
ARTICLE

High COVID-19 transmission potential associated
with re-opening universities can be mitigated with
layered interventions
Ellen Brooks-Pollock 1,2✉, Hannah Christensen2, Adam Trickey2, Gibran Hemani 2, Emily Nixon 3,

Amy C. Thomas1, Katy Turner 1,2, Adam Finn4, Matt Hickman2, Caroline Relton2 & Leon Danon5

Controlling COVID-19 transmission in universities poses challenges due to the complex social

networks and potential for asymptomatic spread. We developed a stochastic transmission

model based on realistic mixing patterns and evaluated alternative mitigation strategies. We

predict, for plausible model parameters, that if asymptomatic cases are half as infectious as

symptomatic cases, then 15% (98% Prediction Interval: 6–35%) of students could be infected

during the first term without additional control measures. First year students are the main

drivers of transmission with the highest infection rates, largely due to communal residences.

In isolation, reducing face-to-face teaching is the most effective intervention considered,

however layering multiple interventions could reduce infection rates by 75%. Fortnightly or

more frequent mass testing is required to impact transmission and was not the most effective

option considered. Our findings suggest that additional outbreak control measures should be

considered for university settings.
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Despite the on-going COVID-19 epidemic, social distan-
cing measures in many countries were beginning to be
relaxed and universities across the world re-opened for

the new academic term in September 2020. In the UK, there are
2.3 million students, with up to 40,000 undergraduates at a single
institution1. Universities are integral to many towns and cities in
the UK: for example, in the 2011 census, a quarter of Oxford’s
adult population was registered as a full-time student. Managing
universities is a complex operation, and in the context of the
COVID-19 epidemic, re-opening universities poses particular
challenges for containing disease transmission.

In June 2020, the UK moved from a national containment
strategy to localised containment of outbreaks, with the number
of cases highly variable across the country. The imposition of
lockdown in March 2020 led to a substantial reduction in travel
and mobility, and local lockdowns have led to further reduced
movement in some parts of the country. In the UK, re-opening
universities is associated with a mass travel event. Around 80% of
students leave home to attend university, moving an average 90
miles2. This synchronised event will increase population mixing
at a national scale with the potential to spark outbreaks in new
areas if not carefully managed. Once the university term starts
there are more unique challenges facing universities. Students, in
common with other 20- to 30-year olds, report high numbers of
social contacts in their everyday lives3. Student accommodation
frequently involves communal living, either in halls of residence
that house several hundred students, or in all-student households
renting in the private sector. Regular face-to-face teaching can
involve several hundred students in a lecture theatre, and even
without large lectures, tutorials and small group teaching involve
close and prolonged contact between individuals.

The potentially high rate of transmission within a university
setting is unlikely to translate to high morbidity among students.
There is a marked age disparity in severe COVID-19 cases, with
younger people less likely to exhibit typical symptoms or suffer
severe outcomes4. In the UK at the time of writing, less than 0.2%
of COVID-19-related deaths are in persons under 30. Students
are typically young adults in their early twenties. Nevertheless,
young adults are susceptible to infection and infectious to others.
Hence, there is a risk of transmission within the student popu-
lation, posing a risk to vulnerable students, people outside the
university setting and family members when students
return home.

A number of studies have investigated the challenges inherent
in reopening of universities amidst the COVID-19 pandemic5–9.
Existing models have mainly focused on isolated campus uni-
versities in the US, rather than civic universities that are common
in the UK and elsewhere6,9, and the majority have not had access
to realistic mixing patterns within the university setting, which
drive transmission. In this paper we combined analysis of
social contact data with a data-driven mathematical modelling
approach to investigate the impact of re-opening a UK university
on COVID-19 transmission. We characterise patterns of disease
transmission and investigate potential mitigating effects of
interventions. These results are used to synthesise guidance on
measures that universities might wish to consider for effective
outbreak control once students arrive or return for the forth-
coming academic year.

Results
The Social Contact Survey (SCS) included 363 participants whose
listed occupation included ‘STUDENT’. Students reported more
home contacts than other participants (3.5 versus 2.3, p value <
0.001). However, although students reported more contacts than
other participants on average, there was no evidence of a

systematic difference (29.9 versus 26.8, p value 0.40). The
majority (82%, 95% CI: 79%, 86%) of students’ social contacts are
either home or associated with university. On average, students
reported 20.0 (95% CI: 14.1, 28.8) university contacts, and 4.3
(95% CI: 2.7, 6.5) other/leisure contacts.

