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Clear evidence indicates that cytokines, for instance, adipokines, hepatokines,

inflammatory cytokines, myokines, and osteokines, contribute substantially to the

development of abnormal glucose and lipid metabolism. Some cytokines play a positive

role in metabolism action, while others have a negative metabolic role linking to the

induction of metabolic dysfunction. The mechanisms involved are not fully understood,

but are associated with lipid accumulation in organs and tissues, especially in the

adipose and liver tissue, changes in energymetabolism, and inflammatory signals derived

from various cell types, including immune cells. In this review, we describe the roles of

certain cytokines in the regulation of metabolism and inter-organ signaling in regard to

the pathophysiological aspects. Given the disease-related changes in circulating levels

of relevant cytokines, these factors may serve as biomarkers for the early detection

of metabolic disorders. Moreover, based on preclinical studies, certain cytokines that

can induce improvements in glucose and lipid metabolism and immune response may

emerge as novel targets of broader and more efficacious treatments and prevention of

metabolic disease.
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INTRODUCTION

Over the decades, overnutrition coupled with a sedentary lifestyle has led to a striking increase in
metabolic diseases, such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD).
Some organs and tissues (e.g., adipose, liver, muscle, skeleton) secrete specific cytokines for inter-
organ communication, and the production and secretion of these cytokines alter during nutritional
stress and physical activity. Recent studies have shown that certain factors participate in glucose
and lipid metabolism (1–4), and thus may associate with metabolic disorders.

In this review, we describe certain cytokines that are involved in abnormal glucose and lipid
metabolism (Figure 1). Based on the most recent literature, we delve into the roles of these
cytokines in the regulation of metabolism and inter-organ signaling (Table 1) with particular focus
on the relation to pathophysiological aspects ofmetabolic disease. Finally, considering the emerging
data supporting the contributions of various cytokines to metabolic disorders, we discuss the
potential for these factors to emerge as biomarkers for the early detection of metabolic disorders
and as novel approaches for therapy.
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FIGURE 1 | Alterations of cytokines levels and metabolic dysregulation.

ADIPOKINES

The adipose tissue is not only an inert repository of excess
energy but also a complex, highly active metabolic endocrine
organ that secretes numerous cytokines, which are collectively
termed adipokines (148). The endocrine functions of adipose
tissue are induced by secreted proteins stimulated by metabolic
effects and enzymes involved in the metabolism of steroid
hormones (148). Most, but not all, adipokines are peptides
or proteins with hormone-like properties that signal the
functional status of adipose tissue to targets in the brain,
liver, muscle, pancreas, immune system, and other tissues
(149). A portion of the adipokines have been confirmed to
directly or indirectly affect glucose and lipid metabolism,
as well as insulin sensitivity through modulation of insulin
signaling (148).

Abbreviations: T2D, type 2 diabetes; NAFLD, non-alcoholic fatty liver disease;

MetS, metabolic syndrome; CNS, central nervous system; FFA, free fatty

acids; BMI, body mass index; HDL, high-density lipoprotein; VLDL, very

low-density lipoprotein; HFD, high-fat diet; WAT, white adipose tissue;

FGF21, fibroblast growth factor 21; IRS1, insulin receptor substrate 1; TNF-

α, tumor necrosis factor α; IL, Interleukin; MCP-1, monocyte chemotactic

protein 1; NASH, non-alcoholic steatohepatitis; SREBPC, sterol regulatory

element-binding protein C; ApoB, apolipoprotein B; BDNF, brain-derived

neurotrophic factor; ucOC, undercarboxylated osteocalcin; LCN2, Lipocalin 2;

PPAR, peroxisome proliferators-activated receptors; PKA, protein kinase A; ERK,

extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase;

GLUT, glucose transporter.

LEPTIN

Leptin, the product of the obese gene (ob; also known as Lep),
is an adipocyte-derived hormone, which is responsible for the
regulation of feeding behavior and energy homeostasis through
the central nervous system (CNS) (150, 151).

