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Cardiac hypertrophy is an ongoing clinical challenge, as risk factors such as obesity,
smoking and increasing age become more widespread, which lead to an increasing
prevalence of developing hypertrophy. Pathological hypertrophy is a maladaptive
response to stress conditions, such as pressure overload, and involve a number of
changes in cellular mechanisms, gene expression and pathway regulations. Although
several important pathways involved in the remodeling and hypertrophy process have
been identified, further research is needed to achieve a better understanding and explore
new and better treatment options. More recently discovered pathways showed the
involvement of several non-coding RNAs, including micro RNAs (miRNAs), long non-
coding RNAs (lncRNAs), and circular RNAs (circRNAs), which either promote or inhibit the
remodeling process and pose a possible target for novel therapy approaches. In vitro
modeling serves as a vital tool for this further pathway analysis and treatment testing and
has vastly improved over the recent years, providing a less costly and labor-intensive
alternative to in vivo animal models.
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INTRODUCTION

Left ventricular hypertrophy is a consequence of hypertension in up to 30% of patients (Cramariuc
and Gerdts, 2016). Due to widespread risk factors such as obesity and smoking, the prevalence of
hypertension and subsequent myocardial hypertrophy is rising, which poses a significant public
health burden in an aging population (Benjamin et al., 2018). This development combined with the
relative paucity of direct treatment options for cardiac hypertrophy makes continued research and
the identification of novel therapeutic target molecules absolutely vital. Cardiac hypertrophy is an
adaptive process which develops in response to physiological but also pathological processes,
leading to heart muscle and cell hypertrophic growth with increased rigidity of the heart structures,
and impaired diastolic function leading to heart failure with preserved ejection fraction (HFpEF)
(Loonat et al., 2019; Zhao et al., 2020). Hypertrophic growth involves cardiomyocyte enlargement
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rather than division, as adult cardiomyocytes have lost the ability
to divide (Porrello et al., 2013). Pathological hypertrophy leads to
the loss of functional cardiomyocytes (Nakamura and
Sadoshima, 2018) and can subsequently progress to heart
failure with reduced ejection fraction (HFrEF) (Tham et al.,
2015). The main focus in hypertrophy research lies in the
investigation of signaling pathways, gene expression analysis,
and production of certain proteins and transcription factors,
which influence or are responsible for the remodeling process.
Many pathways have been identified to be involved in the
development of cardiac hypertrophy including calcineurin/
nuclear factor of activated T cells (NFAT), mitogen-activated
protein kinase ERK, small guanosine triphosphate (GTP)-
binding proteins (Ras, Rho), PKC, transcriptional regulation,
cell surface level control, miRNA, and many more (Stansfield
et al., 2014). Hypertrophic signaling pathways are initiated
through mechanical stimulation such as pressure overload and
neurohumoral mechanisms including the release of signaling
factors such as growth factors, hormones, cytokines, and
chemokines (Heineke and Molkentin, 2006).

Non-coding RNAs are RNAs that do not code for a protein
and are not translated, however they have been shown to
interfere with and regulate numerous physiological and
pathophysiological pathways. There are different classes of
non-coding RNAs, include microRNAs (miRNAs), long non-
coding RNAs (lncRNAs) and circular RNAs (circRNAs),
depending on their structure, length and function (Jaé and
Dimmeler, 2020). MiRNAs are small RNAs with a length of
approximately 22 nucleotides, which can inhibit mRNA
translation and signal mRNA degradation (O’Brien et al.,
2018). LncRNAs comprise of over 200 nucleotides and they
can induce structural changes in DNA and chromatin, therefore
regulating gene expression, and bind miRNAs thereby inhibiting
their function (Dhanoa et al., 2018). Similarly, circRNAs also act
as a sponge for miRNAs, however their structural properties are
different to other non-coding RNAs, as they are circularized and
are more robust resistant to RNAses (Yu and Kuo, 2019).

