
SOFTWARE Open Access

CellSim: a novel software to calculate cell
similarity and identify their co-regulation
networks
Leijie Li1, Dongxue Che1, Xiaodan Wang1, Peng Zhang1, Siddiq Ur Rahman1, Jianbang Zhao2, Jiantao Yu2,
Shiheng Tao1, Hui Lu3 and Mingzhi Liao1*

Abstract

Background: Cell direct reprogramming technology has been rapidly developed with its low risk of tumor risk and
avoidance of ethical issues caused by stem cells, but it is still limited to specific cell types. Direct reprogramming
from an original cell to target cell type needs the cell similarity and cell specific regulatory network. The position
and function of cells in vivo, can provide some hints about the cell similarity. However, it still needs further
clarification based on molecular level studies.

Result: CellSim is therefore developed to offer a solution for cell similarity calculation and a tool of bioinformatics
for researchers. CellSim is a novel tool for the similarity calculation of different cells based on cell ontology and
molecular networks in over 2000 different human cell types and presents sharing regulation networks of part cells.
CellSim can also calculate cell types by entering a list of genes, including more than 250 human normal tissue
specific cell types and 130 cancer cell types. The results are shown in both tables and spider charts which can be
preserved easily and freely.

Conclusion: CellSim aims to provide a computational strategy for cell similarity and the identification of distinct cell
types. Stable CellSim releases (Windows, Linux, and Mac OS/X) are available at: www.cellsim.nwsuaflmz.com, and
source code is available at: https://github.com/lileijie1992/CellSim/.
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Background
Cell type and tissue specificity are key aspects of preci-
sion medicine and regenerative medicine researches
[1].The cells direct reprogramming and complex human
disease studies, such as cancer, show that cell-cell inter-
action networks and cell-specific regulatory differences
are essentialfor researchers [2, 3].Direct reprogramming
requires cellular similarity between original cell and the
target cell type, as well as sharing regulation networks
[4–6]. Cells similarity can be estimated by the position
and function of the cell in vivo, but is infeasible for all
human cell types and still highly challenging. Besides,
due to the social pressures and sampling difficulties in
part of human tissues and cell-types, direct assay of the

cell and tissue-specific regulation networks is highly
challenging [7]. Thus, the direct reprogramming cell
types are limited [8]. Therefore, precise calculation of
human cell types similarity and intracellular regulation
networks will be of great help to the development of cell
reprogramming techniques and complex disease treat-
ment [9].
Traditional “wet” lab methods(molecular or cell exper-

iments) can not meet the requirements for calculating
the similarity of all human cell types since thousands of
cell types have been confirmed in the human body
[10].For instance, Cell Ontology provides a relationship
between cells which contain a large number of cells
among many species [11, 12]. BioGRID and HPRD data-
base offer regulation networks in species [13, 14]. These
data represent cells connection and global pathway func-
tion but cannot quantize cells relationship and
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distinguish the cell-specific regulation [15]. Bioinformat-
ics methods are needed in similarity calculation. Suc-
cessful methods, Mogrify [16],CellNet [17],MNDR [18],
RAID [19] and ViRBase [20] can predict reprogramming
factors and assess the fidelity of cellular engineering.
There are also some other related soft or database for
computational biology [21, 22]. However, these predic-
tions are limited by the cell type numbers and cannot
precisely calculate the similarity among all human cell
types. Further, none of these resources can predict cell
types by its specific expression genes and transcription
factors (TFs).

eIn this study, we developed CellSim software in order
to compute the cell similarity based on Cell ontology net-
work and cell-specific regulation network in FANTOM
[10, 23, 24]. We used the term in Cell Ontology as a node
in cell network, and the relationship between each term as
an edge. Moreover, CellSim acquires cell similarity based
on the cell network with semantic similarity as a measure-
ment to compute the similarity between each pair of
nodes. Additionally, CellSim provides the detail TF-gene
regulation relationships which are shared among original
cell and the target cell. Considering the importance of
cancer research and tumor heterogeneity which show

Fig. 1 Schematic Diagram of CellSim. CellSim has two main functions:the first one is the calculation of cell similarity and the second one is the
prediction of cell type

Fig. 2 The distribution map of all human cell types similarity scores
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specific molecular regulation mechanism and gene expres-
sion, CellSim divides the cell type-specific regulatory net-
work into cancer and normal cell network respectively, in
order to provide a more precise reference for cancer
researches.

Implementation
This version of CellSim was developed using the PYQT5
platform. The main workflow of CellSim is shown in
Fig. 1. We extracted all human cell types from existing
database, calculated similarities between cells, and inte-
grated human tissue-specific TF-genes regulation net-
works to adjust and rectify similarity scores. CellSim can
mainly achieve two functions. First, quantify the similar-
ity between any human cells and provide part cells’
shared regulation networks which are sorted by the
regulation reliability from high to low. Seconds predict
cell types by cell-specific highly expressed genes in query
cell and sort cells through the expected score. Consider-
ing the complexity of tumor cells, the prediction is per-
formed in human healthy cells and tumor cells,
separately.