Leptin promotes the oxidation of fatty acids through its
stimulation of Adenosine 5′-monophosphate (AMP)-activated
protein kinase (AMPK) phosphorylation and activation (5). It
also enhances insulin sensitivity in the peripheral tissues, which
is mediated by the central activation of the phosphoinositide 3-
kinase (PI3K)/Akt pathway (6). Moreover, leptin stimulates the
uptake of glucose and prevents the accumulation of lipids in
non-adipose tissues, which can result in functional impairments
known as “lipotoxicity” (7). The leptin deficient mice (ob/ob
mice) exhibited hyperphagia, obesity and insulin resistance, while
the administration of leptin in leptin lacking mice reverses these
alterations (152).

In humans, the congenital leptin deficiency leads to significant
hyperphagia, early-onset extreme obesity, and hormonal and
metabolic disturbances (153). Consistent with mice studies,
administration of recombinant leptin effectively improved
metabolic disorders in patients with lipodystrophy or congenital
leptin deficiency (154, 155). Notably, leptin concentrations are
significantly increased in obesity and T2D (156), and positively
correlated with adipose mass, indicating the occurrence of leptin
resistance (157). Further investigations and experimentations
need to be done to shed light on molecular mechanisms of
leptin resistance.
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Leptin exerts potent anti-diabetic actions, independent of its
effects on body weight. Indeed, long-term leptin administration
could significantly improve glycemic control, insulin sensitivity,
and lipid metabolism in mice with T2D (8, 158). However,
data from clinical trials failed to find that leptin can effectively
improve insulin sensitivity in T2D people with severe obesity
(9, 159). Nevertheless, due to the fact that not all T2D
subjects are overly obese, an issue is: does administration of
leptin improve insulin sensitivity in non-obese, leptin-sensitive,
T2D individuals?

ADIPONECTIN

Adiponectin is a peptide predominantly expressed in white
adipose tissue (WAT), and also produced in hepatocytes during
stress (10, 11). Contrary to other adipokines, adiponectin is
negatively associated with fat mass (160).

The powerful insulin-sensitizing role of adipokines is
due, in part, to its binding to cognate receptors, such as
adiponectin receptor (AdipoR)1 and AdipoR2, subsequently
leading to activation of AMPK and peroxisome proliferators-
activated receptors (PPAR)-α signaling pathways (10). Moreover,
adiponectin has an anti-steatotic effect on the hepatocytes, due
to increases in free fatty acid (FFA) oxidation, and reduces FFA
influx, de novo lipogenesis and gluconeogenesis (12). Notably,
adiponectin protects hepatocytes from apoptosis, a hallmark of
NAFLD, by inhibition of c-Jun NH2 terminal kinase (161). In
addition, adiponectin exerts anti-inflammatory and anti-fibrotic
action though acting on HSC, Kupffer, and possibly sinusoidal
cells (162). In mice, administration of adiponectin exhibits
glucose-lowering effects and improves insulin resistance, while
adiponectin-deficient mice suffer from insulin resistance and
diabetes (163). More recently, a study reported that AdipoR1
regulates healthy longevity through the activation of AMPK in
skeletal muscle, which in turn activates SirT1 (13). Similarly,
another study in C. elegans showed that the adiponectin receptor
(PAQR-2) signaling acts as a key player linking low temperature
with autophagy to extend lifespan (164).

High adiponectin levels were associated with a markedly
reduced relative risk of T2D (14). Circulating adiponectin levels,
as well as those of AdipoR1/R2 expression, are decreased
in the conditions of obesity, T2D and NAFLD (15). Given
that the US Food and Drugs Administration has not yet
approved any therapies for the treatment of NAFLD and
disease management is concentrated on treatment of common
comorbidities, adiponectinmay be a promising therapeutic target
for NAFLD. Further experimental investigations are needed to
estimate the efficacy and safety of adiponectin therapy in patients
with NAFLD.

RESISTIN

Resistin (named after “resistance to insulin”) is a member of
the family of resistin-like molecules (RELms), also known as
“found in inflammatory zone” (FIZZ) (162). In mice, resistin
is synthesized mainly in adipocytes (16), whereas in humans,
resistin is predominantly produced by macrophages infiltrating

adipose tissue and peripheral blood mononuclear cells, and it is
not detectable in adipocytes (165).