To capture student contact patterns within a university, we
used comprehensive anonymised student accommodation data
for the academic year 2019/2020 from the University of Bristol
(UoB). The data included 20,819 registered undergraduates and
8501 registered postgraduates divided into 6 faculties and
28 schools and 2862 unique postcodes (see Supplementary
Table 1 for number of students by year of study and faculty).
Most students (92%) are under 30 years of age and the largest
school is the School of Economics, Finance and Management
with 3674 students.

We used the student data to create synthetic contact matrices
for mixing between year-groups and schools. From postcodes we
generated between school household contact matrices for each
year of study, and for all years (Supplementary Notes 1 and 2
and Fig. 1). Halls of residence dominate the first-year contact
matrix, with mixing across all schools and no clear assortative
mixing (Fig. 1a).

In years 2 and 3, the average household size decreases sub-
stantially and there is increased assortativity mixing between
schools, indicating that students are more likely to share
accommodation with someone from their own school by choice
(Fig. 1b, c).

The university-wide contact matrix consists of 161 groups of
students categorised by 28 schools and nine year-groups (0, 1, 2,
3, 4, 5, 6, PGT (taught postgraduates), PGR (research post-
graduates)) (Fig. 1d). The higher level of mixing between first
years is evident in the lower left-hand corner and the assortative
mixing by year and school is shown by the diagonal. There are
fewer inter-year household contacts and more intra-university
mixing between taught postgraduates than for research
postgraduates.

We investigated the dynamics of an epidemic in the student
population using a stochastic compartmental model with plau-
sible COVID-19 parameter values (Table 1 and Fig. 2). Because of
the population structure, the stochasticity and relatively small
numbers involved, there is large intrinsic variability between
simulations with identical parameter values; we report the mean
and 98% prediction interval (PI).

Using plausible parameters (asymptomatic cases half as infec-
tious as symptomatic cases and a reproduction number of
RU ¼ 2:7, see Supplementary Note 3), and without interventions
or holidays, we predict a university-wide outbreak with an early
growth rate of 0.07 (98% PI: 0.03–0.10), which is equivalent to a
doubling time of 9 days (98% PI: 7–24 days) (Fig. 3a). Based on
the timescales of COVID-19 with baseline parameters, we expect
that it would take around 4 months for the outbreak to peak,
assuming no winter break.

First-year students drive the early part of the outbreak and
experience the highest burden of infection, followed by second
and third years and taught postgraduate students (Fig. 3b). Stu-
dents in year 4 and above and research postgraduates have the
lowest infection rates.

By the end of the first term, under the baseline model 4200
(98% PI: 1800–9800) students, or 15% (98% PI: 6–35%), have
been infected. On the last day of term 54 (98% PI: 15–140)
symptomatic cases and 640 (98% PI: 200–1600) asymptomatic
cases are still infectious. On average, there are between 13 and 15
asymptomatic cases for every one symptomatic case. The number
of cases doubles every 7–22 days. Without additional control
measures, 68% (98% PI: 44–83%) of students would be infected
by the end of the academic year. The low rate of symptoms and
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low morbidity rate results in a median of zero deaths in the
student population.

The relative infectiousness of asymptomatic cases is central for
determining the scale of a university-based outbreak. In our
framework, asymptomatic cases are either less or as infectious as

symptomatic cases; however, because asymptomatic cases do not
self-isolate without a test, for higher values of relative infec-
tiousness, ε, asymptomatic cases produce on average more sec-
ondary cases than symptomatic cases (see Supplementary Note 3
and Supplementary Fig. S3). For lower values of ε, university-
focussed outbreaks are largely driven by the forcing from outside
the university. For intermediate values, outbreaks peak after the
first term. For high values, outbreaks peak before the end of the
first term (see Supplementary Note 4 and Supplementary Figs. S4
and S5).

