÞk � ¼ cða
ðmÞ
k Þ � cð

XK

j¼1

a
ðmÞ
j Þ ð37Þ

E½ΛðmÞk � ¼ s
ðmÞ
k ΨðmÞk ð38Þ

E½ηk� ¼ ξk; E½μ
ðmÞ
k � ¼ ωðmÞk ; E½Ω� 1

k � ¼ Φ� 1

k nk ð39Þ
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where ψ(�) is the digamma function—the logarithmic derivative of the gamma function

cðxÞ ¼ d
dx lnGðxÞ ¼ G0ðxÞ=GðxÞ.

Parallel inference

Thousands of cells are processed by a flow cytometer every second, which results in an

extremely high volume of data to analyze. For example, one of our data sets contains nearly 2.6

million cells spread across 14 samples. Due to the complexity of our model and the size of flow

cytometry data, there is a critical need to develop a parallel algorithm which can take advantage

of the processing power in a large-scale computer cluster. While the sequential version of

FLARE was implemented using MATLAB, the parallel version is implemented using C++ and

MPI.

A computer cluster consists of many separate nodes, i.e. computers, connected via a fast

local area network. Additionally, each node may contain a multi-core processor. This allows us

to devise a two-level parallelization scheme to analyze the data. At the first level of paralleliza-

tion, we divide the data amongst the cluster nodes. Hence, each cluster node is responsible for

a portion of the raw data as well as maintaining any parameters associated with that data. For

example, all sample means (ω) and sample precision matrices (C) for sample 1 need to be

stored on any cluster node which contains data from sample 1. In an effort to minimize

repeated storage, we impose the restriction that each node must only store data from a single

sample. Additionally, every cluster node may have a multi-core processor, which enables us to

implement a second level of parallelization based on the number Gaussian components (K).

Many of the parameters we infer are indexed by k, e.g. the prototype mean ξ is really a set of K
prototype means (one mean for each component). Therefore, we can use the set of processor

cores to optimize the variational inference parameters for each value of k in parallel.

Data partition

Each iteration of the parallel inference algorithm alternates several times between computation

and communication phases. All nodes must complete their current computation phase before

the next one one can begin. Therefore, the total execution time is dependent on the node with

the highest computational load (the node that take the longest). The goal of load balancing is

to minimize the largest computational load of the nodes in the computer cluster.

Suppose we have a computer cluster consisting of a total of W nodes. We must now find

some way to distribute the data among these W nodes that minimizes the total execution time.

A naive approach would be to evenly divide the N data points so that each node is responsible

for N/W data points. However, the volume of data assigned to each node is not the only factor

that influences computation time. A node must also maintain all parameters associated with

its data. For instance, a node with data from samples 1 and 2 will need to maintain means and

precision matrices for both of these samples, whereas a node that only has data from sample 1

will maintain means and precision matrices for sample 1 only. Therefore the time spent spent

optimizing distribution parameters can be reduced by restricting each node to data from a sin-

gle sample.

We can think of the balancing problem in this way: we have W nodes available, and a subset

of these nodes (W1) must be assigned to sample 1, another subset (W2) must be assigned to

sample 2, and so on for all M samples. The data of a particular sample is divided evenly among

the nodes assigned that sample. The load for each node assigned to a particular sample is equal

to Nm/Wm. Algorithm 1 gives us a greedy strategy to minimize the load on the sample with the

largest load. In order for this algorithm to function correctly, we must declare a larger number

of nodes than there are samples.

High-speed automatic characterization of rare events in flow cytometric data
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Algorithm 1 Balance the computation load across the available cluster nodes
1: function NODEBALANCE
2: if The number of nodes is less than the number of samples then
3: Error!
4: end if
5: Assign one node to each sample.
6: while There are unassigned nodes do
7: Assign a node to the sample with the highest load.
8: end while
9: end function

We define the data partition efficiency by

balance ¼
loadopt

loadmax

ð40Þ

Since the optimum balance would have the same computational load on each node, we

define loadopt by

loadopt ¼ dW=Ne ð41Þ

Where

N ¼
XM

m¼1

Nm ð42Þ

Also, we define the maximum load (loadmax) by

loadmax ¼ argmax
m¼1;::;M

ðWmÞ ð43Þ

We know that loadmax� loadopt because any time the load differs from the optimum, we

must have some node with a larger load than loadopt, and some other node with load smaller

than loadopt. Therefore, an optimally balanced set of nodes will give us a data partition effi-

ciency score of 1, and any non-optimally balanced set of nodes will give us a score less than 1.