Resistin has been shown to induce insulin resistance in mice
(9). Cell-based studies revealed that resistin greatly increased
hepatocyte very low-density lipoprotein (VLDL) apoB and lipid
secretion through enhancing microsomal triglyceride transfer
protein (MTP) activity, impairing intracellular insulin signaling
and stimulating de novo lipogenesis via the sterol regulatory
element-binding protein (SREBP)1 and SREBP2 pathways (166).
Administration of recombinant resistin impairs glucose tolerance
and insulin sensitivity in normal mice, whereas treatment of
anti-resistin antibody improves these metabolic abnormalities
(16). Mice lacking resistin have low post-fasting blood glucose
levels via reduced hepatic glucose production (167). And resistin
deficiency in ob/ob mice leads to increased obesity due the
reduction in metabolic rate without an affect on food intake, but
also leads to improved glucose tolerance and insulin sensitivity
largely owing to enhancing insulin-mediated glucose disposal, as
well as drastically attenuated hepatic steatosis (17, 18).

Resistin expression was increased in subjects with central
obesity, T2D and NAFLD (19, 20). Although studies in
animal models consistently show that resistin promotes insulin
resistance, evidence for this effect in humans is unclear. Thus,
further researches are required toward this direction.

ASPROSIN

Asprosin, the C-terminal cleavage product of profibrillin
(encoded by FBN1), is a new fasting-induced glucogenic protein
hormone produced by WAT and associated with hepatic glucose
release (168). Asprosin accelerates hepatic glucose production by
activating the G protein-cAMP-protein kinase A (PKA) pathway
(169). It also acts as an orexigenic hormone, that activates AgRP
neurons to increase food consumption and body weight (170).
In mice, a single injection of asprosin caused a swift rise in
blood glucose and insulin levels, while a reduction in asprosin
and treatment with an asprosin-specific monoclonal antibody
improved insulin sensitivity and reduced appetite and body
weight (168, 169).

In humans, asprosin-deficient patients showed a reduction
in subcutaneous WAT and a unique pattern of metabolic
disorders, including partial lipodystrophy, along with decreased
plasma insulin while maintaining euglycemia (169). Asprosin
concentrations are increased in conditions of obesity and T2D,
and are independently associated with levels of fasting glucose
and triglycerides (171). It remains unclear whether the asprosin
inhibition could be effective management for obesity and T2D.
It has not yet been determined that the receptor for asprosin is
involved, and the factors regulating its secretion are not clear.
Further research is needed to fill these gaps.

CHEMERIN

Chemerin is an adipokine secreted in an inactive form
(prochemerin) and activated through C-terminal cleavage by
inflammatory and coagulation serine proteases (172), acting
through its receptor, such as the chemerin receptor (ChemR)
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TABLE 1 | Cytokines that involved in glucose and lipid metabolism.

Cytokines Metabolic actions Circulating levels References

Adipokines

aLeptin Promotes the oxidation of fatty acids, enhances insulin sensitivity, stimulates the uptake of glucose,

controls feeding

↑obesity,↑T2D (5–7)

aAdiponectin Enhances insulin sensitivity, anti-steatotic, anti-inflammatory, anti-fibrotic, regulates healthy longevity ↓T2D,↓NAFLD (8–12)

bResistin Induces insulin resistance, increases lipid secretion ↑T2D (9, 13–16)

bAsprosin Accelerates hepatic glucose production, increases food consumption and body weight ↑obesity,↑T2D (17–20)

bChemerin Exacerbates glucose intolerance, impairs insulin signaling and vascular dysfunction ↑T2D,↑NAFLD (21–28)

aOmentin-1 Promotes glucose uptake, improves insulin sensitivity, anti-atherosclerotic ↓T2D, ↓MetS (29–33)