Cell similarity calculation
The networks of cell types were downloaded and ana-
lyzed from Cell Ontology which includes 2160 cell type-
s(Including both general and branch cell types). The
similarity score between different cells was calculated by
semantic similarity algorithm [25–28], with formula as
below:

IC tð Þ ¼ − logP tð Þ ð1Þ
ICma t; t0ð Þ ¼ max

t̂∈Pa t;t0ð Þ
IC t̂

� � ð2Þ

sim t; t0ð Þ ¼ 2 � ICma t; t0ð Þ
IC tð Þ þ IC t0ð Þ ð3Þ

Where t refers to a cell type which is as a term in Cell
Ontology. IC(t) refers to information content value of
cell type t. P(t) refers to the percent that t and its pro-
geny cell types are divided by all cell types. Pa(t, t′) refers
to the cell types that contain both t and t′. ICma(t, t

′) re-
fers to the maximum information content of paternal
cell type node shared by t and t′.As the above definition,
the scale of similar score is from 0 to 1.
We calculated the distribution of similarity scores across

all cell types. The distribution of scores is given in Fig. 2.
The distribution indicates that when the similarity scores
are less than 0.1, the relationship between cells is weak
and strangeness. Similarity is moderate when scores are
between 0.1 and 0.4. Cells show a significant similarity
when score is between 0.4–0.7. When the similarity score
is higher than 0.7, it is considered that there is a strong
correlation between the cells, which indicate there poten-
tial property, location and functional similarity or even be-
long to the same type of cells. Further more, we used
Euclidean Distance [29] to cluster the cells with their simi-
larity score. Results, including heat map and circle cluster
figure, both of these are showing tidy phenomenon with
apparent modules (Fig. 3), which indicates the reliable and
accurate measure ability of our methods.

Fig. 3 Human cell similarity cluster. a Human cell similarity heat map. The similarities of all human cell types were calculated by Lin’s semantic
similarity arithmetic. Yellow lines were used to point out the modules with a high similarity. b Circles Hierarchical Clustering Diagramof Human
cell Similarity. The clustered branches were annotated with alternated blue and cell names
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Prediction of cell types with TF-gene regulatory network
We continued to validate our methods based on the
cell-specific TF-gene regulatory networks in FANTOM
project, which includes both 258 human normal cells and
130 cancer cells. As shown in the distribution of regula-
tion reliability scores (Fig. 4a), there is an apparent fault at
0.01. We conjecture that the bellow regulations are weak
or noise. And the statistic result shows that only 7 cells,
less than 2%, do not follow the rule (Fig. 4b). Therefore,
we removed the edges of which score was lower than 0.01
in order to get robust molecular networks. Finally, unique
TF-gene edges were extracted as a cell-specific network
for each type of cells. Our heatmap and circle cluster re-
sults also show high tidiness (Fig. 5). Based on the
cell-specific networks, CellSim provides the prediction of
cell types with a query gene list.

Function design
CellSim provides two kinds of search entries, includ-
ing cell types and gene list. For the first entry, when

users input two records of cell types, CellSim will cal-
culate and display the similarities between these two
lists. If user inputs only one cell type, CellSim will
calculate and show the similarity between this cell
type and all the other types of cells. Besides, based
on the cell-specific TF-gene regulation networks in
FANTOM, CellSim can also provide the common net-
work between different cells if there are the corre-
sponding regulation networks in FANTOM. Another
entry is a list of genes, through which function Cell-
Sim can predicate the gene related specific cell type.
We used cell-specific TF-gene networks mentioned
above as background datasets. CellSim provides both
radar charts and the associated tables as results,
which can be downloaded freely. Net Map Radar
Chart is drawn according to the first row of the table,
which represents the ratio of query genes and
cell-specific genes to cell-specific genes (Formulas 4).
Gene List Map Radar Chart is drawn according to
the second row of the table, which represents the

Fig. 4 Cell-specific Network Filtration. a Confidence scores distribution diagram of cell-specific network in FANTOM. Results show that more than
98% diagrams reach a plateau at 0.01, which was then used as a threshold to get robust network. b The bar of cell networks with plateau at 0.01
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ratio of query genes and cell-specific genes to query
genes (Formulas 5). The formulas are given bellow:

R ¼ Q∩M
num Mð Þ ð4Þ

R ¼ Q∩M
num Qð Þ ð5Þ

Where R represents overlap scores between the query
gene list and the specific genes in target cell type. Q rep-
resents the query gene list. M represents gene list of the

cell-specific network. Num(M) means the number of
genes in M.

