
materials

Article

Large Deflection Analysis of Peripherally Fixed Circular
Membranes Subjected to Liquid Weight Loading: A Refined
Design Theory of Membrane Deflection-Based Rain Gauges

Jun-Yi Sun 1,2,* , Qi Zhang 1, Ji Wu 1, Xue Li 1 and Xiao-Ting He 1,2

����������
�������

Citation: Sun, J.-Y.; Zhang, Q.; Wu, J.;

Li, X.; He, X.-T. Large Deflection

Analysis of Peripherally Fixed

Circular Membranes Subjected to

Liquid Weight Loading: A Refined

Design Theory of Membrane

Deflection-Based Rain Gauges.

Materials 2021, 14, 5992. https://

doi.org/10.3390/ma14205992

Academic Editor: Georgios

I. Giannopoulos

Received: 6 September 2021

Accepted: 9 October 2021

Published: 12 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Civil Engineering, Chongqing University, Chongqing 400045, China;
202016021045@cqu.edu.cn (Q.Z.); 202116131099t@cqu.edu.cn (J.W.); 20161602025t@cqu.edu.cn (X.L.);
hexiaoting@cqu.edu.cn (X.-T.H.)

2 Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University),
Ministry of Education, Chongqing 400045, China

* Correspondence: sunjunyi@cqu.edu.cn; Tel.: +86-(0)23-65120720

Abstract: The anticipated use of elastic membranes for deflection-based rain gauges has provided
an impetus for this paper to revisit the large deflection problem of a peripherally fixed circular
membrane subjected to liquid weight loading, a statics problem when the fluid–structure interaction
of membrane and liquid reaches static equilibrium. The closed-form solution of this statics problem
of fluid–structure interaction is necessary for the design of such membrane deflection-based rain
gauges, while the existing closed-form solution, due to the use of the small rotation angle assumption
of the membrane, cannot meet the design requirements for computational accuracy. In this paper,
the problem under consideration is reformulated by giving up the small rotation angle assumption,
which gives rise to a new and somewhat intractable nonlinear integro-differential equation of the
governing out-of-plane equilibrium. The power series method has played an irreplaceable role
in analytically solving membrane equations involving both integral and differential operations,
and a new and more refined closed-form solution without the small rotation angle assumption is
finally presented. Numerical examples conducted show that the new and more refined closed-form
solution presented has satisfactory convergence, and the effect of giving up the small rotation angle
assumption is also investigated numerically. The application of the closed-form solution presented
in designing such membrane deflection-based rain gauges is illustrated, and the reliability of the
new and more refined closed-form solution presented was confirmed by conducting a confirmatory
experiment.

Keywords: circular membrane; liquid weight loading; fluid–structure interaction; integro-differential
equation; power series method; closed-form solution

1. Introduction

Membranes are increasingly being used in a wide variety of applications [1–4]. In our
earlier work [5], the statics problem of fluid–structure interaction of a peripherally fixed
circular membrane subjected to liquid weight loading is investigated analytically. The
mathematical formulation of this problem results in a boundary value problem including
both differential operation and integral operation, and the resulting integro-differential
equations are successfully solved by using the power series method. Our primary motiva-
tion for investigating this fluid–structure interaction problem is to provide the closed-form
solution needed for the development of a new type of membrane deflection-based rain
gauge, a device for collecting and measuring the amount of rain which falls. In this study,
the statics problem of fluid–structure interaction addressed in [5] is reformulated and
solved, with an aim of giving a more refined closed-form solution than that given in [5],
which is essential for the development of this membrane deflection-based rain gauge.
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Many membranes can exhibit large elastic deflection under transverse loading [6–8],
which provides the possibility for the development of deflection measurement-based de-
vices [9–13]. Figure 1 shows the circular rainwater storage container of the membrane
deflection-based rain gauge to be developed, a vertically placed rigid round tube of finite
length with an inner radius a, whose upper end is open and whose lower end is sealed by
an initially flat, elastic circular membrane of radius aˆ which is used as an elastic bottom.
The circular membrane as the elastic bottom will exhibit elastic deflection as the rainwater
collected is injected into the storage container from the upper open end. Obviously, the
higher the height H of the rainwater stored in the container, the greater the maximum
deflection wm of the circular membrane, see Figure 1. If the circular membrane problem
shown in Figure 1, i.e., the problem of axisymmetric deformation and deflection of the
peripherally fixed circular membrane under liquid weight loading, can be analytically
solved, then the analytical relationship between the maximum deflection wm and the vol-
ume (or the height H) of the rainwater in the storage container can be obtained. Therefore,
with the obtained analytical relationship, the volume (or the height H) of the rainwater in
the storage container can be determined by measuring the maximum deflection wm. The
frequency (or time interval) of measuring the maximum deflection wm can be as small or
as large as desired, that is, the maximum deflection wm can be measured once per second
or minute or hour, providing convenience for different measurement data requirements.
The rainfall per unit of time can be determined by two sets of measurement data, i.e.,
by the change in the volume (or the height H) of the rainwater in the storage containers
divided by the time intervals of the two sets of measurement data. The rainfall per unit
of time is calculated usually in minutes for rainstorms or heavy rain and usually in hours
for moderate or light rain, but sometimes the volume of rainfall of moderate or light rain
per minute also needs to be known. Therefore, it is best for rainfall to be measured in
a continuous manner. However, traditional tipping bucket rain gauges (TBRGs) cannot
achieve continuous measurement of rainfall, because the time it takes to fill a TBRG bucket
with rainwater depends entirely on rainfall intensity [14,15]. Obviously, a TBRG bucket
that can be filled with rainwater in a minute during light rain is not suitable for measuring
the rainfall of rainstorm or heavy rain, because the volume of the bucket is too small and
the tipping occurs too quickly during heavy rain, especially in a rainstorms. The advantage
of the membrane deflection-based rain gauge proposed in this paper is that continuous
measurements can be easily achieved (so, the rainfall per minute or hour can be easily
given, regardless of whether one is measuring a rainstorm, heavy rain, moderate rain
or light rain), but only if a closed-form solution can be given for the circular membrane
problem in Figure 1.
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Therefore, the key problem to be solved is to give the closed-form solution for the
circular membrane problem shown in Figure 1. The large deflection phenomenon of
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membranes usually gives rise to nonlinear equations when formulated mathematically,
and these nonlinear equations are generally difficult to address analytically [16–21]. In
the existing literature, almost all analytical solutions for circular membrane problems are
applicable only to the case of uniform loading, that is, loads applied onto the surface
of circular membranes are always uniformly distributed regardless of membrane deflec-
tion [22–29]. However, shown in Figure 1, the loads (the liquid, rainwater) applied onto
the surface of the circular membrane are not uniformly distributed. The nonuniformity of
the liquid distributed on the circular membrane will vary with the height H of the liquid
stored in the container. In other words, liquid applied onto the surface of the initially flat
circular membrane gives rise to the deflection of the circular membrane, while in turn the
shape of the deflected circular membrane determines the distribution of the liquid over
the deflected circular membrane, i.e., the distribution of the loads acting on the deflected
circular membrane. Therefore, there is an interaction between the action field of the fluid
(rainwater) and the response field of the solid (membrane), resulting in the fluid–structure
interaction or coupling phenomenon. Obviously, for a given quantity of liquid (i.e., the
total volume of the rainwater injected into the storage container remains unchanged), the
two-phase coupling interface will eventually reach static equilibrium, resulting in a statics
problem of fluid–structure interaction.

This statics problem of fluid–structure interaction is analytically addressed in [5] for
the first time, where the out-of-plane equilibrium equation, in-plane equilibrium equation,
geometric equations and physical equations are established, and a closed-form solution
of the problem is presented. The out-of-plane equilibrium equation is obtained by the
equilibrium condition in the direction perpendicular to the initially flat circular membrane,
while the in-plane equilibrium equation is obtained by the equilibrium condition in the
direction parallel to the initially flat circular membrane. The geometric equations refer to the
relationship between the strain and displacement of the deflected circular membrane, while
the physical equations refer to the physical relationship between stress and strain following
the generalized Hooke’s law. In [5], the out-of-plane equilibrium equation established is
an integro-differential equation involving both integral and differential operations, which
makes it difficult to analytically solve the simultaneous equations of out-of-plane and in-
plane equilibrium equations, geometric equations and physical equations. The power series
method has played an irreplaceable role in overcoming the difficulty of analytically solving
these simultaneous equations, and due to its successful use, the closed-form solution for
these simultaneous equations is finally given. The research results in [5] show that the
fluid–structure coupling effect is substantial when the height H of the liquid (rainwater)
in the storage container is relatively small, but it slowly becomes weak as the height H
increases.