Hepatokines

aFGF21 Ameliorates pancreatic β-cell function and survival, increases glucose uptake, maintains glucose

homeostasis, inhibits lipolysis

↑obesity,↑T2D (34–40)

bHepassocin Blocks insulin signaling, induces insulin resistance, exacerbates lipid accumulation ↑NAFLD, ↑T2D (41–43)

bFetuin A Causes insulin resistance, pro-inflammatory ↑T2D (44–53)

bFetuin B Induces glucose intolerance and insulin resistance ↑NAFLD,↑T2D (54, 55)

bSelenoprotein P Impairs insulin signaling and glucose homeostasis, increases glucose output ↑NAFLD,↑T2D (56–59)

Inflammatory cytokines

bTNF-α Mediates insulin resistance, stimulates of lipolysis, pro-inflammatory ↑T2D (60–67)

b IL-1β Stimulates triglycerides, cholesterol accumulation, and lipid droplet formation; reduces

insulin-stimulated glucose uptake and lipogenesis

↑obesity,↑T2D,

↑NAFLD

(68–80)

IL-6 Has a dual role in modulating insulin action ↑T2D (62, 81–89)

bMCP-1 Induces insulin resistance, elevates hepatic triglyceride content ↑T2D (90–95)

Myokines

a Irisin Induces glucose and fatty acid uptake, ameliorates hepatic steatosis, improves insulin resistance,

anti-inflammatory, loses weight

↓obesity,↓T2D (96–103)

a IL-13 Increases skeletal muscle glucose uptake, oxidation, and glycogen synthesis ↓T2D (104, 105)

a IL-15 Enhances insulin sensitivity and action, reduces fat mass and adipogenesis, decreases circulating

triglycerides and VLDL

↓obesity (106–110)

aBDNF Enhances insulin signal transduction and fat oxidation ↓T2D (111–116)

Osteokines

aOsteocalcin Promotes β-cell proliferation and insulin expression and secretion, favors glucose uptake and

utilization in muscle, favors fatty acid uptake and utilization in muscle

↓T2D, ↓MetS (4, 117–124)

bOsteopontin Induces steatosis, inflammation, insulin resistance, and gluconeogenesis ↑NAFLD (125–130)

aLCN2 Improves insulin sensitivity, decreases body weight and fat mass ↑obesity,↑T2D (131–135)

bSclerostin Enhances de novo lipid synthesis and reduces fatty acid oxidation ↑T2D (136–139)

bFGF23 Mediates insulin resistance, stimulates lipolysis ↑T2D (140–147)

aCytokines that induce positive metabolic effects.
bCytokines that induce negative metabolic effects.

↑Increased circulating levels.

↓Decreased circulating levels.

23 (21). Although chemerin and its receptors exist throughout
the human body, the adipose tissue and hepatocytes are major
sources of chemerin (22, 23).

Plasma chemerin levels were found to be increased in diet-
induced obese mice, and in another study of obese diabetic
db/db mice, the chemerin was found to exacerbate glucose
intolerance, lower serum insulin levels, and decrease tissue
glucose uptake (24, 25). Importantly, ChemR23 knockout
mice presented with reduced adiposity and body mass, and
the chemerin levels were shown to be reduced by weight
loss and fat reduction (26). In addition, antagonism of the
chemerin/ChemR23 system in a T2D animal model was found to
ameliorate vascular dysfunction and normalize insulin signaling
via redox-sensitive and Akt-dependent pathways (27). However,

a study reported that isolated islets and perfused pancreas from
chemerin-deficient mice revealed impaired glucose-dependent
insulin secretion, and conversely, chemerin transgenic mice
revealed enhanced insulin secretion and improved glucose
tolerance (28).

In humans, the circulating chemerin concentration
is significantly elevated among individuals with
obesity and/or T2D (173) and NAFLD (29), and
the levels of chemerin correlate with levels of pro-
inflammatory cytokines, such as tumor necrosis factor
(TNF)-α and interleukin (IL)-6 (30, 31). Targeting
chemerin/ChemR23 may be a potential therapeutic strategy
to improve insulin resistance and vascular function in
obesity-associated diabetes.

Frontiers in Endocrinology | www.frontiersin.org 4 October 2019 | Volume 10 | Article 703

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Shi et al. Cytokines, Glucose, Lipid Metabolism

OMENTIN

Omentin-1, also known as intelectin-1, is a novel adipokines
mainly expressed in visceral adipose tissue and is the major
circulating form of omentin (32). The levels of omentin-1
is downregulated by glucose and insulin, and upregulated by
fibroblast growth factor-21 and dexamethasone (33).

