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Simple Summary: Glioblastoma multiforme (GBM) is the most aggressive primary brain cancer; less
than 50% of patients with GBM survive longer than 15 months. A biomarker for early GBM diagnosis
can substantially increase the effectiveness of therapy for glioma patients. Increased stiffness of brain
tumors has been reported during the progression of glioma. In this study, we explored the influences
of altered tissue stiffness on gene signaling and its prognosis for glioma patients. We identified four
stiffness-dependent genes highly associated with poor prognosis by applying bio-informatics analysis
through RNA-Seq and The Cancer Genome Atlas glioma database. Based on pathophysiological
observation, the stiffness of the brain tumor was introduced as the key criteria in our meta-analysis
of glioma. In addition to the pathophysiology-inspired approach for biomarker identification, our
findings provide insights into the relationship between glioma stiffness and prognosis as well as
identifying potential molecular treatment targets.

Abstract: With a median survival time of 15 months, glioblastoma multiforme is one of the most
aggressive primary brain cancers. The crucial roles played by the extracellular matrix (ECM) stiffness
in glioma progression and treatment resistance have been reported in numerous studies. However, the
association between ECM-stiffness-regulated genes and the prognosis of glioma patients remains to be
explored. Thus, using bioinformatics analysis, we first identified 180 stiffness-dependent genes from
an RNA-Seq dataset, and then evaluated their prognosis in The Cancer Genome Atlas (TCGA) glioma
dataset. Our results showed that 11 stiffness-dependent genes common between low- and high-
grade gliomas were prognostic. After validation using the Chinese Glioma Genome Atlas (CGGA)
database, we further identified four stiffness-dependent prognostic genes: FN1, ITGA5, OSMR, and
NGFR. In addition to high-grade glioma, overexpression of the four-gene signature also showed
poor prognosis in low-grade glioma patients. Moreover, our analysis confirmed that the expression
levels of stiffness-dependent prognostic genes in high-grade glioma were significantly higher than in
low-grade glioma, suggesting that these genes were associated with glioma progression. Based on a
pathophysiology-inspired approach, our findings illuminate the link between ECM stiffness and the
prognosis of glioma patients and suggest a signature of four stiffness-dependent genes as potential
therapeutic targets.

Keywords: glioma; stiffness; extracellular matrix; prognosis; FN1; ITGA5; OSMR; NGFR; TCGA

1. Introduction

Glioblastoma multiforme (GBM) is one of the most aggressive primary brain cancers.
Patients with glioma are typically treated with surgical resection, chemotherapy, and
radiotherapy [1]. Although progress has been made over the past few decades in the
development of these therapeutics for GBM, the median survival time remains less than
15 months [2]. Therefore, the identification of effective biomarkers for early detection and
diagnosis is urgently required to improve the prognosis and treatment of glioma patients.
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With the advent of RNA sequencing and bioinformatics, abundant public sequencing
data facilitate the discovery of biomarker genes, regulatory networks, and pathways associ-
ated with GBM. Pilot studies conducted by The Cancer Genome Atlas (TCGA) have revealed
four subtypes of GBM [3,4]. Genetic and transcriptomic alterations of the biomarker genes
EGFR, NF1, PDGFRA/IDH1, and NEFL define the classical, mesenchymal, proneural, and
neural subtypes, respectively. In addition, TCGA provides not only genomic profiles but
also clinical information, enabling us to predict the prognosis of cancers by using survival
analysis. A recent study revealed 22 universal biomarker genes for diagnosis and prognosis
across 29 cancers from TCGA, which were linked to the frequently mutated TP53-, MAPK-,
PI3K-, and AKT- related pathways [5]. As for glioma, Xu et al. identified a four-gene
(OSMR, SOX21, MED10, and PTPRN) signature related to survival and recurrence time by
using weighted gene co-expression network analysis [6]. A meta-analysis incorporating
TCGA and three public RNA-Seq datasets identified 104 common genes correlated with
overall survival between GBM and low-grade gliomas [7]. Moreover, recent studies have
revealed prognostic signature genes specific to DNA damage repair and the tumor immune
microenvironment [8–11].