However, it can be seen from [5] that the integro-differential equation governing
the out-of-plane equilibrium (i.e., Equation (4) in [5]) is actually derived under the small
rotation angle assumption of a membrane—the rotation angle of the deflected circular
membrane, θ (see Figure 1), is assumed to be so small that sinθ can be approximated by
tanθ. That is, there exists an approximation of sinθ = tanθ under the small rotation angle
assumption of the membrane. For the problem under consideration, since tanθ is equal
to −dw/dr (r is the radial coordinate and w is the deflection, as in Figure 1, sinθ can be
written as sinθ = tanθ = −dw/dr, i.e., Equation (3) in [5]. As is known to all, the exact
relationship between sinθ and tanθ should be sinθ = 1/(1 + 1/tan2θ)1/2. Obviously, if
sinθ = 1/(1 + 1/tan2θ)1/2 = 1/[1 + 1/(−dw/dr)2]1/2 (rather than sinθ = tanθ = −dw/dr)
is used to establish the out-of-plane equilibrium equation, then the resulting the integro-
differential equation governing the out-of-plane equilibrium will become more complicated
mathematically, which can be seen in subsequent derivations (see Equations (3) and (4)
in this paper). The more complex out-of-plane equilibrium equation naturally makes it
more difficult to simultaneously solve the out-of-plane and in-plane equilibrium equation,
geometric equations and physical equations, which is why sinθ = tanθ is used instead of
sinθ = 1/(1 + 1/tan2θ)1/2 in [5].
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Obviously, the use of small rotation angle assumption of a membrane using sinθ = tanθ
instead of sinθ = 1/(1 + 1/tan2θ)1/2, will inevitably lead to the loss of computational
accuracy of the closed-form solution of the statics problem of fluid–structure interaction
shown in Figure 1, especially when the rotation angle of the deflected circular membrane,
θ, is relatively large, i.e., when the height H of the liquid injected into the storage container
is relatively large. Therefore, the closed-form solution presented by [5] is suitable only
for a case when the height H of the liquid injected into the storage container is relatively
small. In other words, if it is used when the height H of the liquid injected into the storage
container is relatively large, a large calculation error will be caused. For a membrane
deflection-based rain gauge to be developed, however, the height H needs to be able to
range from a very small value to a very large value, which means that a closed-form
solution whose computational accuracy is not affected by the change in the height H,
is necessary. The closed-form solution presented by [5] cannot meet the requirement to
develop such membrane deflection-based rain gauges, due to the use of small rotation
angle assumption of the membrane, that is, using sinθ = tanθ instead of sinθ = 1/(1 +
1/tan2θ)1/2. Therefore, it is necessary to give up the small rotation angle assumption of
the membrane, that is, using sinθ = 1/(1 + 1/tan2θ)1/2 (rather than sinθ = tanθ) during the
derivation of the integro-differential equation governing the out-of-plane equilibrium. It
can be seen from the following study that the closed-form solution which is obtained by
giving up the small rotation angle assumption of the membrane does have the desired
effect. The main aim of this study is to provide a closed-form solution without small
rotation angle assumption, whose computational accuracy is not affected by change in the
height H, in order to meet the requirement of developing such membrane deflection-based
rain gauges.

In the following section, the fluid–structure interaction problem in Figure 1 is reformu-
lated under the condition of using sinθ = 1/(1 + 1/tan2θ)1/2, resulting in a new and more
complicated integro-differential equation governing the out-of-plane equilibrium. The
problem reformulated is solved by using the power series method and a new, more refined
closed-form solution of the problem is finally presented. In Section 3, some important issues
are discussed, such as the validity and convergence of the closed-form solution presented.
The variation of the difference between the closed-form solutions presented by [5] and
by this paper with the increase of the height H is analyzed numerically. The application
of the closed-form solution presented in designing such membrane deflection-based rain
gauges is illustrated. In addition, in order to verify the validity of the closed-form solution
presented, a confirmatory experiment is conducted. Concluding remarks are given in
Section 4.

2. Membrane Equation and Its Solution

The circular rainwater storage container of the membrane deflection-based rain gauge
to be developed is as shown in Figure 1, where a rigid round tube of finite length with
inner radius a is placed vertically, such that the upper end of the round tube is open and
the lower end of the round tube is sealed by an initially flat, elastic circular membrane with
Young’s modulus of elasticity E, Poisson’s ratio ν and thickness h to form a soft bottom
with the ability of elastic deformation, the rainwater collected is injected into the storage
container from the upper end, and the maximum elastic deflection of the circular membrane
eventually reaches wm when the height of the rainwater stored in the container reaches H.

A piece of the central portion circular membrane whose radius is 0 ≤ r ≤ a is taken
as a free body to study its static problem of equilibrium, as shown in Figure 2, where the
origin o of the introduced cylindrical coordinate system (r, ϕ, w) is placed in the centroid
of the geometric intermediate plane of the initially flat circular membrane, the polar
coordinate plane (r, ϕ) is placed in the plane in which the geometric middle plane is located,
r denotes the radial coordinate, ϕ denotes the circumferential angle coordinate which is
not represented in Figure 2 due to the axisymmetry of the problem under consideration, w
denotes the axial coordinate as well as the transverse displacement of the deflected circular
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membrane, θ denotes the rotation angle of the deflected circular membrane, σr denotes
the radial stress, and q(r) denotes the transverse loads that varies continuously with the
radial coordinate r (i.e., the liquid acting on the surface of the deflected circular membrane,
which is distributed uniformly in the circumferential direction and unevenly in the radial
direction and can thus be represented as a function of the r).
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The free body shown in Figure 2 is subjected to the joint actions of the external action
force F(r) produced by the transverse loads q(r) within radius r and the total force 2πrσrh
produced by the membrane force σrh acting on the boundary r. Obviously, the external
force F(r) produced by q(r) within r is equal to the weight of the liquid within r, and is
given by

F(r) = ρg
∫ r

0
[w(r) + H] · 2πrdr = 2πρg

∫ r

0
w(r)rdr + ρgπr2H, (1)

where w(r) is the transverse displacement of the deflected circular membrane at r, ρ is the
liquid density and g is the acceleration of gravity. The direction of F(r) is always vertically
downward, that is, is always perpendicular to the initially flat circular membrane, while
the vertical upward force is equal to 2πrσrhsinθ, that is the vertical component of the force
2πrσrh at r. Therefore, after ignoring the weight of the circular membrane, the equilibrium
condition where the resultant force in the vertical direction is equal to zero gives

2πrσrh sin θ = F(r) = 2πρg
∫ r

0
w(r)rdr + ρgπr2H, (2)

where
sin θ = 1/

√
1 + 1/ tan2 θ = 1/

√
1 + 1/(−dw/dr)2. (3)

Substituting Equation (3) into Equation (2) yields

2rσrh√
1 + 1/(−dw/dr)2

= 2ρg
∫ r

0
w(r)rdr + ρgr2H. (4)

In [5], this expression, which corresponds to Equation (3) in this paper, is given by
sinθ = tanθ = −dw/dr, i.e., Equation (3) in [5]. It can be seen by comparing Equation (3)
in this paper with Equation (3) in [5] that the approximation of replacing sinθ = 1/(1 +
1/tan2θ)1/2 with sinθ = tanθ has been discarded in this paper. Equation (4) is the fluid–
structure coupling equation at static equilibrium, which is usually known as the out-of-
plane equilibrium equation. Obviously, this integro-differential equation governing the
out-of-plane equilibrium is much more complicated than the one presented in [5] (i.e.,
Equation (4) in [5]).
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The in-plane equilibrium equation can be established by the equilibrium condition of
the resultant force in the horizontal direction being equal to zero, and may be written as

d
dr

(rσrh)− σth = 0, (5)

where σt denotes the circumferential stress and σth is the circumferential membrane force.
Suppose that the radial strain is denoted by er, the circumferential strain is denoted by

et and the radial displacement is denoted by u. Then, the geometric equations, the relations
of strain and displacement, may be written as [22,23]

er =
du
dr

+
1
2
(

dw
dr

)
2

(6)

and
et =

u
r

. (7)

In addition, the membrane is still assumed to be a linearly elastic or Hooke-type
material. Thus the physical equations (i.e., the relations of stress and strain) follow the
generalized Hooke’s law

σr =
E

1 − ν2 (er + νet) (8)

and
σt =

E
1 − ν2 (et + νer). (9)

Eliminating er and et in Equations (8) and (9) by substituting Equations (6) and (7) into
Equations (8) and (9) yields

