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ABSTRACT Women with gestational diabetes mellitus (GDM) have different gut mi-
crobiota in late pregnancy compared to women without GDM. It remains unclear
whether alterations of gut microbiota can be identified prior to the diagnosis of
GDM. This study characterized dynamic changes of gut microbiota from the first tri-
mester (T1) to the second trimester (T2) and evaluated their relationship with later
development of GDM. Compared with the control group (n � 103), the GDM group
(n � 31) exhibited distinct dynamics of gut microbiota, evidenced by taxonomic,
functional, and structural shifts from T1 to T2. Linear discriminant analysis (LDA) re-
vealed that there were 10 taxa in T1 and 7 in T2 that differed in relative abundance
between the GDM and control groups, including a consistent decrease in the levels
of Coprococcus and Streptococcus in the GDM group. While the normoglycemic
women exhibited substantial variations of gut microbiota from T1 to T2, their GDM-
developing counterparts exhibited clearly reduced inter-time point shifts, as corrobo-
rated by the results of Wilcoxon signed-rank test and balance tree analysis. More-
over, cooccurrence network analysis revealed that the interbacterial interactions in
the GDM group were minimal compared with those in the control group. In conclu-
sion, lower numbers of dynamic changes in gut microbiota in the first half of preg-
nancy are associated with the development of GDM.

IMPORTANCE GDM is one of the most common metabolic disorders during pregnancy
and is associated with adverse short-term and long-term maternal and fetal outcomes.
The aim of this study was to examine the connection between dynamic variations in gut
microbiota and development of GDM. Whereas shifts in gut microbiota composition and
function have been previously reported to be associated with GDM, very little is known
regarding the early microbial changes that occur before the diagnosis of GDM. This
study demonstrated that the dynamics in gut microbiota during the first half of preg-
nancy differed significantly between GDM and normoglycemic women. Our findings
suggested that gut microbiota may potentially serve as an early biomarker for GDM.

KEYWORDS gestational diabetes mellitus, GDM, gut microbiota, first trimester, T1,
second trimester, T2

Gestational diabetes mellitus (GDM) affects up to 25.1% of pregnancies worldwide
(1). Importantly, the disorder is associated with a variety of adverse maternal and

neonatal outcomes, including fetal macrosomia, preeclampsia, and cesarean delivery (2,
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3). GDM also has long-term maternal metabolic ramifications, particularly an increased
risk of diabetes, hypertension, dyslipidemia, and coronary heart disease (4, 5). There-
fore, early recognition of GDM is critical in preventing these complications.

The pathogenesis of GDM is not well understood. Recent studies have demonstrated
an important role of gut microbiota in the pathogenesis of a variety of metabolic
disorders, including diabetes (6–8), cardiovascular disease (9), and obesity (10), as well
as in the treatment of these disorders (11). Shifts in gut microbiota at late pregnancy
have been shown in women with GDM (12–14). Wang et al. (13) reported a strong
association between certain discriminatory bacteria and glucose levels in late preg-
nancy. Another study demonstrated that dysbiosis (perturbation of healthy states) in
gut microbiota was found in GDM women during late pregnancy and 8 months
postpartum which resembled the aberrant microbiota composition in patients with
type 2 diabetes (14). These findings indicated that shifts in gut microbiota may be
associated with GDM. Additionally, prominent changes in the enteric microbial com-
munity through different trimesters likely represent an intrinsic property of normal
pregnancy (12). These alterations in gut microbiota occur along with metabolic
changes during normal pregnancy, including an increase in endogenous glucose
production and a decrease in insulin sensitivity by late gestation (15).

Although changes in gut microbiota are implicated in insulin sensitivity (16), their
role in the pathogenesis of GDM remains poorly understood. In addition, since GDM is
typically diagnosed around gestational weeks 24 to 28 and patients may have received
behavioral, nutritional, and/or pharmacological intervention afterward, the discovery of
altered gut microbiota composition during late pregnancy and postpartum may be
confounded by these interventions (17). Therefore, the aim of this study was to
investigate the association between variations in gut microbiota during the 1st and 2nd
trimesters and development of GDM.