Increasing clinical evidence has indicated that ECM stiffness plays a crucial role
in modulating glioma migration, invasiveness, and progression [12–15]. The stiffness of
gliomas gradually increases from several hundred pascals to tens of thousands of pascals, in
accordance with aggressiveness [16]. The increased stiffness of the tumor microenvironment
(TME) can promote GBM proliferation by enhancing EGFR signaling [17]. A stiffer matrix
also upregulates the stemness of glioma cells by activating BCL9L/Wnt/Beta-catenin
signaling, resulting in sustained tumor growth [18]. Moreover, ECM stiffness is also
associated with treatment resistance, including that of glioma. Erickson et al. showed that
large spheroids of U87 GBM cells were formed in stiff scaffolds exhibiting a higher degree
of temozolomide (TMZ) drug resistance [19]. Using patient-derived xenograft GBM cells,
Zhu et al. demonstrated that ECM stiffness can directly regulate how GBM cells respond
to treatment with TMZ [20]. Collectively, genes associated with ECM stiffness could be
potential biomarkers for improving treatment. However, the association between ECM
stiffness and the potential prognostic value of biomarker genes in clinical settings has not
been fully established.

In this study, we explored the association between ECM stiffness and prognosis via
bioinformatics analysis. We built a comprehensive list of stiffness-dependent genes from
an RNA-Seq dataset and evaluated their prognosis based on both low- and high-grade
gliomas in TCGA datasets. Based on further validation using the Chinese Glioma Genome
Atlas (CGGA) database [21], we identified FN1, ITGA5, OSMR, and NGFR as stiffness-
dependent prognostic genes. Overexpression of these four genes showed poor prognosis
in both low- and high-grade gliomas. We also confirmed that the expression levels of
stiffness-dependent prognostic genes in high-grade glioma were significantly higher than
in low-grade glioma, suggesting that these genes are associated with glioma progression.
Our results highlight the link between ECM stiffness and prognosis and provide insights
regarding potential molecular treatment targets for gliomas.

2. Materials and Methods
2.1. Identification of Stiffness-Dependent Genes

Raw counts from the GSE158097 RNA-Seq dataset [22] for 3D-printed glioma models
were downloaded from the National Center for Biotechnology Information GEO database
(https://www.ncbi.nlm.nih.gov/geo/ (accessed on 24 May 2022)) [23]. Two different
levels of stiffness of ECM regions, 2 kPa and 21 kPa, were applied to capture increased
stiffness during glioma progression [22]. We used R package DESeq2 (v1.24.0) with default
settings to identify stiffness-dependent or differentially expressed genes (DEGs) between
stiff and soft glioma models [24]. We applied the median of ratios method of normalization
before differential expression analysis [25]. An adjusted p value of <0.05 and fold change
(|FC|) > 1.5 were set as the cutoff criteria for DEGs.

https://www.ncbi.nlm.nih.gov/geo/
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2.2. TCGA Glioma Datasets

The RNA sequencing of Level 3 data for high- (TCGA-GBM) and low-grade (TCGA-
LGG) glioma were downloaded and processed using the R/Bioconductor pack-age TC-
GAbiolink [26]. We used DESeq2 (v1.24.0) with default settings to identify DEGs between
glioma and normal brain tissue. We performed a median of ratios method of normalization
before differential expression analysis. An adjusted p value of <0.05 and fold change (|FC|)
of >2 were set as the cutoff criteria for DEGs.

2.3. Functional Enrichment Analysis

Functional enrichment analysis in Gene Ontology (GO) and KEGG pathways was
performed and visualized using the R package clusterProfiler [27]. The category of GO
terms was set to Biological Process. An adjusted p value of <0.05 was set as the threshold
for identification of significantly enriched GO functional terms or KEGG pathways.