σr =
E

1 − ν2 [
du
dr

+
1
2
(

dw
dr

)
2
+ ν

u
r
], (10)

and

σt =
E

1 − ν2 [
u
r
+ ν

du
dr

+ ν
1
2
(

dw
dr

)
2
]. (11)

Eliminating du/dr + (dw/dr)2/2 from Equations (10) and (11) and then eliminating σt
using Equation (5) yields

u
r
=

1
Eh

(σth − νσrh) =
1

Eh
[

d
dr

(rσrh)− νσrh]. (12)

The usually consistency equation can be finally written by eliminating u from
Equations (10) and (12), as

r
d
dr

[
1
r

d
dr

(r2σrh)] +
Eh
2
(

dw
dr

)
2
= 0. (13)

The specific solutions of the radial stress σr and deflection w can be obtained from
Equations (4) and (13), where the boundary condition, under which Equations (4) and (13)
can be solved, are

dw
dr

= 0 at r = 0, (14)

u
r
=

1
Eh

[
d
dr

(rσrh)− νσrh] = 0 at r = a (15)

and
w = 0 at r = a. (16)
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Let us proceed to the following nondimensionalization

W =
w
a

, Sr =
σr

E
, St =

σt

E
, x =

r
a

, H0 =
H
a

, G =
ρga2

Eh
, (17)

and transform Equations (4), (5), (13)–(16), respectively, into

4x2S2
r (−

dW
dx

)
2
− G2[(−dW

dx
)

2
+ 1][

∫ x

0
2xW(x)dx + x2H0]

2
= 0, (18)

x2 d2Sr

dx2 + 3x
dSr

dx
+

1
2
(

dW
dx

)
2
= 0, (19)

St = Sr + x
dSr

dx
, (20)

dW
dx

= 0 at x = 0, (21)

u
r
= (1 − ν)Sr + x

dSr

dx
= 0 at x = 1 (22)

and
W = 0 at x = 1. (23)

Sr and W can be expanded into the power series of the x due to the fact that the stress
and deflection are both finite at x = 0, i.e., letting

Sr =
∞

∑
i=0

cixi (24)

and

W =
∞

∑
i=0

dixi. (25)

The recursion formulas for the coefficients ci and di in Equations (24) and (25) can be
determined by substituting Equations (24) and (25) into Equations (17) and (18), and the
results in this way are that both ci and di are always equal to zero when i is odd and can be
represented as the polynomials of c0 and d0 when i is even, as in Appendices A and B.

The remaining two coefficients, c0 and d0, are usually known as the undetermined
constants, and they can be determined by using the boundary conditions at x = 1 as follows.
From Equation (24), the boundary condition Equation (22) gives

(1 − ν)
∞

∑
i=0

ci +
∞

∑
i=1

ici = 0, (26)

and from Equation (25), the boundary condition Equation (23) gives

∞

∑
i=0

di = 0. (27)

After substituting all the recursion formulas for the coefficients ci and di into
Equations (26) and (27) repeatedly, a system of equations containing only c0 and d0 can
finally be obtained. As a result, the undetermined constants c0 and d0 can be determined by
solving this system of equations, and with the known c0 and d0, the expressions of Sr and
W can also be determined. The problem under consideration is thus solved analytically.

3. Results and Discussions

The boundary condition, Equation (21), which has not been used yet, i.e., the condition
of dW/dx = 0 at x = 0, can be used to confirm the validity of the above analytical process.
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The first derivative of the W versus the x can be obtained by the first derivative on both
sides of Equation (25),

dW
dx

=
∞

∑
i=1

idixi−1. (28)

Equation (28) shows that dW/dx ≡ d1 when x = 0, while it can be seen from the
derivation in Section 2 that d1 ≡ 0 because di ≡ 0 when i is odd. Therefore, it may be
concluded that dW/dx ≡ 0 at x = 0, which indicates that the boundary condition in
Equation (21) can be naturally met by the closed-form solution obtained in Section 2. This
to some extent indicates that the derivation in Section 2 is basically reliable.

3.1. The Convergence of the Power Series Solutions Obtained

Due to the complexity of the expressions of ci and di (see Appendices A and B),
the convergence of the power series solutions for radial stress and deflection obtained
in Section 2 has to be discussed by examining the convergence of their specific solutions
(rather than their general solutions). To this end, a numerical example was conducted where
a peripherally fixed circular membrane with Poisson’s ratio v = 0.45, Young’s modulus
of elasticity E = 3.05 MPa, thickness h = 0.3 mm and radius a = 70 mm was subjected to
the weight of the liquid with density ρ = 1 × 10−6 kg/mm3 and height H = 300 mm. For
convenience, the infinite power series in Equations (26) and (27) have to be truncated to n
terms, that is

(1 − ν)
n

∑
i=0

ci +
n

∑
i=1

ici = 0 (29)

and
n

∑
i=0

di = 0. (30)

The value of the parameter n in Equations (29) and (30) should be specified firstly,
and then all the recursion formulas for the coefficients ci and di in Appendices A and B are
repeatedly substituted into Equations (29) and (30) until a system of equations containing
only the undetermined constants c0 and d0 can be finally obtained. The numerical values of
c0 and d0, which correspond to the specified value of the parameter n, can be determined
by solving this system of equations with regard to c0 and d0.

We began the numerical value calculations of c0 and d0 from n = 2; the calculation
results are listed in Table 1 and the variations of c0 and d0 with n are shown in Figures 3
and 4. From Figures 3 and 4, it may be seen that the data sequences of c0 and d0 already
converge well when n = 18. Therefore, only the recursion formulas for the coefficients ci
and di when i ≤ 20 are listed in Appendices A and B, and the undetermined constants
c0 and d0 can finally take 1.98216876 × 10−1 and 3.91482802 × 10−1, respectively, i.e., the
values at n = 20 in Table 1.

Table 1. Numerical values of c0 and d0 at different n when H = 300 mm.

n c0 d0

2 1.65316391 × 10−1 3.77658452 × 10−1

4 1.85832249 × 10−1 3.95315235 × 10−1

6 1.92438471 × 10−1 3.95548206 × 10−1

8 1.95231453 × 10−1 3.94159221 × 10−1

10 1.96595308 × 10−1 3.93001167 × 10−1

12 1.97422893 × 10−1 3.92241509 × 10−1

14 1.97834610 × 10−1 3.91803156 × 10−1

16 1.97977443 × 10−1 3.91614348 × 10−1

18 1.98125067 × 10−1 3.91540206 × 10−1

20 1.98216876 × 10−1 3.91482802 × 10−1
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1 
 

 

Figure 3 

 

Figure 4 

Figure 3. Variation of c0 with n when H = 300 mm.

1 
 

 

Figure 3 

 

Figure 4 Figure 4. Variation of d0 with n when H = 300 mm.

To examine the convergence of the special solutions of stress and deflection with
c0 = 1.98216876 × 10−1 and d0 = 3.91482802 × 10−1 the numerical values of ci and di were
calculated, as listed in Table 2. The variations of ci and di with i are shown in Figures 5 and 6.
It may be seen from Figures 5 and 6 that the special solutions of stress and deflection at
x = 1 (i.e., at r = a = 70 mm, the worst case) converge very well.
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Table 2. Numerical values of ci and di when c0 = 1.98216876 × 10−1, d0 = 3.91482802 × 10−1 and
H = 300 mm.

i ci di

0 1.98216876 × 10−1 3.91482802 × 10−1

2 −2.49493987 × 10−2 −3.15907573 × 10−1

4 −4.85171579 × 10−3 −4.60740692 × 10−2

6 −1.58206170 × 10−3 −1.55521234 × 10−2

8 −6.42288769 × 10−4 −6.76343212 × 10−3

10 −2.94655565 × 10−4 −3.32901660 × 10−3

12 −1.46220841 × 10−4 −1.76487967 × 10−3

14 −7.66573427 × 10−5 −9.83324535 × 10−4

16 −4.18541507 × 10−5 −5.67748867 × 10−4

18 −2.35781462 × 10−5 −3.36715864 × 10−4

20 −1.36166630 × 10−5 −2.03918152 × 10−4

 

2 

 

Figure 5 

 

Figure 6 

 

Figure 7 

Figure 5. Variation of ci with i when c0 = 1.98216876 × 10−1, d0 = 3.91482802 × 10−1 and H = 300 mm.