Also since the true computational cost is dependent on the slowest node, we use the node with

the largest load to define the data partition efficiency.

Organization of parameters across cluster nodes

The raw data is not the only information we must store. The variational inference method

gives us a set of parameters we must iteratively optimize. Namely, these parameters are r, ρ, α,

N, ω, E[x], Γ, ξ,C, S, σ,F, and ν. We can divide these parameters into 3 separate categories

based of how they are indexed. The first category includes all parameters indexed by sample

and by data point. These parameters include r, ρ, and the raw data x. The second category

includes all parameters indexed by sample. These parameters include α, N, ω, E[x], Γ,C,

and S. The third category includes all parameters which are not indexed by sample or by data

point. These parameters include ξ, F, and ν. To show how these three groups of parameters

are stored on the cluster, we define three new parameters, A, B, and C.

A is used to represent the first category and is indexed in the following way. A’s superscript

is indexed by sample, so A(m) includes r(m), ρ(m), and x(m) for all m = 1, . . ., M. Furthermore,

each A(m) is split up into Wm different parts, where Wm is the number of nodes assigned to

sample m. Each of these Wm parts contains an equal portion of the Nm data points in sample

m. So, AðmÞ1 includes rðmÞ1 to rðmÞdm
, r
ðmÞ
1 to r

ðmÞ
dm

, and xðmÞ1 to xðmÞdm
, where dm = Nm/Wm. Similarly AðmÞ2

contains the next Nm/Wm indices of r(m), ρ(m), and x(m), and so on for all Wm portions.
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The topographies of B and C are much simpler. B is used to represent the second category

and is indexed by sample. Hence, B(m) includes α(m), N(m), ω(m), E[x], Γ(m), C(m), and S(m) for

all m = 1, . . ., M. C is used to represent the third category and is not indexed.

With the parameters A, B, and C in hand, we can visualize the overall cluster topography as

shown in Fig 2. Using this topography, the calculations of Eqs (21) and (22) are split up among

every node with no repeated calculation. The calculation of Eqs (23), (25), (26), and (31) can

be done with no communication. However the calculation of these equations is repeated on

every node assigned to a particular sample, e.g. the calculation of these equations for sample 1

is repeated on all nodes assigned to sample 1. Eqs (24), (34), and (30) all involve a summation

indexed from 1 to Nm. The nodes of sample m all calculate their partial sum using their portion

of the data, then communicate to calculate the total sum. The calculations for each sample can

be done simultaneously. Lastly, Eqs (27) and (32) involve a summation indexed from 1 to M.

To perform this calculation a representative node from each sample is chosen to contribute its

partial sum. Each of these representative nodes then communicate their results to the rest of

the nodes assigned to their respective samples.

Further parallelization using p-threads

Each cluster node may have a multi-core processor. With the exception of Eq (21), each of the

parameter update equations for variational inference are indexed by Gaussian components,

where each k = 1, . . ., K is independent. Therefore, all of these equations may be updated

simultaneously using p-threads.

Fig 2. Topography of data storage among cluster nodes. Each rectangle represents a cluster node, with each column consisting of nodes from a

particular sample. The edges of this graph connect nodes which must communicate with each other. The nodes of each column form a fully connected

subgraph to show the communication done within each sample. Similarly, each column has representative node that participates in summations over all

samples. The dotted edges represent the fact that based on the data, there can be an arbitrary number of samples and nodes per sample.

https://doi.org/10.1371/journal.pone.0228651.g002
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Results and discussion

We developed a new computational framework FLARE for FLow cytometric Analysis of Rare

Events, although it may be applicable to other platforms that generate multi-marker data per

cell. FLARE is based on a hierarchical Bayesian model, and employs parallel computation for

its high-speed high-precision analysis. The Bayesian model (Fig 3) of FLARE allows imple-

mentation of several distinct features to specifically address the challenges mentioned above.