As a comparison to the baseline case, if asymptomatic cases are
30% as infectious as symptomatic cases (RU ¼ 2:25) then we
expect an early growth rate of 0.06 (98% PI: 0.04–0.09) and a
doubling time of 12 days (98% PI: 8–17 days). Without additional
control measures, 36% (98% PI: 12–57%) of students would be
infected by the end of the academic year. The epidemic profiles
for the full 98% PI of potential scenarios for asymptomatic
infectiousness, which corresponds to reproduction numbers from
1.7 to 3.4, are shown in Supplementary Fig. S5.

We investigated multiple interventions that reduced the
infection burden in the student population (Fig. 3c–f). The
impact of implementing each intervention was explored in iso-
lation and in combination with other measures. When layering
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Fig. 1 Student mixing matrices based on shared accommodation. The average number of students in each school sharing accommodation in a year 1,
b year 2, c year 3 and d for all years and schools. The years are six undergraduate years: 0, 1, 2, 3, 4, 5 and two postgraduate groups R (research) and T
(taught). The columns are ordered by total number of accommodation contacts. Data relate to the University of Bristol for the 2019/2020 academic year.

Fig. 2 Model schematic.Model flow diagram with infection states and rates
between them for the stochastic meta-population model. The
compartments are S: susceptible to infection, E: exposed, or infected but
pre-infectious, P: pre-symptomatic and infectious, I: symptomatic and
infectious, A: asymptomatic and infectious, Q: in quarantine, R: recovered
and immune. The subscript i refers to the subgroup. An explanation of the
rates is given in the main text, Eqs. (1) and (2) and Table 1.
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interventions, we implemented lower cost interventions first, such
as creating COVID-secure interactions with face coverings and
social/physical distancing, and reserved mass testing of non-
symptomatic students as a more resource-intensive intervention.

For realistic values of COVID security and RU ¼ 2:7, we find
that reducing the transmission probability with COVID-secure

interactions has the potential to reduce, but not completely
eliminate, the size of outbreaks (Fig. 3c). We estimate that by
reducing transmission for non-household contacts by 25% the
early doubling time is between 7 and 20 days. The percentage of
students infected by the end of the first term is 9% (98% PI:
4–28%) and the number of symptomatic and asymptomatic
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students infectious on the last day of term is decreased to 30 (98%
PI: 11–120) and 360 (98% PI: 120–1300), respectively. Reducing
transmission for non-household contacts by 50% increases the
doubling time to 13 (98% PI: 7–36) days and further reduces the
number of infectious students on the last day of term 16 (98% PI:
2–57) symptomatic cases and 188 (98% PI: 59–650)
asymptomatic cases.

Reducing the number of interactions made during face-to-face
teaching from 20 to 15 other students increases the mean early
doubling time to 11 (98% PI: 7–20) days and reduces the number
of infected students at the end of the first term to 33 (98% PI:
10–110) symptomatic cases and 403 (98% PI: 120–1200)
asymptomatic cases (Fig. 3d). Reducing the number of face-to-
face contacts from 20 to 5 other students was the single most
impactful intervention investigated in terms of the number of
students infected by the end of the first term and the number of
infectious students on the last day of term, increasing doubling
time to 16 (98% PI: 9–110) days, including scenarios in which the
number of cases in the student population was driven to zero
(Fig. 3d). The number of infected students at the end of the first
term was 11 (98% PI: 2–32) symptomatic cases and 140 (98% PI:
54–330) asymptomatic cases.

Implemented without other measures, reducing the size of
living circles (defined as the number of students that share
bathroom/kitchen facilities) from 24 to 20 or 14 students was
overall the least effective intervention investigated (Fig. 3e and
Supplementary Table 2). However, when implemented on top of
COVID-secure interactions and reductions in face-to-face
teaching, reducing living circles to 14 individuals does reduce
the total percentage of students that are infected by the end of the
first term by 25%.

Mass testing all students regardless of symptoms was effective
at reducing the total number of infections and the initial rate of
epidemic growth rate, but reactive testing was required for the
whole year (Fig. 3f). Compared to other interventions, mass
testing was generally more effective for higher values of the
reproduction number and resulted in the third lowest number of
infected students by the end of the first term. However, for lower
values of asymptomatic infectiousness, and hence lower values of
the reproduction number, reducing face-to-face teaching, imple-
menting COVID security and reduced living circles were more
effective than testing all students (Fig. 3g).