The purpose of this mini-review is to summarize the
developments in myocardial hypertrophy models, new
pathways, tissue engineering and non-coding RNAs relevant in
myocardial hypertrophy induction and progression.
CARDIAC HYPERTROPHY CELL CULTURE
AND TISSUE ENGINEERING MODELS

Cell culture models are essential for the investigation of
pathological and physiological pathways in cardiac diseases. In
contrast, in vivo animal models more closely simulate human
physiological and pathological conditions. In cardiac research the
most popular animal models are rodents such as rats and mice
(Zuppinger, 2019). However, they differ from human physiology
in some key aspects, such as faster heart rates and stem cell
phenotypes (Ginis et al., 2004; Jochmans-Lemoine et al., 2015).
Several large animal models using pigs, sheep, or dogs have been
established to more accurately simulate human pathophysiology
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and cardiac hypertrophy with HFpEF and HFrEF, but very high
cost and labor intensity limit their use for specialized research
questions (Spannbauer et al., 2019). Sophisticated in vitro models
are therefore an important tool to elucidate new remodeling and
hypertrophy pathways and identify molecules of interest before
proceeding to costly translational models.

The most widely used technique is a 2D monolayer cell culture,
which allowed the discovery of several important hypertrophy
pathways and cellular mechanisms, but lacks the complexity of
interactivity between cells and cell types with electrical and
paracrine factors (Zuppinger, 2016). To achieve a more realistic
in vitro model of cardiac hypertrophy where native in vivo niche
conditions can be imitated, cell culture techniques have vastly
improved in recent years, giving rise to 3D cultures and organoids
(Dutta et al., 2017). Cardiac organoids have been developed and
have steadily improved, however the optimal ratio of
cardiomyocytes, fibroblasts and endothelial cells is the subject of
ongoing debate (Nugraha et al., 2019). The most prominent
techniques for producing cardiac organoids include the use of
hydrogels such as collagen, cell sheet technology where cells are
cultured and subsequently stacked in different layers and hanging
drop culture (Dutta et al., 2017; Nugraha et al., 2019). Despite their
many advantages, it is important to note that cardiac organoids in
their current state are still far from the complexity of the organs
they are meant to represent and are also unable to capture
organism-wide processes like immune response or neurohumoral
feedback mechanisms (Iakobachvili and Peters, 2017), which also
limit their use in modeling of in vivo myocardial hypertrophy.
METHODS OF CARDIAC HYPERTROPHY
INDUCTION

In vitro cardiac hypertrophy can be induced by various methods
such as chemical stimulation or mechanical stress induction.
Mechanical stress induction is achieved by pressure overload in
vivo and simulated by stretching of cardiomyocytes in vitro. On a
cellular level, an activation of different oncogenes such as c-fos, c-
myc, c-jun, and Egr-1, also called immediate-early genes, and
activation of heat shock protein-70 are triggered and lead to
subsequent upregulation of hypertrophy inducing genes ANP,
BNP, and b-MHC (Rysä et al., 2018).

Pharmacological agents that are used for hypertrophy
induction are for example phenylephrine (Jain et al., 2018),
angiotensin II (Gelinas et al., 2018), noradrenaline (Guven,
2018), endothelin-1 (Zlabinger et al., 2019), and isoproterenol
(Zhang et al., 2016). These agents interfere with a known
pathway that is crucial in remodeling and subsequent cardiac
hypertrophy. Angiotensin II was described to play a role in
cardiac hypertrophy induction over 40 years ago, as it is part of
the Renin-Angiotensin-Aldosterone-System. Endothelin-1 was
discovered to have a higher protein and mRNA expression in
dilated cardiomyopathy and influence matrix metalloproteinase
9 (Mmp9) expression levels (Hathaway et al., 2015). Further, a
significant difference in mortality and pathogenesis has been
reported in patients with a gene variation of the endothelin type
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A receptor gene (polymorphisms G231A and C1363T)
(Herrmann et al., 2001; Telgmann et al., 2007). Noradrenaline
is a stress induced neurotransmitter, which has been shown to be
involved in cardiac hypertrophy and damage due to toxic effects
on cardiomyocytes (Jain et al., 2015). Isoproterenol is a b-agonist
and activates the Renin-Angiotensin-Aldosterone-System, thus
inducing hypertrophic pathways (Leenen et al., 2001). All these
pharmacologic agents induce hypertrophy by binding to specific
G-coupled receptors on the cell membrane, which then induce
diacylglycerol (DAG) and subsequently protein kinase C (PKC).
PKC plays an important role in internal Ca2+ mobilization,
which allows hypertrophic induction through NFAT or
calmodulin-dependent kinase (CaMK) pathway interference
(Heineke and Molkentin, 2006).