RESULTS
Clinical characteristics of the study subjects. Among the participants with sin-

gleton pregnancies, 31 developed GDM whereas 103 were normoglycemic between 24
and 28 weeks of gestation. The GDM and control groups were similar in age, gravidity,
and parity (Table 1). Women in the GDM group had a higher prepregnancy body mass
index (BMI) and higher levels of total cholesterol (TC) and total triglyceride (TG) than the
normoglycemic participants during early pregnancy, which was consistent with previ-
ous reports (18, 19).

Composition and structure of the intestinal bacterial community. 16S rRNA
gene amplicon sequencing for the stool samples generated 9,467,274 high-quality
reads, resulting in an average yield of 35,325.65 clean reads per sample. At a 97%
similarity threshold, the clean reads were clustered using USEARCH (Robert C. Edgar) to
produce 1,390 operational taxonomic units (OTUs), which were subsequently assigned
to the RDP database (release 11) to generate taxonomic annotations. Eventually, 1,296
OTUs were taxonomically annotated (confidence coefficient value, �0.8), including 594
OTUs at the genus level.

Examination of the microbial structure revealed no differences between the GDM
and control groups in both the first trimester (T1) and the second trimester (T2) (see
Fig. S1A and B in the supplemental material). Between the two time points, there were
significant changes (P � 0.041) in the alpha diversity of the GDM group (Fig. S1A) and
a shift in the results of principal-coordinate analysis (PCoA) in the control group
(Fig. S1C). Taxonomically, Firmicutes and Bacteroidetes were the dominant phyla, fol-
lowed by Proteobacteria and Actinobacteria (Fig. S2). In both control and GDM groups,
there was a comparable increase in the Firmicutes/Bacteroidetes ratio (F/B ratio) from T1
to T2 (0.852 in T1 to 1.10 in T2 in the control group and 0.892 in T1 to 1.10 in T2 in the
GDM group; P � 0.05). At the genus level, the top taxa were Bacteroides, Prevotella,
Faecalibacterium, and Roseburia and the genus-level compositions of many taxa were
comparable between the GDM and control groups (Fig. S2). Overall, our data indicated
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that the control and GDM groups shared considerable similarities in gut microbiota and
that the microbiota structure in either group was relatively stable between T1 and T2.

Taxonomic biomarkers of GDM. Despite the overall similarity of microbial struc-
ture between the GDM and control groups, linear discriminant analysis (LDA) identified
multiple different taxa between the two groups at both early gestation and midges-
tation (Fig. 1). In T1, 10 taxa were found to have high relative abundance in the
normoglycemic group compared to none in the GDM group. At the genus level, the
differential taxa were Prevotella, Coprococcus, Streptococcus, Peptococcus, Desulfovibrio,
Intestinimonas, and Veillonella. Furthermore, the parent taxa of Streptococcus (i.e., the
family Streptococcaceae, order Lactobacillales, and class Bacilli) differed significantly
between the two groups. In T2, 7 taxa were found to be significantly different between
the two groups. While Holdemania, Megasphaera, and Eggerthella displayed higher
relative abundance in the GDM group, Flavonifractor, Streptococcus (along with its
parent family Streptococcaceae), and Coprococcus were more abundant in the control
group. Notably, Coprococcus, a genus of butyrate-producing bacteria, and Streptococcus
(and its parent family Streptococcaceae), a genus of lactate-producing bacteria, were
less abundant in the GDM group in both T1 and T2. In addition, the proportions of
Megasphaera and Eggerthella in the GDM group increased, which was consistent with

TABLE 1 Clinical characteristics of women with and without GDMa

Characteristic

Values

P value
Women with GDM
(n � 31)

Normoglycemic
women
(n � 103)

General information
Age (yr), mean � SD 32.58 � 4.1 31.79 � 3.70 0.36
Gravidity (first pregnancy), n (%) 14 (45.16) 53 (51.46) 0.54
Multipara, n (%) 9 (29.03) 31 (30.01) 0.91
History of adverse pregnancy outcomes, n (%) 3 (9.68) 14 (13.59) 0.57
Polycystic ovary syndrome, n (%) 1 (3.23) 9 (8.74) 0.31
Smoking, n (%) 2 (6.67) 4 (3.96) 0.53
Family history of diabetes, n (%) 8 (25.81) 13 (12.62) 0.08