Testing all students every 2 days primarily reduced the number
of students with asymptomatic and pre-symptomatic infections,
reducing the ratio of asymptomatic to symptomatic cases to
9:1–11:1. However, the reduction in infection from mass testing
comes at a substantial cost in terms of the number of students
self- isolating: under 2 day testing, at the height of the outbreak,
1300 (860–1500) students (4.5, 3–5%) were self-isolating com-
pared to 520 (98% PI: 470–560) students (1.9, 1.7–2.0%) in the
baseline scenario.

Testing all students monthly had a minimal impact compared
to not testing at all, reducing the average percentage of students

infected during the outbreak by 1.3%. Increasing testing fre-
quency to fortnightly, weekly or every 3 or 2 days was beneficial,
and this was robust to parameter choice (Supplementary Fig. S5).

We found that implementing multiple, layered interventions
was able to effectively control transmission in the student
population (Fig. 4a–c). The remaining cases in students were
largely due to importation of infection from outside the university
setting: reducing the background rate of infection demonstrates
that if imported infections could be managed then the number of
infected students could be very low.

Discussion
Our results suggest that, under normal circumstances, COVID-19
would spread readily in a university setting. Our data-driven
approach reveals natural heterogeneities in student mixing pat-
terns that can be exploited to enhance disease control. We find
that controlling transmission is possible with combinations of
social distancing, online teaching, self-isolation and potentially
mass testing of students without symptoms.

Our findings highlight the importance of monitoring first-year
students and halls of residence in particular. In our analysis, first-
year students experienced the highest rates of infection and dom-
inate the early part of the outbreak due to the high levels of mixing
in halls of residence. Since we first conducted this work in May 2020,
a cross-sectional serosurvey of students in five English universities
found that first-year undergraduates were three times more likely to
be seropositive than other year groups and that seropositivity was
49% in students living in halls of residence in universities with high
SARS-CoV-2 infection rates10. Halls of residence have been identi-
fied as a risk factor for the transmission of other close-contact
infections including meningitis11, mumps12, norovirus13, respiratory
illnesses14 and gastroenteritis15. In practice, students in larger resi-
dences are allocated into shared flats or living circles, potentially
limiting widespread transmission. Limiting transmission within
residences is paramount for COVID-19 control in university
settings.

Lessons about infection control in universities can be learnt
from other diseases. Mass vaccination used for meningitis,
mumps and rubella outbreaks was not an option for COVID-19
in early 2020. During a mumps outbreak in a university hall of
residence, Kay et al. reported difficulty in identifying higher risk
students12. Due to the high number of contacts and of students’
contact networks inhabit, universities may wish to consider how
they might facilitate the collation of data to expedite the contact-
tracing process. Embedding positive health behaviours like hand
washing and using face coverings will also contribute to mini-
mising transmission opportunities. A randomised control trial of
hand washing in university residences found that installing
alcohol hand sanitiser in every room, bathroom and dining hall
reduced respiratory illness in students by 20%14.

Previous modelling work, based on universities in the United
States, has focussed on the necessity of regularly testing all
students5. While our findings are consistent that frequent testing

Fig. 3 Epidemic trajectories from the stochastic model. a Epidemic trajectories for the total number of infected cases (symptomatic and asymptomatic
cases) the baseline model from 100 realisations with best estimate parameters. bMean number of symptomatic cases by year group from 100 realisations.
Undergraduate years 1, 2, 3 and 4, taught postgraduates (PGT) and research postgraduates (PGR) are shown. c Epidemic trajectories when COVID security
(CS) measures reduce transmission by 50 and 25%. d Epidemic trajectories when face-to-face teaching (f2f) is limited to 15 and 5 persons. e Epidemic
trajectories for reduced living circles to 20 and 14 persons. f Epidemic trajectories when reactive mass testing is implemented every week and every 2 days.
Dotted vertical lines denote the end of the first term. g Ranking of interventions by mean number of symptomatic cases at the end of the first term from
100 realisations for increasing values of asymptomatic infectiousness, and therefore also increasing values of the reproduction number. The colours
correspond to the colours of the epidemic trajectories above.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25169-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5017 | https://doi.org/10.1038/s41467-021-25169-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


is necessary if used in isolation, our modelling approach
demonstrates that other interventions are viable. This is partly
due to our result that suggests that the reproduction number
would be lower than previous studies have assumed due to the
high proportion of asymptomatic cases. Furthermore, as previous
studies have discussed5, when prevalence is low, high testing
burden can lead to unnecessary isolation of negative cases. We
tried to mitigate test burden by implementing reactive mass
testing once incidence increased. Antibody testing could also play
in role in determining prior infection and infection rates in stu-
dent populations.