2.4. Survival Analysis

Prognostic genes were identified using a Kaplan–Meier survival model with survminer
(https://github.com/kassambara/survminer (accessed on 24 May 2022)). For each gene,
glioma patients were divided into high- (High) and low-expression (Low) groups, using
the median expression value as the cutoff. A p value of <0.05 was set as the significance
threshold of survival analysis.

2.5. CGGA Validation Datasets

We downloaded the mRNAseq_693 and mRNAseq_325 datasets for expression profiles
and clinical data of glioma patients from the CGGA (http://www.cgga.org.cn (accessed on
24 May 2022)) database (hereafter referred to as CGGA693 and CGGA325, respectively). No
normalization was performed on either CGGA dataset. Prognostic genes were identified
using a Kaplan–Meier survival model with survminer. A p value of <0.05 was set as the
significance threshold of survival analysis.

2.6. GSE16011 Validation Datasets

The gene expression profiles and clinical data of glioma patients from GSE16011 [22,28]
were downloaded from the GEO database. No normalization was performed on either
GSE16011 dataset. Prognostic genes were identified using a Kaplan–Meier survival model
with survminer. A p value of <0.05 was set as the significance threshold of survival analysis.

2.7. Multivariate Cox Regression

The multivariate Cox hazard regression method was used to extract expression-value-
based risk scores using the R package “survival.” According to the estimated regression
coefficients, a prognostic risk score was calculated for each patient [29–31]. Based on the
four-gene signature, patients were divided into high-risk and low-risk groups with the
median risk score as the threshold. A Kaplan–Meier survival analysis was performed
to estimate and compare the survival of patients in independent cohorts with high or
low scores.

3. Results
3.1. Identification of Stiffness-Dependent Genes from 3D-Printed Glioma Models

To identify genes associated with ECM stiffness, we first compared the expression
profiles of stiff (20 kPa) and soft (2 kPa) patient-derived 3D-printed glioma models from the
GSE158097 RNA-Seq dataset. Using the soft-ECM model as a reference, the difference in
gene expression levels of glioma grown on ECM with two different stiffness conditions was
assessed. A significantly differentially expressed gene (DEG) suggests stiffness dependency.
After data processing, we identified 190 DEGs as stiffness-dependent genes (Table S1). The
10 most significantly expressed genes were NDRG1, FN1, CHI3L1, AQP4, VEGFA, AGT,
IFIT1, MT-ND6, SLC2A3, and TMEM45A (Figure 1A). A total of 95 genes were up-regulated

https://github.com/kassambara/survminer
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and 95 genes were down-regulated. These results suggest that the genes were up-regulated
and down-regulated in the stiff and soft models, respectively (Figure 1B).
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Figure 1. Volcano and heatmap of stiffness−dependent genes. (A) Volcano plot for all DEGs. Red
dots indicate genes that were not significantly expressed, whereas green dots indicate significantly
expressed genes. The 10 most significant DEGs are highlighted with gene names. (B) Heatmap
of DEGs. Up−regulated genes are denoted by yellow−red colors and down−regulated genes are
denoted by navy−blue colors.

3.2. Enrichment Analysis of Stiffness-Dependent Genes

To gain further understanding of the biological functions of stiffness-dependent genes,
we performed GO enrichment analysis separately for up- and down-regulated genes.
The most enriched GO terms of up-regulated stiffness-dependent genes were response
to virus, response to hypoxia, ECM organization, negative regulation of endopeptidase
activity, negative regulation of proteolysis, and cell growth (Figure 2A). This suggests that
these stiffness-dependent genes were activated in response to a stiff TME but repressed
in a soft TME. The most enriched GO terms and their corresponding genes were further
visualized in inter-connected networks (Figure 2B). Moreover, a KEGG pathway enrichment
analysis suggested that HIF-1 signaling was the most crucial pathway for these up-regulated
stiffness-dependent genes (Figure S1A).