 

2 

 

Figure 5 

 

Figure 6 

 

Figure 7 

Figure 6. Variation of di with i when c0 = 1.98216876 × 10−1, d0 = 3.91482802 × 10−1 and H = 300 mm.
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3.2. The Improved Effect of the Integro-Differential Out-of-Plane Equilibrium Equation

In Section 2, the approximation of replacing sinθ = 1/(1 + 1/tan2θ)1/2 with sinθ = tanθ
has been discarded during the derivation of the integro-differential equation for governing
the out-of-plane equilibrium. Now, let us see the effect of giving up this approximation
on the closed-form solutions. Figures 7 and 8 show the variation of deflection and stress
along the diameter when the height H of the rainwater stored in the container reaches 10,
300 and 1000 mm, respectively. In Figures 7 and 8, Solution 1 refers to the closed-form
solution, which is obtained by using sinθ = 1/(1 + 1/tan2θ)1/2 in Section 2, while Solution 2
refers to the closed-form solution which is obtained by using sinθ = tanθ in [5]. Therefore,
the comparison between Solution 1 and Solution 2 can reflect the effect of giving up the
approximation of replacing sinθ = 1/(1 + 1/tan2θ)1/2 with sinθ = tanθ. It may be seen
from Figures 7 and 8 that the two solutions agree quite closely when the height H of the
rainwater in the storage container is relatively small, but as the height H increases they
gradually diverge. This means that the use of sinθ = 1/(1 + 1/tan2θ)1/2 in Solution 1 has a
noticeable effect.

 

2 

 

Figure 5 

 

Figure 6 

 

Figure 7 Figure 7. The variations of w with r when H takes 10, 300 and 1000 mm, respectively.
 

3 

 

Figure 8 

 

Figure 10 
 

Figure 8. Variations of σr with r when H is 10, 300 and 1000 mm, respectively.

3.3. Two Typical Applications of the Closed-form Solution Given

The membrane deflection-based rain gauges to be developed will involve two main
types: one directly measures the maximum deflection wm of the deflected circular mem-
brane, as shown in Figure 1, and the other is to measure the capacitance of the non-parallel
plate capacitor as shown in Figure 9. The first type of rain gauge can use any thin film with
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good elasticity as the elastic bottom of the rainwater storage container, while the second
type must use conductive thin films [30,31] with both good elasticity and good electrical
conductivity as the upper electrode plate of the non-parallel plate capacitor (see Figure 9).
Let us continue with the numerical examples conducted in Section 3.1 to illustrate the
application of the closed-form solution given in Section 2 in designing such membrane
deflection-based rain gauges. We present here only the numerical calibration of such rain
gauges based on the closed-form solution given in Section 2.

Materials 2021, 14, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 9. Sketch of rain gauges based on membrane deflection and non-parallel plate capacitor. 

For the first type of rain gauge, the maximum deflection wm of the deflected circular 
membrane can be directly measured, for example, by a non-contact laser displacement 
sensor. Figure 10 shows a scatter diagram describing the relationship between the height 
H of the rainwater in the storage container and the maximum deflection wm of the de-
flected circular membrane, where the values of the scatter points are calculated using the 
closed-form solution given in Section 2, and then to fit the curve H = 44.34 − 11.23 wm + 
0.7323 wm2. Therefore, with the measured values of the maximum deflection wm, the cor-
responding values of the height H of the rainwater in the storage container can be deter-
mined using the analytical expression H = 44.34 − 11.23 wm + 0.7323 wm2. 

Figure 10. A scatter diagram describing the relationship of height H and maximum deflection wm. 

As for the second type of rain gauge shown in Figure 9, the capacitance of the non-
parallel plate capacitor is given by [13,32]. 

a a

r r
r rC r r

D w r D w r
π

ε ε ϕ πε ε
ϕ

=
− −  

2

0 00 0 0
d d =2 d

( , ) ( )
, (31) 

where ε0 is the vacuum dielectric constant (ε0 = 8.854187817 × 10−12 F/m), εr is the relative 
permittivity of dry air (εr = 1.000585), and D is the initial gap between the initial flat circular 

m mH w w= − + 244.34 11.23 0.7323

H[mm]

mw [mm]

Figure 9. Sketch of rain gauges based on membrane deflection and non-parallel plate capacitor.

For the first type of rain gauge, the maximum deflection wm of the deflected circular
membrane can be directly measured, for example, by a non-contact laser displacement
sensor. Figure 10 shows a scatter diagram describing the relationship between the height H
of the rainwater in the storage container and the maximum deflection wm of the deflected
circular membrane, where the values of the scatter points are calculated using the closed-
form solution given in Section 2, and then to fit the curve H = 44.34 − 11.23 wm + 0.7323 wm

2.
Therefore, with the measured values of the maximum deflection wm, the corresponding
values of the height H of the rainwater in the storage container can be determined using
the analytical expression H = 44.34 − 11.23 wm + 0.7323 wm

2.
As for the second type of rain gauge shown in Figure 9, the capacitance of the non-

parallel plate capacitor is given by [13,32].

C = ε0εr

∫ 2π

0

∫ a

0

r
D − w(r, ϕ)

dϕdr = 2πε0εr

∫ a

0

r
D − w(r)

dr, (31)

where ε0 is the vacuum dielectric constant (ε0 = 8.854187817 × 10−12 F/m), εr is the relative
permittivity of dry air (εr = 1.000585), and D is the initial gap between the initial flat circular
membrane and the circular conductive thin plate (suppose that D takes 35 mm here). From
Equations (17) and (25) the dimensional deflection w(r) can be written as

w(r) =
∞

∑
i=0

di

ai−1 ri. (32)

If letting
r

D − w(r)
=

∞

∑
i=0

biri, (33)
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then it is not difficult that the coefficients bi is expressed as the polynomials with regards to
di and D. Therefore, the capacitance of the non-parallel plate capacitor as shown in Figure 9
can be finally written as

C = 2πε0εr

∫ a

0
(

∞

∑
i=0

biri)dr = 2πε0εr

∞

∑
i=0

biai+1

i + 1
, (34)

where bi ≡ 0 (i = 0, 2, 4, . . . ) and bi (i = 1, 3, 5, . . . ) are listed in Appendix C.
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Figure 10 
 

Figure 10. A scatter diagram describing the relationship of height H and maximum deflection wm.

Figure 11 shows a scatter diagram describing the relationship between the height
H of the rainwater in the storage container and the capacitance C of the non-parallel
plate capacitor, where the values of the scatter points are calculated using the closed-form
solution given in Section 2 and Equation (34), and then used to fit the curve H = (0.3596C2

+ 197.6C − 877.2)/(C − 2.09). Therefore, with the measured values of the capacitance C,
the corresponding values of the height H of the rainwater in the storage container can be
determined using the analytical expression H = (0.3596C2 + 197.6C - 877.2)/(C − 2.09).

 

4 

 

Figure 11 

 

Figure 13 

Figure 11. A scatter diagram describing the relationship of height H and capacitance C.
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3.4. Confirmatory Experiment

In order to verify the validity of the closed-form solution given in Section 2, we
conducted a confirmatory experiment. As shown in Figure 12, a peripherally fixed cir-
cular silicon rubber thin-film with Poisson’s ratio v = 0.45, Young’s modulus of elasticity
E = 3.05 MPa, thickness h = 2 mm and radius a = 70 mm was subjected to the weight of
the liquid (colored water) with density ρ = 1 × 10−6 kg/mm3 and height H = 100 mm. We
use a non-contact laser displacement sensor (ZSY Group Ltd., London, UK, see Figure 12c)
to measure membrane deflection at 13 test points (see Figure 12d). The results of the
experimental test and theoretical calculation of deflection as well as their relative errors are
listed in Table 3, and the deflection curves along the diameter are shown in Figure 13.
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Table 3. Experimental and theoretical values of deflection and their relative errors when
H = 97.5 mm.

Test Points Radius Experimental
Results

Calculated
Results Relative Errors

1 60 2.89 2.8400 1.73%
2 50 5.19 5.1016 1.70%
3 40 6.99 6.8729 1.67%
4 30 8.33 8.2082 1.46%
5 20 9.27 9.1414 1.39%
6 10 9.80 9.6937 1.08%
7 0 9.97 9.8766 0.94%
8 10 9.82 9.6937 1.29%
9 20 9.29 9.1414 1.60%
10 30 8.34 8.2082 1.58%
11 40 6.96 6.8729 1.25%
12 50 5.19 5.1016 1.70%
13 60 2.89 2.8400 1.73%

Relative errors = |Experimental results–Theoretical results|/Experimental results.

 

4 

 

Figure 11 

 

Figure 13 Figure 13. Membrane deflection along the diameter when H = 97.5 mm.