Induction of hypertrophy by all of these chemical agents show a
similar modeling time of 24 h, which may be extended to 48 h
depending on the used cell type (Zhang et al., 2016; Zlabinger et al.,
2019; Zhao et al., 2020). The concentration needs to be optimized
by testing different dilutions before the experiment, however the
general used concentrations are 20 µM phenylephrine (Gelinas
et al., 2018), 100 nM angiotensin II (Zlabinger et al., 2019), 10
mM isoproterenol (Zhang et al., 2016), and 10 nM endothelin-1
(Loonat et al., 2019).
CELLS SOURCES AND MODELS FOR
IN VITRO CARDIAC HYPERTROPHY
MODELING

Establishing a cardiac hypertrophy model needs to incorporate
several decisions about induction models, cell sources, pathways of
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interest and cell culture types. Table 1 gives a broad overview about
established approaches, while also mentioning the investigated
pathway of the respective study. It is evident that a preferred
choice of cell source are rat cardiomyocytes, which are mostly
cultured in a 2D cell culture and the induction of hypertrophy is
often performed chemically with pharmacological agents such as
angiotensin II or isoproterenol. These approaches are based on
availability of the cell source, as rat or also murine tissue for cell
extraction is more easily accessible and animal care is cheaper to
maintain than with larger animals. Further, chemical induction is a
relatively easy method for hypertrophy induction compared to
mechanical stress induction, which presumably is why it is
often preferred.

When considering which hypertrophy model to choose for a
study, various factors need to be considered beforehand. The
most prominent factor in research is often time and cost
effectiveness, which acts in favor of 2D chemically stimulated
cultures, however this is not the best option in quality of results
in some cases. The analysis of certain genes, proteins and non-
coding RNAs might be insufficient in chemical stimulated cell
hypertrophy models, as these do not trigger all the pathways that
would be activated in vivo, which can lead to a false read-out and
interpretations (Carreño et al., 2006). 3D models, such as
organoids, can be stimulated mechanically and show a better
comparability to in vivo conditions. These also allow to
investigate the crosstalk between different cell types, especially
the three main types within the heart cardiomyocytes, fibroblast,
and endothelial cells, which are often not considered in regular
2D models. Fibroblasts especially play an important role in
fibrosis and remodeling during hypertrophy processes and are
therefore important to investigate (Travers et al., 2016).
Organoids appear as the most ideal option in regard to
TABLE 1 | Overview over different approaches of hypertrophy induction methods and used cell sources in in vitro models and the investigated pathway of the study.

Cell source Hypertrophy Model Involved pathways Reference

Neonatal rat ventricular
myocytes (NRVM)

2D Cell culture, Chemical hypertrophy, Ang II, PE AMPK pathway, O-GlcNAc signalling (Gelinas et al., 2018)

Adult rat ventricular myocytes
(ARVM)

2D Cell culture, Chemical hypertrophy, PE AMPK pathway, O-GlcNAc signalling (Gelinas et al., 2018)

Neonatal rat cardiomyocytes 2D Cell culture, Chemical hypertrophy, PE Protein kinase D (PKD) knockdown, AKT/mTOR signaling
pathway, autophagy

(Zhao et al., 2020)

Murine neonatal cardiomyocytes Micro ridges vs 2D cell culture, Chemical
hypertrophy, PE

Cardiomyocyte morphology on 3D surfaces – F-Actin,
Myomesin, Actinin

(Jain et al., 2018)

H9c2 cardiomyocytes 2D Cell culture, Chemical hypertrophy, Iso ANP, BNP, ROS, 3-nitrotyrosine and p67 (phox), MMP,
(p)ERK1/2, (p)p38, (p)JNK

(Zhang et al., 2016)

Primary neonatal rat ventricular
myocytes

2D Cell culture, Chemical hypertrophy, PE, ET1,
Iso, Ang II

Myocyte area, protein-bound SRB fluorescence (Loonat et al., 2019)

hiPSC from dermal fibroblasts
edited with Crispr/Cas9

2D Cell culture/3D matrigel mattress, Mutational
hypertrophy, heterozygous Ca-sensitizing TnT-
I79N mutation

TnT-I79N protein levels, cytosolic Ca buffering and
electrophysiology

(Wang et al., 2017)