Anthropometric measurements
Ht (cm), median (IQR) 163.0 (158.0–165.0) 162.0 (160.0–168.0) 0.67
Wt (kg) prepregnancy, median (IQR) 60.0 (53.0–67.0) 56.83 (50.00–63.00) 0.049
BMI (kg/m2) prepregnancy, mean � SD 22.57 � 2.85 21.32 � 3.00 0.04
Overweight/obese (BMI�25 kg/m2) prepregnancy, n (%) 9 (29.03) 13 (12.56) 0.03
Gestational weight gain (kg) at OGTT, mean � SD 6.89 � 3.03 6.91 � 2.97 0.85

Biochemical indicator in first trimester
Fasting blood glucose (mmol/liter), median (IQR) 4.75 (4.53–5.01) 4.67 (4.41–4.92) 0.21
Blood lipid level (mmol/liter), median (IQR)

TC 4.41 (3.96–4.94) 4.10 (3.66–4.52) 0.04
TG 1.29 (0.92–1.76) 1.00 (0.77–1.32) 0.02
HDL-C 1.55 (1.29–1.70) 1.43 (1.23–1.64) 0.19
LDL-C 2.16 (1.75–2.66) 2.14 (1.72–2.38) 0.17

Gestational wk at examination, median (IQR) 8.0 (7.0–9.0) 9.0 (8.0–10.0) 0.31

Biochemical indicator in second trimester
Blood glucose level (mmol/liter) at OGTT, median (IQR)

Fasted 4.84 (4.53–5.20) 4.46 (4.26–4.66) �0.0001
1 h 10.36 (9.34–10.88) 7.33 (6.06–8.39) �0.0001
2 h 8.21 (7.42–8.90) 6.14 (5.40–7.07) �0.0001

Blood lipid level (mmol/liter), median (IQR)
TC 5.68 (5.29–6.19) 5.90 (5.24–6.48) 0.55
TG 2.34 (1.89–2.98) 2.06 (1.61–2.85) 0.55
HDL-C 1.77 (1.67–1.92) 1.88 (1.57–2.08) 0.67
LDL-C 2.87 (2.50–3.38) 3.09 (2.59–3.49) 0.48

Gestational wk at examination, median (IQR) 24.0 (24.0–25.0) 24.0 (24.0–25.0) 0.42
aGDM, gestational diabetes mellitus; IQR, interquartile range; BMI, body mass index; OGTT, oral glucose tolerance test; TC, total cholesterol; TG, triglycerides; HDL-C,
high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol.
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FIG 1 Gut microbial biomarkers of GDM in the first and second trimesters. Cladogram (A and C) and scores (B and D) of taxonomic biomarkers between women
with GDM and control group identified by linear discriminant analysis (LDA). Red bars indicate the bacterial taxa with greater relative abundance in the GDM
group; blue bars indicate the bacterial taxa with greater relative abundance in the control group. (E to G) A predictive model of GDM onset based on abundance
profile in T1 derived from random forest analysis. (E) Relationship between the numbers of taxa included in the random forest model and the corresponding
predictive performance (estimated by 10-fold cross-validation). CV, coefficient of variation. (F) The three genera in the predictive model. (G) The receiver
operating characteristic (ROC) curve for predicting GDM onset generated by random forest; the plots shown in the panels represent the corresponding optimal
thresholds.
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a previous report (20). To investigate whether the gut microbiota in T1 can potentially
be used as early biomarkers of GDM, random forest analysis was performed to generate
a 3-component panel of Coprococcus, Intestinimonas, and Veillonella that displayed a
moderately good performance (area under the concentration-time curve [AUC] of 0.743
mg · h/liter) in predicting GDM diagnosis for this training data set (Fig. 1E and F).