For consistent identification of a particular rare population C, the model parameters allow

information about C to be shared across different samples. In our parallel computing frame-

work, we implemented this via communication among nodes each of which analyzed a distinct

sample. The strategy builds repeated inter-sample consensus on the existence of C (or lack

thereof), thus guarding against unsupervised detection of possibly numerous spurious small

populations. Consequently, the model estimation is robust against high inter-sample variation

Fig 3. Illustrative example for FLARE and its graphical model representation. Panels a.1 and a.2 show the

limitation of separate population analysis on individual samples: it misses the detection of the rare cell population in

green. Panel b shows that by sharing population information via the parental nodes, FLARE can more accurately

estimate the big cell population in the red cluster and also detect the rare population in the green cluster. Panel c

describes the hierarchical Bayesian model of FLARE.

https://doi.org/10.1371/journal.pone.0228651.g003
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and platform noise, which otherwise are known to affect the reproducibility or the quality of

match between analogous populations across samples and replicates [9].

We found FLARE’s information-sharing feature to be especially useful for rare cell popula-

tions (e.g., blue clusters in Fig 3) which contain very few cells since it effectively pools together

more observations for estimation. Second, the estimation ambiguity (between the red and the

green clusters in Sample 1, corresponding to Subject 1, in Fig 3) is reduced since the informa-

tion about a population (e.g., the red cluster of Sample 2, corresponding to Subject 2, in Fig 3)

can guide the estimation of its counterpart across samples (i.e., the red cluster of Sample 1 in

Fig 3) in FLARE’s joint model. Third, the joint model also allows partial consistency such that

some clusters can exist in one or more samples but not necessarily in all of them. Thus, without

needing any additional cluster alignment [4, 10], we can identify also those clusters (e.g., the

green cluster in Fig 3b) that exist only in certain samples, a situation that is not uncommon for

rare populations e.g., transient subsets that are present only during certain stages of cell differ-

entiation and are absent otherwise).

For our first application of FLARE, we generated a 6-marker cytometric dataset to study

cells from mouse bone-marrow. These murine studies of normal hematopoietic stem and pro-

genitor cells were conducted under an IACUC (Institutional Animal Care & Use Committee)

approved protocol at Yale University. Mice were euthanized following Yale IACUC recom-

mendation using carbon dioxide.

In the first step, without any human guidance, unsupervised analysis by FLARE was run on

14 “training” samples, including multiple biological and technical replicates, and it identified a

subset bearing a 6-marker signature of long-term murine hematopoietic stem cells (LT-HSCs)

(Fig 4a and 4b). In the second step, using this signature location parameter, FLARE focused on

the corresponding region in an entirely new and much larger “test” sample (containing more

than a million cells measured with the same 6 markers) to detect a very rare population (con-

taining 0.045% of the total number of cells in the sample) with a more precise LT-HSC signa-

ture. This finding is supported by earlier analyses using sequential two-dimensional gating,

according to which LT-HSCs are known to be Lineage−Kit+Sca+CD34−CD48−CD150+. Using

parallel computation, the two steps took less than 10 minutes to finish. The consistency of the

detected subsets across all 14 training samples, the small size of the final detected population

and the precise marker-expressions of the cells therein all demonstrate how FLARE could be

used for high-speed automated identification of rare populations in cytometric data.

As a second application of FLARE, we used it for identifying a rare signature of a disease

during its progression. For this purpose, we used a model of myeloid leukemia that harbors

the oncogenic fusion of the PML gene and the retinoic acid receptor alpha (RARα). These

mice succumb to a lethal acute promeylocytic leukemia (APL) that can be subsequently trans-

planted with increasing aggressiveness [11]. We have previously characterized the cell surface

phenotype which drives the APL and it closely resembles the normal promyelocyte population

[12, 13]. Notably, the mature granulocytes, which differentiate from the leukemic stem cell

population (LSC) are unable to transplant the disease. The manual gating strategy for this pop-

ulation is challenging since these cells express low levels of lineage markers and are sequen-

tially gated for CD34/c-Kit and then Gr1/ FcgRIIb (Linlo c-kit+ CD34hi Grmid FcgRIIb+). This

population in a normal bone marrow is approximately 1% of the live bone marrow cells and

increases to 5-6% in the leukemic mice (Fig 5a).