Conversely, the results of enrichment analysis revealed distinct GO terms for down-
regulated genes, suggesting that these stiffness-dependent genes were activated in response
to the soft TME but repressed in the stiff TME. The most enriched GO terms were protein-
DNA complex assembly, chromatin organization involved in the regulation of transcription,
nucleosome assembly, the regulation of gene expression, epigenetics, and DNA packaging
(Figure 3A). The common enriched genes were mostly histone family genes, such as H3C1,
H3C2, H3C7, H3C10, and H3C12. Apart from histone family genes, many mitochondrially
encoded genes were down-regulated. For example, ND1, ND2, ND6, ATP8, CYTB, and
ANTKMT were enriched through oxidative phosphorylation (Figure 3B). Interestingly,
KEGG pathway enrichment analysis suggested that systemic lupus erythematosus, alco-
holism, and neutrophil extracellular trap formation were the most enriched pathways for
these down-regulated stiffness-dependent genes. These pathways are also involved in
transcriptional misregulation in cancer, oxidative phosphorylation, and Parkinson’s disease
(Figure S1B).
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3.3. Differential Expression of Stiffness-Dependent Genes in TCGA Glioma Datasets

We downloaded public RNA-Seq expression profiles and clinical data containing
low- and high-grade gliomas from TCGA for our analysis. The RNA-Seq data included
156 patients with high-grade glioma (TCGA-GBM), 516 patients with low-grade glioma
(TCGA-LGG), and five patients with normal brain tissue. After data-processing, in TCGA-
GBM, we identified 13,160 DEGs, including 7223 and 5937 up- and down-regulated genes,
respectively. In TCGA-LGG, we identified 6329 DEGs, including 2775 and 3554 up- and
down-regulated genes, respectively. By removing genes with inconsistent annotations, 180
stiffness-dependent genes were matched to TCGA datasets. As shown in Table S2, 50 and
90 stiffness-dependent genes were significantly differentially expressed between glioma
patients and those with normal brain tissue for TCGA-LGG and TCGA-GBM, respectively.
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3.4. Survival Analysis of Stiffness-Dependent Genes

A recent study showed that a prognostic gene may not be differentially expressed
between various cancers and normal tissue [32]. Therefore, we performed Kaplan–Meier
analysis for all stiffness-dependent genes, including those that were not DEGs in TCGA.
Our results revealed that 14 and 116 stiffness-dependent genes were prognostic in TCGA-
GBM and TCGA-LGG, respectively (Table S3). The expression values of stiffness-dependent
genes from GSE158097 were mapped to the corresponding hazard ratio calculated using
univariate Cox regression in TCGA. In TCGA-GBM, 13 of 14 stiffness-dependent genes had
poor prognosis (hazard ratio > 1) in the high-expression group (Figure 4A). In TCGA-LGG,
90 genes had poor prognosis in the high-expression group, whereas 26 genes had better
prognosis (hazard ratio < 1) in the high-expression group. However, no clear correlation
was found between the expression values of GSE158097 and the corresponding hazard
ratio in either TCGA-GBM or TCGA-LGG.
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plots of stiffness−dependent gene expression and corresponding hazard ratios for TCGA−GBM
and TCGA−LGG. (B) Common stiffness−dependent prognostic genes between TCGA−GBM and
TCGA−LGG.

Collectively, we identified 11 common stiffness-dependent prognostic genes between
TCGA-GBM and TCGA-LGG (Figure 4B). Nine high-expression genes showed consistently
poor prognosis in both TCGA-GBM and TCGA-LGG, including NGFR, FN1, LDHA, OSMR,
ITGA5, KRT80, COL27A1, KIAA0040, and NDUFB2-AS1. The high expression of ENO2
predicted the poor prognosis in TCGA-GBM but better prognosis in TCGA-LGG. Inter-
estingly, the high expression of SCG3 predicted better prognosis in both TCGA-GBM and
TCGA-LGG.