Our work uses a similar compartmental modelling approach to
the handful of models that have been developed for COVID-19
transmission in universities in the USA. A drawback of this
approach is that individual behaviour is not readily captured; in
particular, our approach does not capture superspreaders and
contact tracing and isolation of contacts or living circles is diffi-
cult to include in detail. We capture some heterogeneity using
household and faculty mixing data, and a stochastic model was
necessary due to the potentially small number of students in each
subgroup. Nevertheless, a network modelling approach would be
more appropriate for studying superspreading events and
individual-level variation.

Furthermore, while we had detailed data pertaining to the
university student population, we had limited data on contact
with the location population and we did not include university
staff explicitly in the model. Given the age distribution of stu-
dents, and the high likelihood of asymptomatic infection, staff
and surrounding communities are likely to experience higher
levels of morbidity than the students themselves. Although by-
and-large students fraternise with students, they do pose some
risk to more vulnerable groups within the university such as staff
with co-morbidities, or to their local community. Reliable data on
staff student interactions were not available and should be
included in a future study. Safeguarding all is a high priority.

The aim of this work was to characterise potential COVID-19
transmission patterns in a university setting and identify strate-
gies that may prove more likely to control transmission. This
work was provided to the Scientific Pandemic Influenza Group on
Modelling that provides modelling evidence to the UK

government16 and used directly to inform planning for re-
opening at the University of Bristol. In the absence of university
outbreak data, we used COVID-19 transmission parameters
estimated from other settings. Once the university year starts, and
should there be an outbreak, this type of modelling should be
used to estimate parameters in real time and provide a more
accurate tool for guiding interventions.

Methods
The SCS was a paper-based and online survey of 5388 unique participants in Great
Britain conducted in 20103,17. We have previously used these data to estimate the
reproduction number for COVID-1918. The SCS included 363 participants whose
listed occupation included ‘STUDENT’. We extracted these participants to sum-
marise their contacts by context (home, university, leisure/other, travel) and to
estimate the potential COVID-19 reproduction number in students. We used
Student’s t-test to determine the level of evidence for the observed differences in
numbers of contacts between students and the general population.

We used the SCS to estimate the contact rate between students by year and
school. For a student in school/year group i, we assumed that all study contacts
were within the same group, i.e., sii ¼ �s and sij ¼ 0, where �s is the mean number of
university-associated contacts reported by students in the SCS. We assumed that
non-study contacts occurred across the whole university. We took rij ¼ �rnj=N ,
where �r is the mean number of other/leisure contacts reported by students in the
SCS and nj=N is the proportion of students in group j.

We were provided with an anonymised extract of student data for a university
relating to the 2019/2020 academic year. The study complied with the university
data-protection policy for research studies (http://www.bristol.ac.uk/media-library/
sites/secretary/documents/information-governance/data-protection-policy.pdf).

The data contained age, primary faculty affiliation (7 faculties), primary school
affiliation (28 schools), year of study (6 undergraduate years, taught postgraduates
and research postgraduates), term-time residence, home region (if in the UK) and
country of origin for students registered in 2019/2020.

We used the university data to group students by school affiliation and year
group—a total of 161 categories. We then estimate the household contact rate
between students in each school/year group. We estimated the number of house-
hold contacts from the student data, taking postcode as a proxy for household. The
average number of students in school/year group j sharing accommodation with a
student in group i is calculated as follows:

hij ¼
∑P

k¼1 niknjk
∑P

k¼1 nik

where nik is the number of students in school/year i living at unique postcode k and
P is the number of unique postcodes.

In UoB, students in university residences will be assigned to a living circle, which
is a group of students who have higher rates of contact. We take the baseline living
circle size as 24 students and investigate the impact of smaller living circles. Where
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the number of students at a single postcode exceeded the living circle size, we create
subunits within the postcode that are the size of the living circle. Each living circle
contains a random sample of students at that address. See Supplementary Fig. S1
for a pictorial explanation of how the data are processed.