By running FLARE on live-gated cells stained with markers for lineage, c-kit, CD34, Gr-1

and FcgRIIb we could identify 99 unique clusters that contained cells (Fig 6a). To determine if

the found clusters contained the LSC population, we focused on the populations with greater

than 1-fold change in their proportions compared to the normal mice. This allowed us to

“zoom” into 44 clusters of hematopoietic cells that increased during leukemia progression
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Fig 4. FLARE identifies rare HSC population in murine bone marrow samples undergoing normal hematopoiesis.

(a) In the first step, unsupervised clustering by the hierarchical Bayesian model is used to explore the different subsets

in 6-dimensional marker space. In 12 blood samples (3 biological replicate mice, 4 technical replicates per specimen),

FLARE identified 96 populations matched across all samples. Plots (a) and (b) show the heatmaps for two

representative samples, where each row represents a population’s mean intensities for the 6 markers represented by the

columns. Red/blue is used to depict high/low intensities. Thus a common region of interest, shown in green rectangle,

was identified. In the 2nd step, in a new and much larger sample, FLARE zoomed into the specified region to detect

the clusters therein. The uncovered hierarchy of populations is shown with a heatmap in plot (zoomed in right panel).

We identified one particular population (denoted by cluster #1; light green rectangle) that has the size (0.045%) and

marker-signature (Lineage−c-kit+Sca+CD34-CD48-CD150hi) consistent with the LT-HSC cells.

https://doi.org/10.1371/journal.pone.0228651.g004
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which were visualized with a heatmap (Fig 5b). We identified a block of clusters that matched

with the known surface phenotype of the promyelocytes and the LSCs, which we named the

“Promyelocyte Signature” (Clusters 99, 57, 39, 25, 50 in the green box, Fig 3c). We found the

promyelocyte cluster to represent 1% of the live cells in the normal mice, which increased to 6-

8% in the leukemic mice (Fig 6b). FLARE successfully identified this rare population and dem-

onstrates the utility for tracking changes within phenotypically defined populations during dis-

ease progression. Using parallel computing, this was accomplished in under 5 minutes.

The stochastic expression of cells in high-dimensional marker-space of cytometric data nat-

urally leads to the idea of modeling each cell population with a multivariate statistical distribu-

tion whose parameters can describe its characteristics [14]. Over the past decade,

computational cytometric studies have therefore led to a number of new applications of finite

mixture models [4, 6, 15–17]. Some of these have also involved hierarchical and multi-level

models [8, 10, 17]. Often, such methods were designed with the aim of detecting both known

as well as rare cell clusters [4, 18–20] in an automated manner. Other studies have developed

fast clustering algorithms with the aim of handling large cytometric data [21–23]. FLARE com-

bines the merits of such methods and aims and uses the power of parallel computation to pro-

vide the unique means of sharing information across and during the fitting to each sample an

overall hierarchical mixture model while allowing for sample-specific variations.

FLARE offers several distinct advantages specifically for characterization of rare popula-

tions. First, FLARE shares information across multiple samples in a hierarchical Bayesian

model (Fig 1) to identify cell populations in all samples or in only part of samples. Unlike com-

mon clustering methods, FLARE does not need a priori specification of the optimal number of

clusters in data, which gives it an advantage while searching samples which may contain popu-

lations ranging from significantly big to extremely rare. Instead, FLARE automatically allows

Fig 5. FLARE in PML-RARα transgenic mouse model. Wildtype (C57BL6) bone marrow, primary leukemic mice with PML-RARα transgenic

and secondarily transplanted mice were analyzed by flow cytometry (and gated as previously described [12]). Forward scatter (FSC), Lineage

staining (Lin) are gated serially from left panels to right. Experimentally determined surface phenotype of leukemic promyleocytes are gated (right

panel), and frequency of this population is shown among live cells.

https://doi.org/10.1371/journal.pone.0228651.g005
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Fig 6. FLARE in PML-RARα transgenic mouse model. Flow cytometric data from mice in panel (a) were analyzed with FLARE and a heat map of all 99

clusters with a surface phenotype and the proportion of the particular clusters among the live cells. The populations with greater than 1-fold change in their

proportions from primary or secondary leukemia compared to wild type bone marrow cells are shown in panel (b). Green box indicates clusters (50, 25, 39, 57

and 99) that contain the previously experimentally derived known surface phenotype of the leukemic promyelocytes (LinloCD34hic-KithiGr1midFcgRIIbhi). The

left panel represents the percentile of each flow staining parameter ranked among the 99 clusters. The right panel indicates proportion of live-gated cells within

each cluster.