Result
Stem cell similarity calculation as case study
We used somatic stem cell, stem cell, neuronal stem
cell osteoblast, and myoblast as an example to show
the similarity calculation results of cell types (Fig. 6).
As shown in the figure, cell type can be inputted by
file(Fig. 6b), or quickly entered in the primary inter-
face. The results are presented on the primary inter-
face of CellSim in the form of tabs (Fig. 6a). Precise

Fig. 5 Cluster of Cells with Specific Network in FANTOM. The similarity of Cells with Specific Network in Fantom5 was calculated by Lin’s semantic
similarity arithmetic. Then the cells were clustered and showed as heat map and hierarchical clustering diagram. (a) Heat map of clustered cells.
(b) Hierarchical clustering diagram

Fig. 6 Example of cell similarity calculation. (a) The result tab in CellSim main interface. (b) File input window
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data are shown in Table 1. The conventional network
of cell types is annotated in the last column. If the
two cell types have a shared network, it is filled in
“Common Network”. If only one cell has a network,
it is shown as the cell type’s name. Clicking the block
in CellSim, the detailed information of the regulation
network will be shown in a floating window and sort
according to the regulation reliability scores. Specific
regulation network sample is shown in Table 2.
We analyzed the similar trend of embryonic stem cells

(ESC) and extracted the top-ten similarity score cell
types are shown in Fig. 7. The most similar to ESC is
embryonic cell, mesodermal cell, and early embryonic
cell, which have an identical feature to ESC, high pluri-
potency. This result also validates the reliability of Cell-
Sim. Besides, ESC is similar to migratory neural crest
cell, neuroectodermal cell, migratory cranial neural crest

cell, and migratory trunk neural crest cell. The similarity
is lower than early embryonic cells and higher than nor-
mal somatic stem cells, which shows that ESC is more
likely to differentiate into specific neural stem cells than
other somatic stem cells. The results indicate that the
most similar cell types are early embryonic cells and
followed by adult stem cells, which is consistent with the
pluripotency difference instem cell types [30, 31]. This
consequence proves the reliability and robustness of
CellSim. We speculate that ESCs and related neural
stem cells have similar regulation networks and func-
tions, which needs further experimental validation.

Cell type prediction
We made an example use of cell type prediction (Fig. 8).
Specific gene list can be inputted as a file (Fig. 6b) or en-
tered directly from the main screen. In order to get
more robust results, we suggest user choose more than
10 genes as input in CellSim for a more accurate predic-
tion result. In order to get an accurate result, the query
is divided into two types: normal human cells and cancer
cells. The predictions are presented in the main window
as individual tabs (Fig. 8). Rader map is made to show
the prediction results directly, including the ratio of the
sharing genes to cell-specific genes and the ratio of the
sharing genes to query genes. These figures can be
modified freely by the figure tools in CellSim including
title name, axis name, color, transparency and so on.
Quantized prediction results are shown as a table on the
right. We make a detailed table using the screen the top
ten terms (Table 3).

Conclusion
CellSim is a user-friendly and open-source software
for the similarity calculation of different cells and the

Table 1 Cell types similarity and common networks

Celltype A Celltype B Similarity Common network

somatic stem cell stem cell 0.8708 No Network

somatic stem cell myoblast 0.4776 myoblast Network

osteoblast myoblast 0.6666 Common Network

osteoblast stem cell 0.4977 osteoblast Network

neuronal stem cell stem cell 0.734 neuronal stem cell Network

neuronal stem cell myoblast 0.4178 Common Network

Table 2 The top ten regulation terms in sharing network of
osteoblast and myoblast

Transcription Factor Gene Score

ASCL2 ELN 0.362

BACH1 CTHRC1 0.3112

BARX1 CCKAR 0.308

BARHL1 CCKAR 0.3077

AP1 MICALCL 0.2896

ALX4 MYF6 0.2744

ALX1 MYF6 0.2744

BARHL2 CCKAR 0.2737

ASCL2 ARHGAP22 0.2615

BARX1 RARA 0.2551

BARHL1 ADAMTSL1 0.2528

ASCL2 NEDD4 0.2441

ARX MYF6 0.2439

AP1 NEK7 0.2422

ATF1 HOXC8 0.241

BATF3 MAST2 0.2344

ATF1 HOXC9 0.2203

ASCL2 TAS1R1 0.2198

BACH1 ADAMTSL1 0.2184

Table 3 The top ten predicted cell types of query gene list

Percent of cell
type

Percent of query
gene list

Cell type

0.6 0.75 smooth muscle cells - uterine

0.1538 0.25 smooth muscle cells - pulmonary
artery

0.0769 0.125 heart fetal

0.0667 0.125 mesenchymal stem cells -
amniotic membrane

0.0556 0.125 myoblast

0.0323 0.125 renal proximal tubular epithelial
cell

0.0244 0.125 fibroblast - lymphatic

0.0185 0.125 heart - mitral valve adult

0.0169 0.125 chondrocyte - de diff

0.0169 0.125 thyroid fetal
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prediction of cell types based on networks which in-
clude the structure in Cell Ontology and the
cell-specific TF-gene regulation network in FANTOM.
This tool will be helpful for the research of cell direct
reprogramming and the cellular heterogeneity of

cancer cells, especially after the era of human cell
atlas researches [32].Through validation of cluster
analysis, our computational strategy showed high tidi-
ness and robust in different datasets. CellSim outputs
can be downloaded freely, including figures and

Fig. 7 Embryonic stem cell similar cell types analysis

Fig. 8 Example using: cell type prediction
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tables. Integrate other information, including DNA
methylation, non-coding RNA regulation and some
other source, will be helpful for the cell similarity
calculation.
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