We use a stochastic compartmental model to simulate transmission dynamics in
the student population at UoB. We assumed that COVID-19 could be captured by
seven infection states: susceptible to infection (S), latently infected (E), asympto-
matic and infectious (A), pre-symptomatic and infectious (P), symptomatic and
infectious (I), self-isolating (Q), hospitalised (H) and recovered and immune (R)
with the subscript i indicating the subgroup. The total number of students is given
by N . The flow between compartments is depicted in Fig. 1 and given by the Eq. (1)
below.

Siðt þ 1Þ ¼ SiðtÞ � ΔSE

Eiðt þ 1Þ ¼ EiðtÞ þ ΔSE � ΔE

Aiðt þ 1Þ ¼ AiðtÞ þ ΔEA � ΔA

Piðt þ 1Þ ¼ PiðtÞ þ ΔE � ΔEA � ΔP

Iiðt þ 1Þ ¼ IiðtÞ þ ΔPI � ΔI

Riðt þ 1Þ ¼ RiðtÞ þ ΔAR þ ΔIR þ ΔQR

Qiðt þ 1Þ ¼ QiðtÞ þ ΔA � ΔAR þ ΔI � ΔIR þ ΔP � ΔPI � ΔQR

ð1Þ

The transitions are given by:

ΔSE � Bin Si; 1� expð�b� ∑
n

j¼1
βijðIj þ Pj þ εAj þ δijεQQjÞ=NjÞ

� �

ΔE � BinðEi; 1� expðσÞÞ
ΔEA � BinðΔE ; 1� expð�f ÞÞ
ΔA � BinðAi; 1� expð�γA � τAÞÞ
ΔAR � BinðΔA; 1� expð�γA=ðγA þ τAÞÞÞ
ΔP � BinðPi; 1� expð�γP � τAÞÞ
ΔPI � Bin ΔP ; 1� expð�γP=ðγP þ τAÞÞ

� �
ΔI � BinðIi; 1� expð�γI � τI ÞÞ
ΔIR � BinðΔI ; 1� expð�γI=ðγI þ τI ÞÞÞ
ΔQR � BinðQi; 1� expð�γQÞÞ

ð2Þ

All state and transition variables are time dependent, although we have dropped
tð Þ for convenience.
The student population was divided into 161 groups representing school and

year of study. The proportion of students in each group and the mixing between
groups was taken from the mixing matrix in Fig. 2. As 92% of the student
population is under 30 years of age, we expect a high proportion of cases to be
asymptomatic19,20 ðf ¼ 0:75Þ. In a survey of university students, a large range of
symptoms were reported in participants who tested positive for COVID-19, sug-
gesting that young adults may have symptoms, but not typical ones21. We also
expect a low hospitalisation rate22 (h ¼ 0:002) and a low mortality rate of hospi-
talised cases (μ ¼ 0:038)22 and have therefore not modelled hospitalisation and
death here.

For symptomatic cases, we assume an average incubation period, during which
cases are assumed not to be infectious and cannot be detected by the test, of
1=σ
� � ¼ 3 days23, after which they become infectious but pre-symptomatic for a
period of 1=γP

� � ¼ 2 days, when cases can be detected with a test. The infectious

period is taken as 1=γ
� � ¼ 3 days23, although there is uncertainty around these

values. Symptomatic individuals are tested and moved to self-isolation at a rate τI .
Asymptomatic cases are infectious for 1=γA

� � ¼ 5 days, so that their average
infectious period equals the infectious period for symptomatic cases. If asympto-
matic cases tested, they are moved to self-isolation at rate τA where they remain for
an average of 14 days. Individuals in self-isolation contribute to the force-of-
infection within their subgroup only at a reduced rate εQ ¼ 0:5.