Omentin-1 is known to have key roles in the maintenance
of body metabolism and insulin sensitivity, and has
anti-inflammatory, anti-atherosclerotic, and cardiovascular-
protective effects via AMP-activated protein kinase/Akt/NF-
κB/mitogen-activated protein kinase (ERK, JNK, and p. 38)
signaling (33). In cultured human vascular cells, exogenous
omentin promoted glucose uptake, and improved the insulin
activity and anti-inflammatory response (174).

In humans, serum omentin-1 levels are significantly decreased
in patients with obesity (54), T2D (175), andmetabolic syndrome
(MetS) (34). And plasma omentin-1 levels were inversely
correlated with body mass index (BMI), waist circumference,
leptin levels, and insulin resistance, and positively correlated
with adiponectin and high-density lipoprotein (HDL) levels (54).
Thus, circulating omentin-1 levels may serve as a biomarker of
related metabolic disorders.

HEPATOKINES

It is well-established that the liver is a crucial organ in energy
stores, including systemic glucose and lipid metabolism (35).
Hepatic fat content is an excellent marker of the metabolic
abnormalities, and hepatic steatosis has a causal role in the
induction of a series of metabolic disease, such as NAFLD, MetS,
and T2D (1).

Hepatokines are proteins either uniquely or predominantly
produced by the hepatocytes; upon secretion, certain hepatokines
influence metabolic processes via autocrine, paracrine, and
endocrine signaling pathways in the liver and in non-hepatic
tissues (1). Under some circumstances, especially the condition
of liver steatosis, the hepatokine production and secretion profile
can be altered (36). These factors show positive or negative
metabolic effects, with some improvingmetabolic variables, while
others lead to metabolic dysfunction and inflammation (37).

FIBROBLAST GROWTH FACTOR (FGF)21

FGF21, a member of the FGF superfamily, is a secreted protein
expressed mainly in the liver (38). In general, it serves as a
metabolic regulator and is known to induce positive metabolic
functions that regulate insulin sensitivity and lipid and energy
metabolism (39).

In adipose tissue, FGF21 inhibits lipolysis (40) and increases
insulin-dependent glucose uptake via up-regulated expression
of glucose transporter 1(39). FGF21 preserves pancreatic
β-cell function and survival by activation of the extracellular
signal-regulated kinase (ERK) 1/2 and Akt signaling pathways
(152). Moreover, FGF21 induces fasting gluconeogenesis via
the brain-liver axis, to maintain glucose homeostasis during
prolonged fasting (176). FGF21 knockout mice showed severe

hypoglycemia and defective hepatic gluconeogenesis, and these
impairments reversed after injection of FGF21 (176). In obese
mice, administration of recombinant FGF21 has been shown to
alleviate hepatic steatosis, induce browning of WAT, increase
energy expenditure, improve insulin sensitivity, and restore
glucose tolerance (39, 177).

Circulating FGF21 levels are elevated in subjects with
obesity, T2D (37), and MetS (41), and positively correlate with
triglycerides, fasting insulin, and insulin resistance (41). Serum
levels of FGF21 is a sensitive marker of the degree of steatosis
(42). Consistent with the mice studies, the administration of
FGF21 analog shows good performance in patients with obesity
and T2D (43, 44). Hence, the favorable metabolic action of
FGF21 treatment appears to be in contrast with the elevated
levels of FGF21 detected in obese and T2D subjects. It remains
unclear whether these conflicting findings suggest that high
levels of FGF21 are produced in these cases to compensate
for underlying metabolic stress, or whether FGF21 resistance is
present in the context of high levels of FGF21 associated with
obesity and T2D.

HEPASSOCIN

Hepassocin, also called fibrinogen-like protein 1 and hepatocyte-
derived fibrinogen-related protein 1 (HFREP1), is a liver-specific
growth factor that has been found to participate in the regulation
of proliferation of hepatocytes and regeneration of the liver (45).
High glucose regulates the expression of hepassocin, and the
fasting glucose concentrations is an independently associated
factor for the plasma hepassocin levels (46).