3.5. Validation Using the CGGA Database

To validate our finding of stiffness-dependent prognostic genes, we examined the
independent CGGA database [21]. We constructed CGGA-GBM datasets by including a
total of 283 samples from WHO grade IV glioma patients. As for CGGA-LGG, 403 samples
from WHO grade II and III glioma patients were included. After Kaplan–Meier anal-
ysis, four stiffness-dependent genes were identified from TCGA datasets (FN1, ITGA5,
OSMR, and NGFR) as prognostic in CGGA-GBM (Figure 5A). Ten genes (NGFR, FN1,
KRT80, HIST1H3F, SCG3, OSMR, KIAA0040, ENO2, ITGA5, and NDUFB2-AS1) were also
prognostic in CGGA-LGG (Figure S2). Finally, intersection analysis revealed FN1, ITGA5,
OSMR, and NGFR as common genes between CGGA-GBM and CGGA-LGG (Figure 5B).
In agreement with the results from TCGA datasets, all genes predicted poor prognosis in
the high-expression group.
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To determine whether these stiffness-dependent prognostic genes were associated with
glioma progression, we compared the differential expression between TCGA-GBM and
TCGA-LGG. Our results showed that FN1, ITGA5, OSMR, and NGFR were overexpressed
in TCGA-GBM (Table S2), suggesting that these genes were not only prognostic but also
diagnostic between high-grade gliomas and normal brain tissue. However, only FN1 was
overexpressed in TCGA-LGG (Table S2), implying that FN1 could be an early detection
biomarker for low-grade glioma patients. Moreover, the expression levels of all four stiffness-
dependent prognostic genes in TCGA-GBM were significantly higher than in TCGA-LGG
(Figure 6A). As confirmed by the CGGA database, our results showed consistent expression
patterns between high- and low-grade gliomas (Figure 6B), demonstrating that these stiffness-
dependent prognostic genes were also associated with glioma progression.
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3.6. Validation of the Four-Gene Signature in Independent Cohorts

To assess prognosis based on the four-gene signature, a risk score (r) was calculated using a
multivariate Cox regression model for each patient as follows: r = 0.1147× FN1 + 0.2201× ITGA5
+ 0.2661 × OSMR + 0.2762 × NGFR. The gene symbol indicates the expression value of a gene in
TCGA-GBM. Samples were then divided into high- and low-risk groups according to the median
of risk scores. Survival analysis with log-rank tests revealed that patients in the low-risk group
had a significantly better prognosis than those in the high-risk group (Figure 7A, top).
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Figure 7. Kaplan–Meier curves of the four stiffness-dependent prognostic gene signatures for four
independent cohorts: (A) TCGA, (B) CGGA_693, (C) GSE16011, and (D) CGGA_325. GBM: Glioblas-
toma, O: Oligodendroglioma, A: Astrocytoma.

According to the fifth edition of the WHO Classification of Tumors of the Central
Nervous System, published in 2021, adult-type diffuse gliomas are classified into three sub-
types: astrocytoma (IDH-mutant), oligodendroglioma (IDH-mutant and 1p/19-codeleted),
and glioblastoma (IDH-wildtype) [33]. We further investigated the prognosis of the four-
gene signature for astrocytoma and oligodendroglioma from the TCGA-LGG dataset. Our
results showed that patients in the low-risk group had a significantly better prognosis than
those in the high-risk group for oligodendroglioma (Figure 7A, bottom). However, the
survival difference between high- and low-risk groups for astrocytoma was not significant
(Figure 7A, middle). As for the CGGA693 dataset, our four-gene signature predicted that
patients in the low-risk group had better prognosis than those in the high-risk group for
glioblastoma but was not predictive for astrocytoma or oligodendroglioma (Figure 7B).

We also tested two additional independent datasets: GSE16011 and CGGA325 (see
Materials and Methods). In the GSE16011 dataset, our results showed that patients in the
low-risk group had better prognosis than those in the high-risk group for glioblastoma
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but no predictive power was found for astrocytoma or oligodendroglioma (Figure 7C).
However, in the CGGA325 dataset, our four-gene signature failed to predict prognosis
for all subtypes of diffuse gliomas (Figure 7D). The results of a survival analysis for four
independent cohorts are summarized in Table S4.