It may be seen from Table 3 or Figure 13 that the results of experimental test and
theoretical calculation agree well, which means that the closed-form solution obtained
in Section 2 is basically reliable. Of course, the computational accuracy of the closed-
form solution presented here needs to be further improved. Some approximations or
assumptions are still used during the derivation of the in-plane equilibrium and geometric
equations, which should be the main reason for the relative errors in Table 3.

4. Concluding Remarks

In this paper, the statics problem of the fluid–structure interaction of a peripherally
fixed circular membrane subjected to liquid weight loading is reformulated, where the
approximation of replacing sinθ = 1/(1 + 1/tan2θ)1/2 with sinθ = tanθ, which is adopted
in the earlier work [5], is discarded. The previous integro-differential equation governing
the out-of-plane equilibrium, established by using sinθ = tanθ in [5], was modified using
sinθ = 1/(1 + 1/tan2θ)1/2, resulting in a new and more complicated integro-differential
equation governing the out-of-plane equilibrium. The reformulated problem was solved
using the power series method, and a new and more refined closed-form solution of
the problem was finally given. Some important issues were addressed numerically and
experimentally. The following conclusions can be drawn from this study.
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The sine function, sinθ, can be approximated by the tangent function, tanθ, only when
the rotation angle θ of membrane is relatively small; when the rotation angle θ of membrane
is relatively large, such an approximation will give rise to a significant error. For instance,
the error caused by using tanθ to approximate sinθ was about 1.54% when θ = 10◦, 6.42%
when θ = 20◦, 15.47% when θ = 30◦, and 30.54% when θ = 40◦. In fact, the rotation-angle θ of
the membrane may exceed 40◦ for membrane deflection-based rain gauges to be developed.
Therefore, it is necessary and worthwhile for such technical applications to discard the
approximation of replacing sinθ = 1/(1 + 1/tan2θ)1/2 with sinθ = tanθ during the derivation
of the closed-form solution of the problem under consideration.

The power series method is a very effective mathematical tool for solving nonlinear
equations. Although the new integro-differential equation governing the out-of-plane
equilibrium is much more complicated than the previous one, the power series solutions
obtained for stress and deflection still have good convergence and fast convergence speed.

In addition, the closed-form solution obtained in Section 2 is in good agreement
with the confirmatory experiment conducted, suggesting that this closed-form solution is
basically reliable and can be used to design the membrane deflection-based rain gauges to
be developed.
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Nomenclature

a Radius of the circular membrane
h Thickness of the circular membrane
E Young’s modulus of elasticity
ν Poisson’s ratio
H Height of the liquid in the storage container
ρ Density of the liquid in the storage container
g Acceleration of gravity
r Radial coordinate of the cylindrical coordinate system (r, ϕ, w)
ϕ Circumferential angle coordinate of (r, ϕ, w)
w Axial coordinate of (r, ϕ, w) as well as transverse displacement
u Radial displacement of the deflected circular membrane
wm Maximum deflection of the deflected circular membrane
q(r) Transverse loads that varies continuously with the radial coordinate r
F(r) External force produced by q(r) within radius r
σr Radial stress
σt Circumferential stress
er Radial strain
et Circumferential strain
θ Rotation angle of the deflected circular membrane
π Pi (ratio of circumference to diameter)
W Dimensionless transverse displacement (w/a)
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Sr Dimensionless radial stress (σr/E)
St Dimensionless circumferential stress (σt/E)
H0 Dimensionless height H (H/a)
G Dimensionless quantity (ρga2/Eh)
x Dimensionless radial coordinate (r/a)
C Capacitance of a non-parallel plate capacitor
D Initial gap of the non-parallel plate capacitor
bi Coefficients of the power series for capacitance C
ci Coefficients of the power series for Sr
di Coefficients of the power series for W

Appendix A

c2 = −G2(H0 + d0)
2

64c2
0

,

c4 = − 1
192 c2

0
(4 G2H2

0 d2
2 + 8 G2H0d0d2

2 + 4 G2d2
0d2

2 + G2H0d2 + G2d0d2 − 32 c0c2d2
2),

c6 = − 1
4608 c2

0
(192 G2H2

0 d2d4 + 384 G2H0d0d2d4 + 48 G2H0d3
2 + 192 G2d2

0d2d4 + 48 G2d0d3
2

+8 G2H0d4 + 8 G2d4d0 + 3 G2d2
2 − 1536 c0c2d2d4 − 384 c0c4d2

2 − 192 c2
2d2

2)

c8 = − 1
3840 c2

0
(144 G2H2

0 d2d6 + 96 G2H2
0 d2

4 + 288 G2H0d0d2d6 + 192 G2H0d0d2
4 + 96 G2d2

0d2
4

+112 G2H0d2
2d4 + 144 G2d2

0d2d6 + 112 G2d0d2
0d4 + 6 G2d4

2 + 3 G2H0d6 − 768 c0c4d2d4
+3 G2d6d0 + 2 G2d4d2 − 1152 c0c2d2d6 − 768 c0c2d2

4 − 192 c0c6d2
2 − 384 c2

2d2d4 − 192 c2c4d2
2)

c10 = − 1
172800c2

0
(5760G2H2

0 d2d8 + 8640G2H2
0 d4d6 + 11520G2H0d0d2d8 + 17280G2H0d0d4d6

+4680G2H0d2
2d6 + 4800G2H0d2d2

4 + 5760G2d2
0d2d8 + 8640G2d2

0d4d6 + 4680G2d0d2
2d6

+4800G2d0d2d2
4 + 960G2d3

2d4 + 72G2H0d8 + 72G2d0d8 + 45G2d2d6 + 20G2d2
4

−46080c0c2d2d8 − 69120c0c2d4d6 − 34560c0c4d2d6 − 23040c0c4d2
4 − 23040c0c6d2d4

−5760c0c8d2
2 − 17280c2

2d2d6 − 11520c2
2d2

4 − 23040c2c4d2d4 − 5760c2 c6d2
2 − 2880c2

4d2
2)

c12 = − 1
120960c2

0
(3600G2H2

0 d2d10 + 5760G2H2
0 d4d8 + 3240G2H2

0 d2
6 + 7200G2H0d0d2d10

+11520G2H0d0d4d8 + 6480G2H0d0d2
6 + 3024G2H0d2

2d8 + 6480G2H0d2d4d6 + 960G2H0d3
4

+3600G2d2
0d2d10 + 5760G2d2

0d4d8 + 3240G2d2
0d2

6 + 3024G2d0d2
2d8 + 6480G2d0d2d4d6

+960G2d0d3
4 + 630G2d3

2d6 − 46080c0c2d4d8 + 30G2H0d10 + 30G2d0d10 + 18G2d2d8
+15G2d4d6 − 28800c0c2d2d10 + 880G2d2

2d2
4 − 25920c0c2d2

6 − 23040c0c4d2d8 − 34560c0c4d4d6
−17280c0c6d2d6 − 11520c0c6d2

4 − 11520c0c8d2d4 − 2880c0c10d2
2 − 11520c2

2d2d8 − 17280c2
2d4d6

−17280c2c4d2d6 − 11520c2c4d2
4 − 11520c0c6d2d4 − 2880c2c8d2

2 − 5760c2
4d2d4 − 2880c4c6d2

2)

c14 = − 1
9031680c2

0
(241920G2H2

0 d2d12 + 403200G2H2
0 d4d10 + 483840G2H2

0 d6d8 − 322560c2
4d2

4

+483840G2H0d0d2d12 + 806400G2H0d0d4d10 + 967680G2H0d0d6d8 + 208320G2H0d2
2d10

+462336G2H0d2d4d8 + 241920G2H0d2d2
6 + 201600G2H0d2

4d6 + 241920G2d2
0d2d12

+403200G2d2
0d4d10 + 483840G2d2

0d6d8 + 208320G2d0d2
2d10 + 462336G2d0d2d4d8

+241920G2d0d2d2
6 + 201600G2d0d2

4d6 + 44352G2d3
2d8 + 124320G2d2

2d4d6 + 35840G2d2d3
4

+1440G2H0d12 + 1440G2d0d12 + 840G2d2d10 + 672G2d4d8 + 315G2d2
6 − 1935360c0c2d2d12

−3225600c0c2d4d10 − 3870720c0c2d6d8 − 1612800c0c4d2d10 − 2580480c0c4d4d8
−1451520c0c4d2

6 − 1290240c0c6d2d8 − 1935360c0c6d4d6 − 967680c0c8d2d6 − 645120c0c8d2
4

−645120c0c10d2d4 − 161280c0c12d2
2 − 806400c2

2d2d10 − 1290240c2
2d4d8 − 725760c2

2d2
6

−1290240c2c4d2d8 − 1935360c2c4d4d6 − 967680c2c6d2d6 − 645120c2c6d2
4 − 645120c2c8d2d4