https://doi.org/10.1371/journal.pone.0228651.g006
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an initial mixture model with a large number of components to become sparse as the inconsis-

tent clusters are removed and the actual number of clusters used to fit the data is learned in the

process. In practice, FLARE can be viewed as an efficient approximation to Dirichlet Process

Mixture (DPM) models, which have been used in the past [10]. Of course, FLARE uses the

strategy of information sharing for fitting robust models by verifying the rare clusters across

samples. Simulation results showed that FLARE achieves favorable estimation performance

over alternative methods (S1–S4 Figs).

Further, FLARE is fit with a Variational Bayes approach which provides computationally

efficient and accurate estimation of all the latent variables, i.e., the output of the model. Fur-

thermore, FLARE modeling is parallelized with careful consideration on workload balancing

in a distributed computing environment. It achieves almost linear speedup given more compu-

tational nodes (S5 Fig), making it truly scalable for large datasets.

Identification of rare cell subsets—while establishing their correspondence across multiple

samples—can (a) reveal, in an unsupervised way, the overall structure among the populations,

both big and small, with respect to each other in every sample, and thereby (b) provide contex-

tual information that helps in supervised dissection of the chosen regions of interest in the

marker-space to characterize the rare populations with further precision. Such progressive

“zooming in” capability of FLARE mimics the strength of sequential manual gating. An impor-

tant advantage of FLARE’s Bayesian design is that it can be made to systematically zoom into

interesting regions or populations by a priori specifications. Thus FLARE can perform increas-

ingly finer clustering using the same mathematical model, which can again match and verify

the finer subpopulations across multiple samples. This allows FLARE to combine the benefits

of an unsupervised clustering method with supervised analysis of manual sequential gating.

We illustrated these aspects of FLARE using a multi-step analysis of a hierarchy of cell popula-

tions as observed in two datasets based on (i) normal hematopoiesis in mice, and (ii) onco-

genic progression in a mouse model. Further examples of FLARE analyses of secondary (Treg)

and simulated datasets along with the performance results are described in S1 File and S1–S5

Figs.

Conclusion

In summary, the hierarchical design and distributed variational estimation allows FLARE to

share information about corresponding clusters across samples, and quickly detect a variety of

populations, including considerably rare ones, in an unsupervised manner. In the process, it

efficiently searches the high-dimensional marker-space to reveal the underlying population

structure. Thereupon it can progressively concentrate its search within regions of interest and

also perform supervised analysis of subpopulations similar in principle to manual gating

except FLARE does it in high-dimensions and with mathematical rigor. In our future work we

look forward to embedding this step into FACS systems for real-time sorting of the desired

cells. Since the multi-parametric population signatures reported by FLARE are quantitative

and precise, however rare the underlying events may be, it helps to verify and eventually stan-

dardize definitions of specific cellular species, allow objective extraction, and facilitate repro-

ducible cytometric analysis. Finally, the parallel estimation algorithm in FLARE is currently

implemented using Message Passing Interface (MPI) and can be readily adapted to popular

distributed computing platforms.

Supporting information

S1 Fig. The adjusted rand index of each method on the synthetic datasets. We use the hard

clustering results of the subject who has the small clusters to compute the ARIs against true
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clustering assignment.
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S2 Fig. Visualization of clustering results in synthetic data.

(PDF)

S3 Fig. Maximum Jaccard index on Treg dataset.

(PDF)

S4 Fig. Maximum detection accuracy on Treg dataset.

(PDF)

S5 Fig. Speedup rate and load balancing efficiency. The top panel shows the speedup rate

of our parallel inference algorithm using increasingly more cluster nodes. The bottom panel

shows the load balancing efficiency. The balancing efficiency is calculated using Eq (32).

With more nodes, the data are more evenly distributed so that the balancing efficiency keeps

increasing.

(PDF)

S1 File. Supplemental materials for ‘high-speed automatic characterization of rare events

in flow cytometric data’. Further details on the Experimental Results.
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