4. Discussion

The mechanical rigidity or stiffness of the ECM is widely known to be crucial in regu-
lating the cellular behavior, invasion, migration, and proliferation of glioma cells [12–15].
A stiffened ECM has influences on therapeutics, leading to treatment resistance [19,20]. Al-
though several biomarker genes of the ECM have recently been identified, genes associated
with ECM stiffness and their prognostic value have not been fully explored. Hence, we
performed bioinformatics analyses to link ECM-stiffness-regulated gene expression and
prognosis, revealing FN1, ITGA5, OSMR, and NGFR as stiffness-dependent prognostic
genes. These genes were not only overexpressed in GBM but also in low-grade gliomas
across TCGA and CGGA datasets, highlighting their critical role in glioma progression.

Low-grade gliomas progressed to high-grade gliomas as stiffness gradually increased
in accordance with aggressiveness. Of the 180 stiffness-dependent genes identified by our
analysis, more than 20% were common DEGs between the TCGA-GBM and TCGA-LGG
datasets (Table S2). Whereas extensive efforts have been focused on assessing the effect of
ECM stiffness on high-grade gliomas, our results highlight the link between ECM stiffness
and low-grade gliomas. Based on the altered expression of the four stiffness-dependent
genes, our results provide a valuable resource for further study on the key regulatory genes
that mediate cell fate in the progression from low-grade to high-grade glioma. Moreover,
our results showed the poor prognosis of the high expression of the four stiffness-dependent
genes, suggesting that they are potential therapeutic targets for suppression.

FN1 is a glycoprotein of the ECM that facilitates cell adhesion, growth, migration, and
differentiation [34–36]. Fibronectins play critical roles in ECM assembly via fibrillogene-
sis [37,38]. Chen et al. reported that FN1 can be used to diagnose GBM from low-grade
astrocytoma, highlighting the crucial role of FN1 in glioma progression and malignancy [39].
In addition to their role as diagnostic biomarkers, the effect of TME-associated genes on
therapeutic efficacy has been highlighted in recent studies. Cell adhesion-mediated drug
resistance of glioblastoma has been reported [40]. A small molecule inhibitor of TG2 has
been found to disrupt the fibronectin matrix assembly, leading to increased sensitivity to
chemotherapy [41]. A recent report showed that miR-1 demonstrates tumor suppressive
activity in GBM by targeting FN1 [42]. miR-1 expression markedly inhibits tumorigenicity
and prolongs animal survival, and FN1 restoration in miR-1-expressing cells in turn restores
tumorigenicity, which indicates the critical role of FN1 in glioma progression. Moreover,
the high expression of FN1 in the microenvironment can serve as an alternative therapeutic
target for drug delivery involving brain tumors [43].

The key roles of the integrin family in glioblastoma have been studied intensively,
and integrin-α5β3 is known to be a major therapeutic target [44]. ITGA5 and ITGB1
form a receptor for fibronectin and have mainly been explored for their roles in cell-
surface mediated signaling. ITGA5 has been reported to affect the invasive nature of
many solid tumors by promoting the epithelial mesenchymal transition pathway [45,46].
Because of its correlation with immune infiltration, ITGA5 is also a prognostic gene for
gastrointestinal tumors [47]. Recent proteomic analysis has revealed that small interfering
RNA knockdown of ITGA5 reduces invadopodia formation in U87MG cells [48]. Moreover,
both the epigenetic and transcriptional levels of ITGA5 are effective in predicting TMZ and
bevacizumab resistance, revealing the novel roles of ITGA5 in predicting the treatment
outcomes of glioma [49]. To eliminate the malignance of GBM with highly expressed
integrin-α5β3, various anti-integrin agents, such as RGD-containing peptides, have been
developed; RGD peptides can be used as selective carriers to deliver anti-cancer drugs,
and have shown strong anti-glioma efficacy [44]. Moreover, because of the high affinity
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between RGD peptides and integrin, several targeting radiotracers have been developed
for phenotypic imaging and radiotherapy [44,50].