The infectiousness of asymptomatic cases relative to symptomatic cases is
represented by the parameter ε. It is accepted that asymptomatic transmission can
and does occur; however, its relative importance has been difficult to measure due
to consistent case definitions, incomplete sampling and follow-up24. Apparent
asymptomatic transmission is often re-classified as pre-symptomatic transmission,
i.e., transmission that occurs in the days before symptom onset24–26. The house-
hold secondary attack rate for truly asymptomatic index cases has been found to be
lower than for symptomatic index cases24,26–30. A systematic review of 45 studies
found that the secondary attack rate for asymptomatic index cases was 60% lower
than for symptomatic index cases29. A different analysis of serological data from
Switzerland found that asymptomatic cases had a 70% lower odds (34–88%) of
infecting another household member compared to cases with symptoms30. Another
modelling study of contact tracing estimated that transmission due to truly
asymptomatic cases was limited, with pre-symptomatic and symptomatic trans-
mission contributing the remainder in approximately equal proportions31.

In summary, it appears that truly asymptomatic cases are less infectious than
symptomatic cases. In order to capture the reduced infectiousness of asymptomatic
cases, while acknowledging that students may report non-typical system, we take a
baseline value for the relative infectiousness of asymptomatic cases, ε, of 0.5 and
also consider a value of 0.3, and the full range of values in the Supplementary
Note 4. We assume that pre-symptomatic and symptomatic cases are equally
infectious32.

We assume the transmission rate between group i and group j, βij , is propor-
tional to the contact rate cij, where cij is the average number of contacts in group j
made by a person in group i. We assume that contacts were either household
contacts (hij), study contacts ðsijÞ or random contacts (rij), so each entry in the
contact matrix is given by cij ¼ hij þ sij þ rij . In this formulation, we assume an
equal probability of transmission by contact type. In order to translate the contact
matrix into the transmission matrix, we calculate a constant k such that the
maximum eigenvalue of the transmission matrix B ¼ fβijg ¼ fkcijg equals the
reproduction number33. There is an additional background rate of infection,
governed by the parameter b.

To estimate the reproduction number in the student population, we took a
population-wide reproduction number of R0 ¼ 2:7, calculated as follows. In our
framework, if a symptomatic case generates Rs secondary cases, then an asymp-
tomatic case will generate RA ¼ εRS secondary cases. With R0 ¼ RS þ RA ,
Rs ¼ R0= f þ 1� f

� �
ε

� �
. If cases without symptoms are 50% as infectious as cases

with symptoms ðε ¼ 0:5Þ, and a fraction f ¼ 0:6 of the general population has
symptoms when infected, then in a university setting when a lower proportion of
cases have symptoms ðf ¼ 0:25Þ but have on average 10% more contacts than an
average person, we would expect a reproduction number within university of
RU ¼ 2:7. If ε ¼ 0:1 then RU ¼ 1:7; if ε ¼ 1 then RU ¼ 3:4 (see Supplementary
Note 3 and Supplementary Fig. S3).

For the initial conditions, we assumed that 0.2% of incoming students had active
asymptomatic or pre-symptomatic infections, which we assigned randomly across
the year/faculty groups. For each scenario, we ran the model 100 times using a
different random seed. The model was simulated for 1 year to illustrate the full
range of dynamics, and we consider the state of the outbreak after 84 days, which is

Table 1 Baseline model parameter values, meaning and sources.

Parameter Symbol Value/Range References

Number of household contacts between subgroups hij Estimated from accommodation data
Number of study contacts between subgroups sij 20.0 (SD: 4.0) 3,17

Number of university-wide contacts between subgroups rij 4.3 (SD: 1.0) 3,17

Basic reproduction number in the UK R0 2.7 18,38

Transmission probability per contact per day β Estimated from reproduction number
Proportion of cases with no symptoms f 0.75 19,20

Average infectious period 1=γ 3 days 23,35

Average incubation period 1=σ 3 days 23,35

Average pre-symptomatic period 1=γP 2 days 23,35

Average infectious period for asymptomatic case 1=γA 1=γP þ 1=γ
Average time to test for symptomatic cases 1=τI 2 days 35

Average time to test for asymptomatic cases 1=τA Asymptomatic cases not tested in baseline model
Length of time in self-isolation 1=γQ 14 days
Relative infectiousness of asymptomatic cases compared to
symptomatic cases

ε 0.5 (0.3–0.7) 24,26–30

Reduction in infectiousness whilst in self-isolation εQ 0.5 Assumption
Background rate of infection b – Assumption
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the number of days between the start of the September term and the winter
holidays at the end of the first term. For numerical results, we report the mean and
98% PI from 100 simulations. The model code is available at https://github.com/
ellen-is/unimodel34.