Cell-based studies in HepG2 hepatocellular carcinoma cells
revealed that hepassocin can block insulin signaling and induce
insulin resistance through an ERK1/2-dependent signaling
pathway (46). In mice, both the hepatic over-expression of
hepassocin and administration of recombinant hepassocin lead
to exacerbated hepatic lipid accumulation and induction of
insulin resistance in both liver and skeletal muscle tissues (46).
Conversely, knockdown of hepassocin in HFD-fed mice led to
improved glucose utility and insulin sensitivity, and ameliorated
impaired insulin signaling both in liver and skeletal muscle (46).

In humans, circulating levels of hepassocin are increased
in prediabetes, T2D, and NAFLD, owing to its association
with impaired fasting glucose, glucose intolerance, and insulin
resistance (46, 47). Consequently, high hepassocin levels are risk
factors for insulin resistance and diabetes, and hepassocin may be
a promising biomarker for the detection of prediabetic status.

FETUIN A

Fetuin A is a glycoprotein expressed predominantly in the liver
and has been identified as an endogenous inhibitor of insulin
receptors (48). This glycoprotein is an independent risk factor for
the development of T2D (49).

Fetuin A impairs insulin action working through its binding
to the insulin receptor tyrosine kinase in liver and skeletal
muscle, and resulting in decreased rates of autophosphorylation
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and downstream insulin signaling cascades (48). Fetuin A also
stimulates the production of pro-inflammatory cytokines in
adipocytes and macrophages (50). The process involves Fetuin A
serving as an endogenous ligand for the Toll-like receptor (TLR)
4, which then enables free fatty acids to activate TLR4 signaling
to induce insulin resistance (51). Besides, liver expression of the
gene encoding fetuin A positively associates with the expression
of key enzymes in glucose and lipid metabolism (52). Mice that
knocked out the gene encoding Fetuin A (Ahsg gene) were insulin
sensitive (53) and resistant to weight gain when fed a HFD (178).
Whereas, injection of recombinant fetuin A into mice reduced
insulin sensitivity (179).

In humans, circulating levels of fetuin A are elevated in
patients with hepatic steatosis (55) and T2D (52); moreover,
this increase is correlated strongly and negatively with insulin
sensitivity (180). In view of the interaction between increasing
plasma concentrations of both FFA and fetuin A resulting
in insulin resistance (56), disruption of the fetuin A-TLR4
association may serve as a potential therapeutic strategy for T2D.

FETUIN B

Fetuin B is the second member of the fetuin family, an
endogenous inhibitor of the insulin receptor tyrosine kinase,
and is produced primarily in liver tissue (57). Cell-based studies
have demonstrated that fetuin B can lead to insulin resistance
in myotubes and hepatocytes (36), and in vivo studies have
shown that administration of fetuin B to lean mice causes glucose
intolerance but not insulin resistance (36). Moreover, partial
silencing of fetuin B in obese mice improved glucose tolerance,
independent of weight loss (36).

In humans, plasma fetuin B levels are increased in obese
individuals with hepatic steatosis (36) and T2D, and associated
positively with intrahepatic triglyceride and insulin resistance
(36, 58). However, the mechanism underlying its role in these
pathogeneses remains unclear. Further researches are necessary
to shed light on how fetuin B exerts its metabolic effect.

SELENOPROTEIN P

Selenoprotein P, encoded by the Sepp1 gene, is a secretory protein
produced and secreted primarily by the liver. It is responsible
for transporting selenium from the liver to extrahepatic tissues
(59). A recent study reported that selenoprotein P regulates
insulin action and systemic energy metabolism in rodents and
humans (181).

Cell-based studies revealed that administration of purified
selenoprotein P resulted in impaired insulin signaling through
reduced insulin-stimulated phosphorylation of the insulin
receptor and AKT in mouse primary hepatocytes and
immortalized myocytes in vitro, and increased phosphorylation
of insulin receptor substrate 1 (IRS1) at Ser307 (182). In mice,
the administration of selenoprotein P induced hepatic and
peripheral insulin resistance, whereas both genetic deletion
and RNA interference-mediated knockdown of selenoprotein P
ameliorated insulin signaling and improved glucose tolerance

(182). Additionally, high circulating levels of adiponectin were
observed in Sepp1 knockout mice, revealing the occurrence
of crosstalk between the hepatokine selenoprotein P and the
adipokine adiponectin (183).