−161280c2c10d2
2 − 483840c2

4d2d6 − 645120c4c6d2d4 − 161280c4c8d2
2 − 80640c2

6d2
2)
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c16 = − 1
2903040c2

0
(70560G2H2

0 d2d14 + 120960G2H2
0 d4d12 + 151200G2H2

0 d6d10 + 80640G2H2
0 d2

8

+141120G2H0d0d2d14 + 241920G2H0d0d4d12 + 302400G2H0d0d6d10 + 161280G2H0d0d2
8

+61920G2H0d2
2d12 + 141120G2H0d2d4d10 + 153216G2H0d2d6d8 + 61824G2H0d2

4d8
+60480G2H0d4d2

6 + 70560G2d2
0d2d14 + 120960G2d2

0d4d12 + 151200G2d2
0d6d10

+80640G2d2
0d2

8 + 61920G2d0d2
2d12 + 141120G2d0d2d4d10 + 153216G2d0d2d6d8

+61824G2d0d2
4d8 + 60480G2d0d4d2

6 + 13440G2d3
2d10 + 38304G2d2

2d4d8 + 140G2d4d10
+19215G2d2

2d6
2 + 31920G2d2d2

4d6 + 2240G2d4
4 + 315G2H0d14 + 315G2d0d14 + 180G2d2d12

+126G2d6d8 − 564480c0c2d2d14 − 967680c0c2d4d12 − 1209600c0c2d6d10 − 645120c0c2d2
8

−806400c0c4d4d10 − 967680c0c4d6d8 − 403200c0c6d2d10 − 645120c0c6d4d8 − 483840c0c4d2d12
−362880c0c6d2

6 − 322560c0c8d2d8 − 483840c0c8d4d6 − 241920c0c10d2d6 − 161280c0c10d2
4

−161280c0c12d2d4 − 40320c0c14d2
2 − 241920c2

2d2d12 − 403200c2
2d4d10 − 483840c2

2d6d8
−403200c2c4d2d10 − 645120c2c4d4d8 − 362880c2c4d2

6 − 322560c2c6d2d8 − 483840c2c6d4d6
−241920c2c8d2d6 − 161280c2c8d2

4 − 161280c2c10d2d4 − 40320c2c12d2
2 − 161280c4

2d2d8
−241920c2

4d4d6 − 241920c4c6d2d6 − 161280c4c6d2
4 − 161280c4c8d2d4 − 40320c4c10d2

2
−80640c2

6d2d4 − 40320c6c8d2
2)

c18 = − 1
36288000c2

0
(806400G2H2

0 d2d16 + 1411200G2H2
0 d4d14 + 1814400G2H2

0 d6d12

+2016000G2H2
0 d8d10 + 1612800G2H0d0d2d16 + 2822400G2H0d0d4d14 + 718200d2

2G2d14H0
+4032000G2H0d0d8d10 + 3628800G2H0d0d6d12 + 1670400G2H0d2d4d12 + 967680G2H0d2d2

8
+1864800G2H0d2d6d10 + 739200G2H0d2

4d10 + 1451520G2H0d4d6d8 + 226800G2H0d3
6

+806400G2d2
0d2d16 + 1411200G2d2

0d4d14 + 1814400G2d2
0d6d12 + 2016000G2d2

0d8d10
+718200d2

2G2d14d0 + 1670400G2d0d2d4d12 + 1864800G2d0d2d6d10 + 967680G2d0d2d2
8

+739200G2d0d2
4d10 + 1451520G2d0d4d6d8 + 226800G2d0d3

6 + 158400G2d3
2d12 + 1050G2d6d10

+459200G2d2
2d4d10 + 468720G2d2

2d6d8 + 380800G2d2d2
4d8 + 365400G2d2d4d2

6 + 504G2d2
8

+100800G2d3
4d6 + 2800G2d16H0 + 2800G2d16d0 + 1575G2d2d14 + 1200G2d4d12

−6451200c0c2d2d16 − 11289600c0c2d4d14 − 14515200c0c2d6d12 − 16128000c0c2d8d10
−5644800c0c4d2d14 − 9676800c0c4d4d12 − 12096000c0c4d6d10 − 6451200c0c4d2

8
−4838400c0c6d2d12 − 8064000c0c6d4d10 − 9676800c0c6d6d8 − 4032000c0c8d2d10
−6451200c0c8d4d8 − 3628800c0c8d2

6 − 3225600c0c10d2d8 − 4838400c0c10d4d6
−2419200c0c12d2d6 − 1612800c0c12d2

4 − 1612800d2d4c0c14 − 403200d2
2c0c16

−2822400c2
2d2d14 − 4838400c2

2d4d12 − 6048000c2
2d6d10 − 3225600c2

2d2
8 − 403200d2

2c6c10
−4838400c2c4d2d12 − 8064000c2c4d4d10 − 9676800c2c4d6d8 − 4032000c2c6d2d10

−6451200c2c6d4d8 − 3628800c2c6d2
6 − 3225600c2c8d2d8 − 4838400c2c8d4d6

−2419200c2c10d2d6 − 1612800c2c10d2
4 − 1612800d2d4c2c12 − 403200d2

2c2c14
−2016000c2

4d2d10 − 3225600c2
4d4d8 − 1814400c2

4d2
6 − 3225600c4c6d2d8

−4838400c4c6d4d6 − 2419200c4c8d2d6 − 1612800c4c8d2
4 − 1612800d2d4c4c10

−403200d2
2c4c12 − 1209600c2

6d2d6 − 806400c2
6d2

4 − 1612800d2d4c6c8 − 201600d2
2c2

8)
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c20 = − 1
22176000c2

0
(453600G2H2

0 d2d18 + 806400G2H2
0 d4d16 + 1058400G2H2

0 d6d14

+1209600G2H2
0 d8d12 + 630000G2H2

0 d2
10 + 907200G2H0d0d2d18 + 1612800G2H0d0d4d16

+2116800G2H0d0d6d14 + 2419200G2H0d0d8d12 + 408800G2H0d2
2d16 + 966000G2H0d2d4d14

+1260000G2H0d0d2
10 + 1101600G2H0d2d6d12 + 1176000G2H0d2d8d10 + 432000G2H0d2

4d12
+856800G2H0d4d6d10 + 430080G2H0d4d2

8 + 393120G2H0d2
6d8 + 453600G2d2

0d2d18
+806400G2d2

0d4d16 + 1058400G2d2
0d6d14 + 1209600G2d2

0d8d12 + 630000G2d2
0d2

10
+408800G2d0d2

2d16 + 966000G2d0d2d4d14 + 1101600G2d0d2d6d12 + 1176000G2d0d2d8d10
+432000G2d0d2

4d12 + 856800G2d0d4d6d10 + 430080G2d0d4d2
8 + 393120G2d0d2

6d8
+91350G2d3

2d14 + 268800G2d2
2d4d12 + 279300G2d2

2d6d10 + 142128G2d2
2d2

8
+224000G2d2d2

4d10 + 426720G2d2d4d6d8 + 66150G2d2d3
6 + 58240G2d3

4d8 + 81900G2d2
4d2

6
+1260G2H0d18 + 1260G2d18d0 + 700G2d16d2 + 525G2d14d4 + 450G2d12d6 + 420G2d10d8

−3628800c0c2d2d18 − 6451200c0c2d4d16 − 8467200c0c2d6d14 − 9676800c0c2d8d12
−5040000c0c2d2

10 − 3225600c0c4d2d16 − 5644800c0c4d4d14 − 7257600c0c4d6d12
−8064000c0c4d8d10 − 2822400c0c6d2d14 − 4838400c0c6d4d12 − 6048000c0c6d6d10
−3225600c0c6d2

8 − 2419200c0c8d2d12 − 4032000c0c8d4d10 − 4838400c0c8d6d8
−2016000c0c10d2d10 − 3225600c0c10d4d8 − 1814400c0c10d2