Rat ventricular cardiomyocytes 2D Cell culture, Chemical hypertrophy, Ang II GATA4 and miR-26a (also b-MHC and ANF) (Liu et al., 2016)
Neonatal rat ventricular
myocytes

2D Cell culture, Chemical hypertrophy, Ang II b-catenin, NFATc3, WNT pathway (Jiang et al., 2018)

H9c2 cardiomyocytes 2D Cell culture, Chemical hypertrophy, NA Mitochondrial KATP channel, mitochondrial membrane
potential, oxidant status, total antioxidant status,
superoxide dismutase

(Guven, 2018)

Porcine cardiac progenitor cells 2D Cell culture, Chemical hypertrophy, Ang II,
ET1

MiR-21, MiR-29a, GATA4, and MEF2c Expression (Zlabinger et al.,
2019)
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simulating hypertrophy conditions in vivo, while still considering
the principles of 3R (replacement, reduction, and refinement).
Improving and also simplifying organoid technology should be
the goal in translational research, so it can be used more widely
for disease modeling such as cardiac hypertrophy instead of
animal models.
NEW PATHWAYS IN CARDIAC
HYPERTROPHY INVOLVING NON-CODING
RNAS

Among some well-known and established pathways in cardiac
hypertrophy new signaling cascades have been identified over the
last few years, especially with the rise of non-coding RNAs. Non-
coding RNAs include amongst others miRNAs, lncRNAs, and
circRNA. Some have been shown to play a role in remodeling
and hypertrophy induction, either in promoting or inhibiting the
process (Wehbe et al., 2019). These non-coding RNAs have also
been investigated as potential treatment targets in cardiac
hypertrophy, which may lead to new therapeutic approach for
patients in the future (Li et al., 2018).

miRNAs Influence Hypertrophy Pathways
MiRNAs are small non-coding RNAs with a length of
approximately 22 nucleotides and interfere with mRNAs
through complementary binding causing degradation or
inhibition of transcription (Fabian and Sonenberg, 2012;
Wehbe et al., 2019).

Pro-Hypertrophic miRNAs
Recently, Zhang et al. showed that miRNA-29 played a significant
role, as overexpression seemed to inhibit angiotensin II induced LV
hypertrophy in a mouse model. Collagen I and III secretion and
TGFb and pSMAD2/3 levels were downregulated indicating that
hypertrophy was indeed hindered (Zhang et al., 2020). MiRNA-
26a also seems to show anti-hypertrophic effects in rat models and
in cell culture, as it targets the 3’-UTR of the GATA4 mRNA (Liu
et al., 2016). Similar effects on remodeling can be seen with
miRNA-101, as an overexpression in a rat hypertrophy model
showed reduced gene expression and protein levels of known
hypertrophy related genes like Rab1a, ANF, and b-MHC and
reduced relative cell areas (Wei et al., 2015). MiRNA-133
downregulation has been found to aid hypertrophy development,
however restoring the expression during hypertrophy induction
only reduced fibrosis and apoptosis, but not hypertrophy signaling
itself (Abdellatif, 2010).

Anti-Hypertrophic miRNAs
On the other hand, miRNAs can also induce or help
induce hypertrophy, as shown with, e.g., miRNA-22. MiRNA-
22 overexpression has been shown to be able to induce
hypertrophy in vitro by modulating PTEN levels without
adding any other stimulating agent and further showed to be
crucial for phenylephrine and angiotensin II hypertrophy
induction (Xu et al., 2012; Huang et al., 2013). MiRNA-217
Frontiers in Pharmacology | www.frontiersin.org 4
similarly promotes cardiac hypertrophy interfering with PTEN
levels. Additionally, catalysis of histone 3 lysine 9 dimethylation
(H3K9me2) and mRNA downregulation of euchromatic
histone–lysine N-methyltransferases (EHMT1/2) have been
described to imitate fetal heart associated conditions further
leading to hypertrophy development (Inagawa et al., 2013;
Thienpont et al., 2017). MiR-155 is another player that has
been identified to promote cardiac hypertrophy, by causing an
inflammatory response with macrophage migration and
signaling (Heymans et al., 2013). Additionally, miRNA-
200c has been identified to interfere in MAPK/ERK pathway
upregulation by targeting dual-specific phosphatase-1 (DUSP-1)
(Singh et al., 2017).