The oncostatin M receptor (OSMR) is a member of the type I cytokine receptor family
and contributes to the regulation of local immune response and ECM processes in GBM [51,52].
OSMR is also a direct target of up-stream genes and transcription factors. EGFRvIII and OSMR are
obligate co-receptors in maintaining oncogenic STAT3 signaling in mouse astrocytes and human
brain tumor stem cells [53]. In non-tumor cells, EGFR-OSMR can be activated synergistically
by the ligands EGF and OSM [52]. Moreover, the expression of OSMR is linked to resistance to
chemotherapy and radiotherapy. The mitochondrial OSRM regulates oxidative phosphorylation
and suppression of OSMR in glioblastoma by using a pharmacological inhibitor that improves
the response to ionizing radiation and increases survival [54].

The nerve growth factor receptor (NGFR) is a transmembrane protein and cell surface
receptor in many human cell types, including some adult brain cells. NGFR-expressing
glioma cells in humans enhance migration, induce structural rearrangement of the actin
cytoskeleton, and reduce RhoA activity, which are closely related to cell invasion [55]. More
importantly, NGFR is required for cancer cell survival and attenuates tumor suppressor p53
through the direct binding of p53 [56]. The depletion of NGFR suppresses human xenograft
tumor growth and sensitizes cells to anti-cancer drugs [57,58]. Recently, high NFGR
expression has been reported as being associated with immune exclusion of melanoma and
the pharmacological inhibitor AG-879, which can restore T cell sensitivity [59]. Although
the influence of NFGR inhibition remains to be explored, NGFR may serve as an alternative
therapeutic target for glioblastoma.

Based on pathophysiological observations, the stiffness of the ECM was introduced as the
key criteria in our meta-analysis of glioma. We compared the results of our pathophysiology-
inspired analysis with those of prognostic genes in other studies (Table S5) [7,8,10,60–64]. On
one hand, our data demonstrated an alternative approach to identifying prognostic biomarkers
for glioma from a pathophysiological perspective. On the other hand, the prognostic genes
identified were also associated with glioma progression based on gene expression levels. Our
findings provide insights into the relationship between ECM-stiffness-regulated genes and
their prognosis in glioma patients. However, the molecular mechanisms behind the effect of
the four-gene signature on mechanical sensing and transduction require further elucidation via
in vitro and in vivo experiments.

5. Conclusions

In this study, we explored the association between ECM-stiffness-regulated genes and
their prognosis in glioma patients. A pathophysiology-inspired approach was adopted
to identify prognostic biomarkers related to the stiffness alteration of the TME. Four
stiffness-dependent prognostic genes (FN1, ITGA5, OSMR, and NGFR) were identified
from GSE158097 and TCGA glioma datasets using bioinformatics analysis. Based on the
four stiffness-related signature genes, we built a risk model that predicted a high risk of
poor prognosis in glioma patients. Our results implied that ECM stiffness could affect the
survival of glioma patients. These stiffness-dependent genes could become therapeutic
targets for gliomas. Several pharmacological molecules and adhesive peptides, which can
interfere in the mechanical interactions of cells, are suggested to serve as supplementary
treatments, although further investigation of how these signature genes are involved in
mechanotransduction is required. Our study highlights the importance of the stiffness of
the microenvironment in glioma prognosis. In addition to ECM stiffness, we expect more
pathophysiology-inspired approaches related to the physical microenvironment will be
applied in prognosis analysis in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14153659/s1. Figure S1: Enriched KEGG terms for (A) up-
regulated and (B) down-regulated stiffness-dependent genes. Figure S2: Kaplan–Meier curves of
stiffness-dependent prognostic genes in the CGGA for common genes between TCGA-LGG and
CGGA-LGG; Table S1: List of 190 differentially expressed genes from GSE158097. Table S2: List of
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stiffness-dependent and differentially expressed genes from TCGA-GBM and TCGA-LGG; Table S3:
List of stiffness-dependent prognostic genes from TCGA-GBM and TCGA-LGG. Table S4: Summary
of the results of survival analysis for four independent cohorts. Table S5: Summary of the prognostic
genes for GBM or low-grade gliomas in recent studies.
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