6 − 1612800c0c12d2d8
−2419200c0c12d4d6 − 1209600c0c14d2d6 − 806400c0c14d2

4 − 806400c0c16d2d4
−201600c0c18d2

2 − 1612800c2
2d2d16 − 2822400c2

2d4d14 − 3628800c2
2d6d12

−4032000c2
2d8d10 − 2822400c2c4d2d14 − 4838400c2c4d4d12 − 6048000c2c4d6d10

−3225600c2c4d2
8 − 2419200c2c6d2d12 − 4032000c2c6d4d10 − 4838400c2c6d6d8

−2016000c2c8d2d10 − 3225600c2c8d4d8 − 1814400c2c8d2
6 − 1612800c2c10d2d8

−2419200c2c10d4d6 − 1209600c2c12d2d6 − 806400c2c12d2
4 − 806400c2c14d2d4

−201600c2c16d2
2 − 1209600c2

4d2d12 − 2016000c2
4d4d10 − 2419200c2

4d6d8
−2016000c4c6d2d10 − 3225600c4c6d4d8 − 1814400c4c6d2

6 − 1612800c4c8d2d8
−2419200c4c8d4d6 − 1209600c4c10d2d6 − 806400c4c10d2

4 − 806400c4c12d2d4
−201600c4c14d2

2 − 806400c2
6d2d8 − 1209600c2

6d4d6 − 1209600c6c8d2d6 − 806400c6c8d2
4

−806400c6c10d2d4 − 201600c6c12d2
2 − 403200c2

8d2d4 − 201600c8c10d2
2)

Appendix B

d2 = −G(H0 + d0)

4c0
,

d4 =
1

64 c2
0
(4 G2H2

0 d2 + 8 G2H0d0d2 + 4 G2d2
0d2 + G2H0 + G2d0 − 32 c0c2d2),

d6 = 1
1152 c2

0d2
(192 G2H2

0 d2d4 + 384 G2H0d0d2d4 + 48 G2H0d3
2 + 192 G2d2

0d2d4 + 48 G2d0d3
2

+8 G2H0d4 + 8 G2d4d0 + 3 G2d2
2 − 768 c2

0d2
4 − 1536 c0c2d2d4 − 384 c0c4d2

2 − 192 c2
2d2

2)

d8 = 1
768 c2

0d2
(144 G2H2

0 d2d6 + 96 G2H2
0 d2

4 + 288 G2H0d0d2d6 + 192 G2H0d0d2
4

+112 G2H0d2
2d4 + 144 G2d2

0d2d6 + 96 G2d2
0d2

4 + 112 G2d0d2
2d4 + 6 G2d4

2 + 3 G2H0d6
+3 G2d6d0 + 2 G2d4d2 − 1152 c2

0d4d6 − 1152 c0c2d2d6 − 768 c0c2d4
2 − 768 c0c4d2d4

−192 c0c6d2
2 − 384 c2

2d2d4 − 192 c2c4d2
2)

d10 = 1
28800c2

0d2
(5760G2H2

0 d2d8 + 8640G2H2
0 d4d6 + 11520G2H0d0d2d8 + 17280G2H0d0d4d6

+4680G2H0d2
2d6 + 4800G2H0d2d2

4 + 5760G2d2
0d2d8 + 8640G2d2

0d4d6 + 4680G2d0d2
2d6

+4800G2d0d2d2
4 + 960G2d3

2d4 + 72G2H0d8 + 72G2d0d8 + 45G2d2d6 + 20G2d2
4 − 46080c2

0d4d8
−25920c2

0d2
6 − 46080c0c2d2d8 − 69120c0c2d4d6 − 34560c0c4d2d6 − 23040c0c2d2

4 − 5760c0c8d2
2

−23040c0c6d2d4 − 17280c2
2d2d6 − 11520c2

2d2
4 − 23040c2c4d2d4 − 5760c2c6d2

2 − 2880c2
4d2

2)
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d12 = 1
17280c2

0d2
(3600G2H2

0 d2d10 + 5760G2H2
0 d4d8 + 3240G2H2

0 d2
6 + 7200G2H0d0d2d10

+11520G2H0d0d4d8 + 6480G2H0d0d2
6 + 3024G2H0d2

2d8 + 6480G2H0d2d4d6 + 960G2H0d3
4

+3600G2d2
0d2d10 + 5760G2d2

0d4d8 + 3240G2d2
0d2

6 + 3024G2d0d2
2d8 + 6480G2d0d2d4d6

+960G2d0d3
4 + 630G2d3

2d6 + 880G2d2
2d2

4 + 30G2H0d10 + 30G2d0d10 + 18G2d2d8 + 15G2d4d6
−28800c2

0d4d10 − 34560c2
0d6d8 − 28800c0c2d2d10 − 46080c0c2d4d8 − 25920c0c2d2

6
−23040c0c4d2d8 − 34560c0c4d4d6 − 17280c0c6d2d6 − 11520c0c6d2

4 − 11520c0c8d2d4
−2880c0c10d2

2 − 11520c2
2d2d8 − 17280c2

2d4d6 − 17280c2c4d2d6 − 11520c2c4d2
4

−11520c2c6d2d4 − 2880c2c8d2
2 − 5760c2

4d2d4 − 2880c4c6d2
2)

d14 = 1
1128960c2

0d2
(241920G2H2

0 d2d12 + 403200G2H2
0 d4d10 + 483840G2H2

0 d6d8

+483840G2H0d0d2d12 + 806400G2H0d0d4d10 + 967680G2H0d0d6d8 + 208320G2H0d2
2d10

+462336G2H0d2d4d8 + 241920G2H0d2d2
6 + 201600G2H0d2

4d6 + 241920G2d2
0d2d12

+403200G2d2
0d4d10 + 483840G2d2

0d6d8 + 208320G2d0d2
2d10 + 462336G2d0d2d4d8

+241920G2d0d2d2
6 + 201600G2d0d2

4d6 + 44352G2d3
2d8 + 124320G2d2

2d4d6 + 35840G2d2d3
4

+1440G2H0d12 + 1440G2d0d12 + 840G2d2d10 + 672G2d4d8 + 315G2d2
6 − 1935360c2

0d4d12
−2419200c2

0d6d10 − 1290240c2
0d2

8 − 1935360c0c2d2d12 − 3225600c0c2d4d10 − 3870720c0c2d6d8
−1612800c0c4d2d10 − 2580480c0c4d4d8 − 1451520c0c4d2

6 − 1290240c0c6d2d8
−1935360c0c6d4d6 − 967680c0c8d2d6 − 645120c0c8d2

4 − 645120c0c10d2d4 − 161280c0c12d2
2

−806400c2
2d2d10 − 1290240c2

2d4d8 − 725760c2
2d2

6 − 1290240c2c4d2d8 − 1935360c2c4d4d6
−967680c2c6d2d6 − 645120c2c6d2

4 − 645120c2c8d2d4 − 161280c2c10d2
2 − 483840c2

4d2d6
−322560c2

4d2
4 − 645120c4c6d2d4 − 161280c4c8d2

2 − 80640c2
6d2

2)

d16 = 1
322560c2

0d2
(70560G2H2

0 d2d14 + 120960G2H2
0 d4d12 + 151200G2H2

0 d6d10 + 315G2H0d14

+80640G2H2
0 d2

8 + 141120G2H0d0d2d14 + 241920G2H0d0d4d12 + 302400G2H0d0d6d10
+161280G2H0d0d2

8 + 61920G2H0d2
2d12 + 141120G2H0d2d4d10 + 153216G2H0d2d6d8

+61824G2H0d2
4d8 + 60480G2H0d4d2

6 + 70560G2d2
0d2d14 + 120960G2d2

0d4d12 − 40320c6c8d2
2

+151200G2d2
0d6d10 + 80640G2d2

0d2
8 + 61920G2d0d2

2d12 + 141120G2d0d2d4d10 + 2240G2d4
4

+153216G2d0d2d6d8 + 61824G2d0d2
4d8 + 60480G2d0d4d2

6 + 13440G2d3
2d10 + 38304G2d2

2d4d8
+19215G2d2

2d6
2 + 31920G2d2d2

4d6 + 315G2d0d14 + 180G2d2d12 + 140G2d4d10 + 126G2d6d8
−564480c0c2d2d14 − 967680c0c2d4d12 − 1209600c0c2d6d10 − 645120c0c2d2

8 − 483840c0c4d2d12
−806400c0c4d4d10 − 967680c0c4d6d8 − 403200c0c6d2d10 − 645120c0c6d4d8 − 362880c0c6d2

6
−322560c0c8d2d8 − 483840c0c8d4d6 − 241920c0c10d2d6 − 161280c0c10d2

4 − 161280c0c12d2d4
−40320c0c14d2

2 − 241920c2
2d2d12 − 40320c4c10d2

2 − 403200c2
2d4d10 − 483840c2

2d6d8
−403200c2c4d2d10 − 645120c2c4d4d8 − 362880c2c4d2

6 − 322560c2c6d2d8 − 483840c2c6d4d6
−241920c2c8d2d6 − 161280c2c8d2

4 − 161280c2c10d2d4 − 40320c2c12d2
2 − 161280c4

2d2d8
−80640c2

6d2d4 − 241920c2
4d4d6 − 241920c4c6d2d6 − 161280c4c6d2

4 − 161280c4c8d2d4)
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d18 = 1
3628800c2