Dynamics of bacterial composition and function from early to midgestation.
We next investigated the inter-time point dynamics of gut microbiota from T1 to T2 in
the control and GDM groups. LDA revealed prominent taxonomic differences between
the first and second trimesters in the control group, with 49 taxa exhibiting different
relative abundances between early gestation and midgestation (P � 0.05, LDA � 1.5)
(Fig. 2A). Specifically, 25 taxa showed greater relative proportions in T1, as did 24 taxa
in T2. At the phylum level, there was an increased relative abundance of Firmicutes and
a decreased relative abundance of Bacteroides in T2 (Fig. S2). At the genus level,
Bacteroides, Sphingomonas, Parabacteroides, Streptophyta, Acinetobacter, Holdemania,
Haemophilus, Clostridium XVIII, Clostridium XIVb, and Erysipelotrichaceae incertae sedis
were more abundant in T1, while Blautia, Bifidobacterium, Rothia, Clostridium XI, An-
aerococcus, Bilophila, and Clostridium sensu stricto displayed greater relative abun-
dances in T2. In comparison, only 7 taxa were differentially abundant between T1 and
T2 in the GDM group. At the genus level, 3 taxa registered inter-time point changes,
including Bilophila being more abundant and Clostridium XVIII and Lactococcus being
less abundant in T2. Interestingly, despite significant differences in the gut microbiota
dynamics between GDM and the normoglycemic subjects, 5 taxa showed consistent
inter-time point shifts in both groups. Specifically, Clostridium XVIII had a greater
relative abundance in both groups in T1, as did the genus Bilophila and class Delta-
proteobacteria (along with its parent order Desulfovibrionales and family Desulfovibri-
onaceae) in T2. Wilcoxon signed-rank test was employed to further validate the
aforementioned taxonomic differences between the early gestational and midgesta-
tional periods. This revealed 14 genera (e.g., Prevotella, Blautia, Bifidobacterium, Para-

FIG 2 Dynamic changes of gut microbiota from T1 to T2. (A and B) Differential taxa (A) and functions (B) generated by LDA. Red bars indicate bacterial taxa
and functions with significantly greater relative abundance in T2; blue bars indicate bacterial taxa and functions with greater relative abundance in T1. TCA
cycle, tricarboxylic acid cycle.
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bacteroides, and Bacteroides) with differential relative abundances between T1 and T2
in the control group but only 1 genus of Bilophila that differed between T1 and T2 in
the GDM group (Fig. S3A and B). Importantly, there was considerable concordance
between the differential genera identified by LDA and Wilcoxon signed-rank test
(Fig. 2A; see also Fig. S3A and B). Of note, the aberrant microbiota dynamics in the GDM
group were not a result of particular outlier samples (Fig. S1D; see also Fig. S4). Despite
the substantial intergroup and inter-time point microbiota shifts, Spearman analysis did
not detect any significant associations between microbial taxa and glucolipid measures,
including fasting plasma glucose, lipid profiles, homeostatic model assessment-insulin
resistance (HOMA-IR) score, and HOMA �-cell index.

We next examined the changes in the dynamics of microbial functions from T1 to
T2. Similarly to our observations in taxonomic composition, PICRUSt-based prediction
and statistical analyses indicated that substantial functional differences between T1 and
T2 were apparent in the control group but absent in the GDM group (Fig. 2B; see also
Fig. S3C). Overall, compared with the normoglycemic subjects, women who developed
GDM exhibited relatively stable gut microbiota in both taxonomy and function from
early to midgestation, suggesting a connection between aberrant host metabolic
functions and diminished enteric microbial dynamics.

Balance tree analysis of gut microbiota from the first to second trimesters.
Because the change in the proportion of one microbe may influence those of others
within a microbial community, balance tree analysis has been proposed to elucidate
the interdependent alterations of microbial clusters (21). A comparative analysis using
comparisons between the GDM and control groups in either trimester generated 12 or
11 discriminatory balances (false-discovery rate [FDR] � 0.1). Of note, there was a wide
variation in the size of these signature clusters. We introduced here a threshold of 20
taxa to classify large (�20 OTUs) and small (�20 OTUs) discriminatory balances; a large
balance typically encompassed over 100 OTUs, whereas small ones mostly had fewer
than 10 OTUs (Fig. S4 and S5; see also Table S3 and Table S4 in the supplemental
material). In either T1 or T2, there were 5 or 4 large balances distinguishing the GDM
and control groups (Fig. 3A and B; see also Fig. S5 and Table S3); the average taxon
numbers of intergroup discriminatory balances were comparable between the two