For the main results reported in the paper, we ran the model with baseline
parameters for 100 realisations, drawing from distributions indicated in Table 1
and report the 98% PI calculated directly from the 1st and 100th order statistic. To
understand the variability further, we run 100 further realisations of the model
varying all baseline parameters independently by ±10%, and report those results in
the Supplementary information.

The impact of the infectiousness of asymptomatic cases was explored for values
of ε between 0 (asymptomatic cases not infectious) and 1 (asymptomatic cases as
infectious as symptomatic cases), which corresponds to reproduction numbers
ranging from 1.7 to 3.4 (see Supplementary Note 2).

We assumed that symptomatic cases would be tested and self-isolate within 48 h,
which is consistent with the median time between symptom onset and test of
2 days in the UK35. Contact tracing is difficult to implement explicitly in the
compartmental model framework, but the mechanism of action can be captured by
a lower within-group transmission rate. We focussed on interventions that could be
implemented on top of wider control measures and were guided on feasibility by
the UoB Scientific Advisory Group. We considered the following pragmatic
interventions, limited by feasibility (see Table 2 for a summary):

● Baseline conditions are ‘business as usual’ behaviour within universities with
PHE guidelines. Symptomatic cases are tested are moved into self-isolation
after an average of 48 h if test positive. No additional testing for people with
no symptoms. Students are assumed to be in living circles that comprise of a
maximum of 24 individuals to reflect existing UoB arrangements.

● COVID security represents the reduction in transmission associated with
social distancing and the use of face coverings36,37. We modelled COVID
security by reducing the transmission probability associated with non-
household contacts by 25 and 50% to capture the impact of face covering
use and social distancing outside of residences.

● Reduced face-to-face teaching is captured by reducing the number of face-
to-face teaching contacts by 25 and 75% from 20 students to 15 and then
5 students.

● Reduced living circles reflects reducing the number of students sharing
facilities within accommodation. In the baseline scenario, we assumed that
students were in contact with other students living in the same
accommodation, forming household groups up to a maximum of 24
individuals. For accommodation with more than 24 residents, we divided
the accommodation population up into subunit ‘living circles’ of
24 students. To explore the impact of living circle size, we reduced the
maximum living circle size from 24 to 20 and then 14 persons.

● Reactive mass testing: we simulate scenarios in which all students are tested
for the presence of current infection if the number of test-positive cases in a
given week is greater than the previous week. If mass testing is triggered in
the model, all students are tested within a given number of days, which is
varied between 2 and 7 days. Additional testing is continued until the
number of test-positive cases in a given week is less than the previous week.

● Multiple, layered interventions: we investigated the impact of each of the
above interventions in isolation and then applied sequentially: 25%
reduction in transmission due to COVID security, followed by a reduction
in face-to-face teaching to ten study contacts, followed by a reduction in
living circles to 24 individuals, and reactive mass testing every 2 days if the
infection rate on campus should rise, and finally a reduction in importation
rates from outside the university population.

For each model realisation we calculated (a) the doubling time during the
exponential growth phase as ln 2ð Þ=r, where r is the exponential growth rate in the
number of infected individuals, (b) the incident number of symptomatic and
asymptomatic cases at the end of the first term (day 84 of the model), (c) the time
the outbreak turns over, (d) the number of students in self-isolation and (e) the
ratio of asymptomatic to symptomatic cases.

We ranked the interventions when implemented without additional measures by
mean number of symptomatic cases at the end of the first term calculated from 100
realisations of the model for a given set of parameters and repeated this ranking for
values of ε between 0 (asymptomatic cases not infectious) and 1 (asymptomatic
cases as infectious as symptomatic cases).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Social Contact Survey data used in this study are available at http://wrap.warwick.ac.
uk/54273/. The raw UoB student data are protected and are not available due to data
privacy laws. The aggregated UoB student contact matrices are available to download at
https://github.com/ellen-is/unimodel/34.
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Code availability
The model was coded using R version 4.0.02 (2020-06-22). Model code for reproducing
epidemic trajectories and other outputs is available at https://github.com/ellen-is/
unimodel/34.
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