0d2
(806400G2H2

0 d2d16 + 1411200G2H2
0 d4d14 + 1814400G2H2

0 d6d12

+2016000G2H2
0 d8d10 + 1612800G2H0d0d2d16 + 2822400G2H0d0d4d14

+3628800G2H0d0d6d12 + 4032000G2H0d0d8d10 + 718200d2
2G2d14H0

+1670400G2H0d2d4d12 + 1864800G2H0d2d6d10 + 967680G2H0d2d2
8

+739200G2H0d2
4d10 + 1451520G2H0d4d6d8 + 226800G2H0d3

6 + 806400G2d2
0d2d16

+1411200G2d2
0d4d14 + 1814400G2d2

0d6d12 + 2016000G2d2
0d8d10 + 718200d2

2G2d14d0
+1670400G2d0d2d4d12 + 1864800G2d0d2d6d10 + 967680G2d0d2d2

8 + 739200G2d0d2
4d10

+1451520G2d0d4d6d8 + 226800G2d0d3
6 + 158400G2d3

2d12 + 459200G2d2
2d4d10

+468720G2d2
2d6d8 + 380800G2d2d2

4d8 + 365400G2d2d4d2
6 + 100800G2d3

4d6
+2800G2d16H0 + 2800G2d16d0 + 1575G2d2d14 + 1200G2d4d12 + 1050G2d6d10 + 504G2d2

8
−6451200c0c2d2d16 − 11289600c0c2d4d14 − 14515200c0c2d6d12 − 16128000c0c2d8d10

−5644800c0c4d2d14 − 9676800c0c4d4d12 − 12096000c0c4d6d10 − 6451200c0c4d2
8

−4838400c0c6d2d12 − 8064000c0c6d4d10 − 9676800c0c6d6d8 − 4032000c0c8d2d10
−6451200c0c8d4d8 − 3628800c0c8d2

6 − 3225600c0c10d2d8 − 4838400c0c10d4d6
−2419200c0c12d2d6 − 1612800c0c12d2

4 − 1612800d2d4c0c14 − 403200d2
2c0c16

−2822400c2
2d2d14 − 4838400c2

2d4d12 − 6048000c2
2d6d10 − 3225600c2

2d2
8

−4838400c2c4d2d12 − 8064000c2c4d4d10 − 9676800c2c4d6d8 − 4032000c2c6d2d10
−6451200c2c6d4d8 − 3628800c2c6d2

6 − 3225600c2c8d2d8 − 4838400c2c8d4d6
−2419200c2c10d2d6 − 1612800c2c10d2

4 − 1612800d2d4c2c12 − 403200d2
2c2c14

−2016000c2
4d2d10 − 3225600c2

4d4d8 − 1814400c2
4d2

6 − 3225600c4c6d2d8
−4838400c4c6d4d6 − 2419200c4c8d2d6 − 1612800c4c8d2

4 − 1612800d2d4c4c10
−403200d2

2c4c12 − 1209600c2
6d2d6 − 806400c2

6d2
4 − 1612800d2d4c6c8

−403200d2
2c6c10 − 201600d2

2c2
8)

d20 = 1
2016000c2

0d2
(453600G2H2

0 d2d18 + 806400G2H2
0 d4d16 + 1058400G2H2

0 d6d14

+1209600G2H2
0 d8d12 + 630000G2H2

0 d2
10 + 907200G2H0d0d2d18 + 1612800G2H0d0d4d16

+2116800G2H0d0d6d14 + 2419200G2H0d0d8d12 + 1260000G2H0d0d2
10 + 408800G2H0d2

2d16
+966000G2H0d2d4d14 + 1101600G2H0d2d6d12 + 1176000G2H0d2d8d10 + 432000G2H0d2

4d12
+856800G2H0d4d6d10 + 430080G2H0d4d2

8 + 393120G2H0d2
6d8 + 453600G2d2

0d2d18
+806400G2d2

0d4d16 + 1058400G2d2
0d6d14 + 1209600G2d2

0d8d12 + 630000G2d2
0d2

10
+408800G2d0d2

2d16 + 966000G2d0d2d4d14 + 1101600G2d0d2d6d12 + 1176000G2d0d2d8d10
+432000G2d0d2

4d12 + 856800G2d0d4d6d10 + 430080G2d0d4d2
8 + 393120G2d0d2

6d8
+91350G2d3

2d14 + 268800G2d2
2d4d12 + 279300G2d2

2d6d10 + 142128G2d2
2d2

8
+224000G2d2d2

4d10 + 426720G2d2d4d6d8 + 66150G2d2d3
6 + 58240G2d3

4d8 + 81900G2d2
4d2

6
+1260G2H0d18 + 1260G2d18d0 + 700G2d16d2 + 525G2d14d4 + 450G2d12d6 + 420G2d10d8

−3628800c0c2d2d18 − 6451200c0c2d4d16 − 8467200c0c2d6d14 − 9676800c0c2d8d12
−5040000c0c2d2

10 − 3225600c0c4d2d16 − 5644800c0c4d4d14 − 7257600c0c4d6d12
−8064000c0c4d8d10 − 2822400c0c6d2d14 − 4838400c0c6d4d12 − 6048000c0c6d6d10
−3225600c0c6d2

8 − 2419200c0c8d2d12 − 4032000c0c8d4d10 − 4838400c0c8d6d8
−2016000c0c10d2d10 − 3225600c0c10d4d8 − 1814400c0c10d2

6 − 1612800c0c12d2d8
−2419200c0c12d4d6 − 1209600c0c14d2d6 − 806400c0c14d2

4 − 806400c0c16d2d4
−201600c0c18d2

2 − 1612800c2
2d2d16 − 2822400c2

2d4d14 − 3628800c2
2d6d12

−4032000c2
2d8d10 − 2822400c2c4d2d14 − 4838400c2c4d4d12 − 6048000c2c4d6d10

−3225600c2c4d2
8 − 2419200c2c6d2d12 − 4032000c2c6d4d10 − 4838400c2c6d6d8

−2016000c2c8d2d10 − 3225600c2c8d4d8 − 1814400c2c8d2
6 − 1612800c2c10d2d8

−2419200c2c10d4d6 − 1209600c2c12d2d6 − 806400c2c12d2
4 − 806400c2c14d2d4

−201600c2c16d2
2 − 1209600c2

4d2d12 − 2016000c2
4d4d10 − 2419200c2

4d6d8
−2016000c4c6d2d10 − 3225600c4c6d4d8 − 1814400c4c6d2

6 − 1612800c4c8d2d8
−2419200c4c8d4d6 − 1209600c4c10d2d6 − 806400c4c10d2

4 − 806400c4c12d2d4
−201600c4c14d2

2 − 806400c2
6d2d8 − 1209600c2

6d4d6 − 1209600c6c8d2d6 − 806400c6c8d2
4

−806400c6c10d2d4 − 201600c6c12d2
2 − 403200c2

8d2d4 − 201600c8c10d2
2)
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Appendix C

b1 =
1

D − ad0
,

b3 =
b1d2

a(D − ad0)
,

b5 =
1

a3(D − ad0)
(a2b3d2 + b1d4),

b7 =
1

a5(D − ad0)
(a4b5d2 + a2b3d4 + b1d6),

b9 =
1

a7(D − ad0)
(a6b7d2 + a4b5d4 + a2b3d6 + b1d8),

b11 =
1

a9(D − ad0)
(a8b9d2 + a6b7d4 + a4b5d6 + a2b3d8 + b1d10),

b13 =
1

a11(D − ad0)
(a10b11d2 + a8b9d4 + a6b7d6 + a4b5d8 + a2b3d10 + b1d12),

b15 =
1

a13(D − ad0)
(a12b13d2 + a10b11d4 + a8b9d6 + a6b7d8 + a4b5d10 + a2b3d12 + b1d14),

b17 =
1

a15(D − ad0)
(b15d2a14 + b13d4a12 + b11d6a10 + b9d8a8 + b7d10a6 + b5d12a4 + b3d14a2 + b1d16),

b19 = 1
a17(D−ad0)

(b17d2a16 + b15d4a14 + b13d6a12 + b11d8a10 + b9d10a8 + b7d12a6 + b5d14a4

+b3d16a2 + b1d18)

b21 = 1
a19(D−ad0)

(b19d2a18 + b17d4a16 + b15d6a14 + b13d8a12 + b11d10a10 + b9d12a8 + b7d14a6

+b5d16a4 + b3d18a2 + b1d20)
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