FIG 3 (A and B) Balance tree analysis of the T1 (A) and T2 (B) intergroup microbiota differences. (C) Taxon number comparison of the intergroup discriminatory
balances (FDR � 0.1) between T1 and T2. (D and E) Representative large intergroup discriminatory balance in T1 (D) or T2 (E). The presented traits of each branch
include log ratio, taxonomic composition, and T1-T2 proportions of individual taxa (D and E). Norm., normoglycemic.
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time points (Fig. 3C). There were considerable variations in the taxonomic composition
of the large balances in both the numerator clusters and the denominator clusters
(Table S4). However, the balance tree analysis results for Y4 of T1 and Y11 of T2 (i.e., two
individual large balances at each time point) showed highly concordant taxonomic
compositions, including identical denominators (Bacteroides, OTU_7) (Table S4). Impor-
tantly, the two balances exhibited similar shifts not only as a whole but also in
individual constituent taxa, e.g., Bacteroides, Clostridium IV, Streptococcus, Coprococcus,
and Clostridium XIVa (Fig. 3D and E). Hence, despite substantial differences in the
microbiota shifts in the GDM-developing women at the two time points, a major trend
(i.e., represented by the balances Y4 of T1 and Y11 of T2) was conserved from early
pregnancy to midpregnancy.

We next employed this method to investigate inter-time point changes in the
participants. This analysis revealed apparent shifts in both the GDM and control groups,
evidenced by around 20 discriminatory balances (FDR � 0.1) in either group of partic-
ipants (Fig. 4A and B; see also Fig. S5 and Table S3). Notably, the average taxon
numbers of discriminatory balances in the GDM group were significantly lower than
those of the control group (P � 0.05; Wilcoxon signed-rank test; Fig. 4C), consistent with
the fact that slightly over half (10/18) of the discriminatory balances in the control
group were large, whereas the majority (19/23) of such balances in the GDM group
were small (Fig. 4A and B; see also Fig. S6 and Table S3). These results further
underscored the diminished microbiota shifts seen between T1 and T2 in the GDM-
developing participants.

Patterns of bacterial interactions in GDM and normoglycemic groups. Cooccur-
rence networks were constructed to analyze the patterns of bacterial interactions
(FDR � 0.1) among gut microbiota in the normoglycemic and GDM subjects in T1 and
T2. Significant differences in the cooccurrence pattern were observed between the two
groups in both T1 and T2 (Fig. 5). In T1, there were 152 associations or edges, including
60 negative ones, in the network of the control group, in contrast to 15 edges,

FIG 4 (A and B) Balance tree analysis of the inter-time point microbiota differences in the normoglycemic (A) and GDM (B) groups. (C) Taxon number
comparison of the inter-time point discriminatory balances (FDR � 0.1) between the control and GDM groups. (D and E) Representative large inter-time point
discriminatory balance in the control (D) or GDM (E) group. The traits of each branch presented in panels D and E include log ratio, taxonomic composition,
and T1-T2 proportions of individual taxa. Norm., normoglycemic.
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including 4 negative ones, in that of the GDM group (Fig. 5A). In T2, the network
contained 196 edges, including 91 negative ones, in the normoglycemic group and 28
edges, including 8 negative ones, in the GDM group. In addition to being smaller, the
network of the GDM group was also fragmented. Of note, Firmicutes was the dominant
phylum in all of these networks, followed by Bacteroidetes, which mirrored the taxo-
nomic composition of the study cohort (Fig. S2). Given the apparent differences
between the GDM and control groups, we analyzed the microbial network structure
using parameters of betweenness centrality (the number of shortest paths going
through a node), closeness centrality (the number of steps required to access all other
nodes from a given node), and degree (the number of adjacent edges) (22). Our results
demonstrated significantly lower betweenness (P � 0.001; Wilcoxon signed-rank test),
closeness (P � 0.001), and degree (P � 0.001) of the microbial network in the GDM
group than in the control group in T1 (Fig. 5B). In T2, the significantly lower closeness
(P � 0.001) and degree (P � 0.001) of the GDM group were maintained, although its
betweenness was comparable with that of the control group.