LncRNAs and circRNAs: Importance in
Remodeling Pathways
LncRNAs can regulate promotors, enhancers and insulators by
conformation changes and forming secondary structures further
influencing expression of other genes. Moreover, lncRNAs can
modulate miRNAs by acting as a sponge and therefore influence
genes post-transcriptionally. The lncRNA myosin heavy‐chain‐
associated RNA transcripts (MHRT) has been described to
influence hypertrophy induction, as it antagonizes chromatin‐
remodeling factor Brg1, which further activates b‐MHC. MHRT
is encoded in the same gene locus (beta-cardiac muscle myosin
heavy chain gene) as miRNA-208, which promotes cardiac
hypertrophy (Callis et al., 2009; Han et al., 2011; Han et al.,
2014). Another prominent lncRNA, identified by Wang et al.
(2014a), is cardiac hypertrophy related factor (CHRF). The
authors showed that CHRF was upregulated in cardiac
hypertrophy and heart failure. CHRF acts as a sponge for a
miRNA‐489, therefore de‐represses the myeloid differentiation
primary response gene 88 (Myd88) and subsequently induces
remodeling (Wang et al., 2014a). Cardiac‐apoptosis‐related
lncRNA (CARL) has also been shown be strongly expressed in
hypertrophy remodeling by inhibiting miR‐539 (Muthusamy
et al., 2014; Wang et al., 2014b).

CircRNAs are circularized RNAs which are covalently closed.
They are more stable than linear RNAs due to this structural
feature and have recently gained an increasing research
attention. However, they have not been as excessively studied
as miRNAs and lncRNAs, leaving room for further studies on
circRNAs in hypertrophy remodeling and in cardiovascular
diseases in general (Hansen et al., 2013; Ottaviani and Martins,
2017; Li et al., 2018). CircRNAs can, similarly to lncRNAs, act as
a sponge for miRNAs, thereby inhibiting them. CircRNA ciRS-7/
CDR1as has been identified as a sponge for miR-7, which has
been shown to be upregulated in patients with left ventricular
hypertrophy (Hansen et al., 2013; Kaneto et al., 2017). The heart-
related circRNA (HRCR) has also been found to inhibit miRNA-
233 in the same way, therefore de-repressing the activity-
regulated cytoskeleton-associated protein (K. Wang et al., 2016).

CircRNAs and LncRNAs provide a new approach for
treatment due to their sponging properties and they may
present a new biomarker for predicting the severity of the
remodeling process and in heart failure. However, some
August 2020 | Volume 11 | Article 1314
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challenges for non-coding RNAs as therapeutic option must still
be faced, including off-target effects and delivery (Dong
et al., 2018).
CONCLUSIONS AND OUTLOOK

Cardiac hypertrophy will remain an ever-present clinical
challenge due to several widespread risk factors in an
increasingly aging patient population. Advanced and refined
tissue engineering approaches give an opportunity to study
pathological pathways extensively without requiring in vivo
animal studies, which are more costly, time- and labor-
intensive. These approaches allow the identification of possible
biomarkers and the testing of therapies in a setting that mimics
in vivo conditions more closely, although not perfectly as some
factors like immune interactions are still lacking. The induction
of cardiac hypertrophy in vitro is predominantly performed with
pharmacological agents, such as angiotensin II, as mechanical
stress induction poses a greater challenge.

Several well-known pathways which are involved in
hypertrophic remodeling have been identified, including newer
Frontiers in Pharmacology | www.frontiersin.org 5
additions mostly revolving around non-coding RNAs like
miRNAs, lncRNAs, and circRNAs. Non-coding RNAs that aid or
negatively interfere with cardiac hypertrophy have been identified
by inhibiting other factors (supporting or inhibitory) in
the hypertrophy signaling cascades. There have been dozens
of studies on a great number of different factors involved in
this complex pathological process. Further, also epigenetic
modifications have been discovered to be regulated and
influenced to some degree by non-coding RNAs, which are
involved in cardiac hypertrophy (Dong et al., 2018). However, it
is important to further investigate and develop even more advanced
tissue engineering options to allow a more profound understanding
of remodeling pathways and subsequently the development of new
pharmacological targets and treatment approaches.
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