FIG 5 Patterns of bacterial interactions between women with GDM and control groups in T1 and T2 by cooccurrence network analysis (A) and statistical
comparison of the topological variables (B). Lines between nodes represent the interbacterial correlations (edges), and gray solid lines and red dashed lines
indicate positive and negative correlations, respectively. Green boxes represent women in the normoglycemic group; pink boxes represent women in the GDM
group.
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DISCUSSION

To our knowledge, this is the first study to have demonstrated that women who
develop GDM in late gestation exhibit distinct dynamics of gut microbiota from early
to midgestation. Differences in taxon composition between the GDM and control
groups were identified in both T1 and T2. In addition, women who developed GDM
exhibited a marked reduction in the dynamic changes of gut microbiota from T1 to T2.
There were also prominent differences in interbacterial interactions between GDM and
normoglycemic women. We did not detect any significant association between micro-
bial taxa and multiple GDM-correlated glucolipid measures.

Consistent with a previous study (23), our data demonstrated significant changes in
microbiota from early to midgestation in normoglycemic subjects. Compared with T1,
there were elevations in the F/B ratios, increased proportions of 8 genera, and de-
creased proportions of 11 genera, as well as 20 discriminatory balances in T2. Some of
these trends, which are consistent with previous observations (12), appeared to be part
of extensive gestational alterations in gut microflora during pregnancy. Healthy adults
typically exhibit overall stability in the enteric microbial community and share major
features, such as domination of Bacteroidetes and Firmicutes together with minor
constituents such as Actinobacteria, Proteobacteria, and Verrucomicrobia, despite wide
interpersonal variations in environmental, socioeconomic, and dietary aspects (24).
Similar changes have been observed between microbiotas across various diseases (24).
Intriguingly, as pregnancy progresses, the taxonomic changes of gut microbiota re-
semble those found in men and nonpregnant women that are associated with inflam-
mation and fat deposition (12). In contrast to the broad changes in gut microbiota that
occur during normal pregnancy, there were clearly fewer taxonomic and functional
shifts and smaller discriminatory balance changes in gut microbiota from early preg-
nancy to midpregnancy in women who later developed GDM. We postulate that the
lack of normal dynamic changes or static gut flora may contribute to the pathogenesis
of GDM. Importantly, we used the balance tree approach to take into account the
interactions between taxa by evaluating associations between GDM and sets of mi-
crobes rather than individual taxonomic units (24). The results from balance tree
analysis and LDA were consistent in showing the apparent reduction in inter-time point
variability of gut microbiota in GDM-developing women. In addition, results from
balance tree analysis revealed differential variations of individual OTUs within a genus,
illustrating the importance of subgenus taxa dynamics in GDM pathogenesis.

Earlier studies showed that inflammation, insulin resistance, and impaired glucose
tolerance are positively associated with Blautia (14, 25), Rothia (26), and Bilophila (27)
and negatively associated with Bacteroides, Parabacteroides (28), and Acinetobacter (29).
In our study, we found that Blautia, Rothia, and Bilophila were less abundant whereas
Bacteroides, Parabacteroides (28), and Acinetobacter were more abundant in T1 than in
T2 in normoglycemic women, which is consistent with the increase in insulin resistance
seen as pregnancy progressed. Interestingly, we found no differences in the abun-
dances of these microbes from T1 to T2 in GDM women, suggesting that these gut flora
may contribute to enhanced insulin resistance in early pregnancy in this group.
Together, these findings suggest that dysbiosis, or an imbalance of gut microflora, may
contribute to insulin resistance and glucose intolerance later in pregnancy.

Associations between gut microbes and GDM have been observed in previous
studies (14, 30). Crusell et al. identified significant differences in several genera,
including Collinsella, Blautia, and Rothia, between GDM and control groups during the
third trimester of pregnancy and postpartum (14). However, since that study was
conducted in late pregnancy, it is unclear whether these microbes cause GDM. In the
present study, we identified a large multitaxon shift between GDM and the control
group in both T1 and T2, indicating that some microbiota alterations from early
pregnancy to midpregnancy were associated with later development of GDM.

Recently, bacteria that produce short-chain fatty acids (SCFAs) have been implicated
in the pathogenesis of metabolic diseases, in particular, type 2 diabetes (31, 32). Our
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study provided multiple lines of evidence linking SCFA-producing bacteria with devel-
opment of insulin resistance and GDM. Specifically, we found decreased relative
abundances of the butyrate-producing bacterium Coprococcus (33) and the lactate-
producing bacterium Streptococcus (both are genera known to contain multiple SCFA-
producing species) in both T1 and T2 in GDM women. Findings from balance tree
analysis also confirmed similar shifts in Coprococcus and Streptococcus associated with
GDM in both T1 and T2 (see Fig. S5 in the supplemental material; see also Table S4 in
the supplemental material). These results suggest that levels of SCFA-producing mi-
crobes may be inversely related to the early development of glucose intolerance.
Consistent with this possibility, microbial fermentation of dietary fiber produces SCFAs,
which has been proven to be beneficial to many aspects of host metabolism. For
example, SCFAs may activate G-protein-coupled receptors (GPRs), increase secretion of
gut hormones (e.g., glucagon-like peptide 1 and peptide YY) by intestinal epithelial L
cells and leptin by adipocytes, and suppress production of proinflammatory cytokines
(34), thereby regulating insulin sensitivity (35) and the pathophysiological course of
GDM (36).

In the current study, the positive associations between Megasphaera, Eggerthella,
and GDM were consistent with a previous report (20). Some strains of Eggerthella lenta
have been associated with imidazole propionate production and insulin resistance (6).
The denominator taxa of Bacteroides identified by balance tree analysis, which were
more abundant in GDM women in both T1 and T2, have been associated with serum
proinflammatory interferon gamma levels (37), insulin resistance (38), and plasma
glucose levels (39). In summary, our study demonstrated significant differences in the
dynamics of gut microbiota from early to middle pregnancy between normoglycemic
and GDM women. The reduced inter-time point variability in gut microbiota in women
who develop GDM implies that dysbiosis in gut microbiota begins in their early
pregnancy. This finding suggests that gut microbiota could potentially serve as a
biomarker for early detection of GDM. Further studies are needed to establish the
causal relationship between microbial community shifts and development of GDM and
thereby identify potential therapeutic targets.

MATERIALS AND METHODS
Study population and design. This was a nested case-control study that was conducted in Beijing

Obstetrics and Gynecology Hospital from July 2017 to December 2018. Women at 18 to 45 years of age
and with a singleton pregnancy were recruited at gestational week 8 to week 12 and followed monthly
until a 75-g oral glucose tolerance test (OGTT) was performed between gestational weeks 24 and 28 to
screen for GDM. Only participants with complete clinical information were included in the analysis.
Subjects were excluded if they had had chronic medical conditions, including hypertension, type 2
diabetes mellitus, and heart or kidney diseases, or had reported use of antibiotics or medications that
would affect gastric or intestinal microbiota within the 2 months prior to entry. The study was approved
by the Ethics Committee of Beijing Obstetrics and Gynecology Hospital (2017-KY-015-01). Written
informed consent was obtained from every participant. All procedures were performed in compliance
with the Declaration of Helsinki.

Clinical measurements. Baseline anthropometric measurements were completed at recruitment
using a standardized protocol. Clinical data were collected by medical record review. Prepregnancy body
weight was self-reported.

GDM was diagnosed at gestation week 24 to week 28 according to American Diabetes Association
(ADA) criteria, in which at least one of the following criteria need to be met during a 75-g OGTT: fasting
plasma glucose (FPG), �5.1 mmol/liter; 1 h glucose, �10.0 mmol/liter; 2 h glucose, �8.5 mmol/liter (40).

Sample collection and determination. (i) Blood sample measurement. Venous blood samples
were collected from participants following an overnight fast at 8 –12 weeks and 24 to 28 weeks gestation.
The serum glucose level and lipid panel were determined as described in a previous study (41).

(ii) Fecal sample collection, DNA extraction, PCR amplification, and sequencing. Fecal samples
were collected at home by the participants using a PSP Spin Stool DNA Plus kit (Stratec Biomedical,
Birkenfeld, Germany) following a standardized procedure, shipped immediately to the laboratory on dry
ice, and stored at – 80°C. Genomic DNA was extracted using a TIANamp Stool DNA kit (Tiangen Biotech,
Beijing, China) according to the manufacturer’s protocols. The hypervariable V3-V4 region of the bacterial
16S rRNA genes was amplified using primers 341F (5=-CCTACGGGRSGCAGCAG-3=) and 806R (5=-
GGACTACVVGGGTATCTAATC-3=). The PCR was performed in a 30-�l mixture containing 15 �l of 2� Kapa
Library Amplification ReadyMix, 1 �l of each primer (10 �M), and 50 ng of template DNA. Amplicons were
gel purified and quantified using Qubit 2.0 (Invitrogen, MA, USA). After preparation of the library,
sequencing was performed on a MiSeq platform to generate paired-end reads of 250 bp (Illumina, CA,
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USA). DNA extraction, library construction, and sequencing were conducted at the Realbio Genomics
Institute (Shanghai, China).

Descriptive analysis of general characteristics. General characteristics of the participants in the
two groups were compared using Student’s t test for analysis of continuous variables of normal
distribution, the Wilcoxon signed-rank test for continuous variables of nonnormal distribution, and the
chi-square test for categorical variables.

Taxonomy classification and statistical analysis. High-quality reads were clustered into OTUs
using Usearch (v7.0.1090) in QIIME (v1.9.1; http://qiime.org/scripts/pick_otus.html) with a similarity
threshold of 97%. Taxonomy was assigned to individual OTUs using the RDP classifier and RDP database
of release 11 (http://rdp.cme.msu.edu/).All the samples were randomly subsampled to equal depths of
21,073 reads prior to the calculation of alpha and beta diversity metrics. Low-abundance taxa were
removed if one of the following two criteria was met: (i) abundance below the relative abundance cutoff
of 0.1%; (ii) presence in less than 50% of the samples in either the control or GDM group in T1 or T2.
Alpha diversity was assessed using the Shannon diversity index and beta diversity by weighted UniFrac
distance analysis and PCoA. Paired samples were used for inter-time point comparison between T1 and
T2 within the normoglycemic or GDM group.

LDA, the Wilcoxon signed-rank test, and balance tree analysis were employed to analyze the
microbiota shifts. FDR was calculated using the Benjamini and Hochberg method (p.adjust function in R).
For the Wilcoxon signed-rank test, the abundance data were subjected to centered log ratio (CLR)
transformation. The microbial functions were predicted with PICRUSt (42) using the 16S rRNA gene
sequences, whereby functional differences were examined. Generalized linear models (GLMs) were used
to explore the significantly different genera between two groups after controlling for possible confound-
ing factors, including BMI, TC, and TG (see Table S1 and Table S2 in the supplemental material). Balance
tree analysis (21) was performed to examine changes of taxa based on correlation clustering performed
according to the user instructions (https://github.com/biocore/gneiss). A taxon was removed if it was
present in fewer than 10 samples in each comparison.

Cooccurrence networks were constructed to investigate the patterns of bacterial interactions in the
GDM and control groups. For Spearman analysis, the relative abundances of taxa were subjected to CLR
transformation and then the Spearman correlation coefficients between genera were computed using R.
Statistically significant associations (FDR � 0.1) were used to construct the cooccurrence networks, which
were visualized using Cytoscape (43).

Spearman correlation coefficients were also calculated to investigate the association between
individual bacterial genera and measures of glucolipid metabolism, including glycemic parameters and
lipid profiles.

Data availability. Genomic data are fully accessible at the Sequence Read Archive (SRA; https://
www.ncbi.nlm.nih.gov/sra) under BioProject accession number PRJNA556764.
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Note Added after Publication

In Table 1, fourth row, first column, “Primipara” was changed to “Multipara.” In the
“Gravidity” row, second and third columns, 17 (54.84) and 51 (48.54) were changed to
14 (45.16) and 53 (51.46), respectively.
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