In humans, selenoprotein P is increased in patients with
T2D (182) and NAFLD (181), and is positively correlated with
triglycerides, glucose, and insulin resistance (184). However,
most of current data comes from small sample clinical studies,
thus further prospective large-scale studies are warranted.

INFLAMMATORY CYTOKINES

The immune system is closely linked to metabolic changes,
and components are changed in obesity and T2D (68). The
detection of immune cells in metabolic tissues and organs, such
as macrophages, has highlighted a dynamic, ongoing crosstalk
that exists between immune and metabolism regulatory systems
(185). Their interactions are termed “immunometabolism.”
Inflammation has emerged as an important pathophysiological
factor of T2D, with inflammatory cytokines playing a pivotal
role. Inflammatory cytokines characterize an inflammatory state
(recently named as “metaflammation”), which is defined by
a chronic low-grade inflammation initiated by metabolic and
inflammatory cells in response to an excessive energetic nutrient
load (186). Some pro-inflammatory cytokines, such TNF-α and
IL-1β, take part in disrupting the insulin and lipid signaling
pathways, thereby influencing insulin sensitivity and lipid
metabolism (60). Promisingly, some treatments targeting pro-
inflammatory cytokines displayed improved glucose metabolism
and insulin secretion and sensitivity in T2D (61).

TNF-α

TNF-α, a member of TNF family, is a potent pro-inflammatory
cytokine and immuno-modulator produced mainly by
macrophages and monocytes (62). TNF-α is involved with
multiple functions and plays a variety of roles in metabolic
disorders (63).

TNF-α is a mediator of insulin resistance through its ability
to block the action of insulin (64). The TNF-α-mediated insulin
resistance is partially through the down-regulation of key genes
(i.e., Glut4), which are necessary for normal insulin action,
direct influences on insulin signaling, induction of elevated free
fatty acids by stimulation of lipolysis, and negative regulation of
peroxisome PPAR-γ, a vital insulin-sensitizing nuclear receptor
(65, 66). In mice, administration of exogenous TNF-α could
lead to insulin resistance, conversely neutralization of TNF-α
improved insulin sensitivity (67). Furthermore, TNF-α deficiency
has been shown to significantly improve insulin sensitivity, and
lower circulating levels of free fatty acids (187).

In humans, the circulating concentration of TNF-α are
elevated in T2D, and this alteration is strongly associated with
impaired glucose tolerance and enhanced insulin resistance, islet
dysfunction, and increased T2D risk (109–111). Some studies
have shown that a statistically significant reduction in the risk
of developing T2D in treatment with TNF inhibition, and
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the improvement in insulin sensitivity in during prolonged
treatment with the anti-TNF-α antibody infliximab in insulin
resistant subjects (61). However, most of these studies were
not prospective and it is unclear whether these improvements
are direct or indirect influences. Further study is necessary
to determine whether TNF-α inhibition can help in the
management of human metabolic disease.

IL-1β

IL-1β, a member of the IL-1 family, plays an important role
in endocrinology and the regulation of responses correlated
with inflammatory stress (72). IL-1β is considered to mediate
inflammation, steatosis, and fibrosis in liver (68).

In β-cells, IL-1β activates the JNK pathway (73), which
is involved in cytokine-mediated apoptosis (74) and
mediates oxidative stress-induced suppression of insulin
gene transcription (75). Moreover, IL-1β decreases expression
of the insulin receptor substrate IRS-1, inhibits glucose
transporter (GLUT)4 translocation to the plasma membrane,
and reduces insulin-stimulated glucose uptake and lipogenesis
(76). In mice, IL-1β was found to promote hepatic steatosis by
stimulating triglycerides, cholesterol accumulation, and lipid
droplet formation and to regulate inflammation, hepatic insulin
resistance, and fibrosis (77). In contrast, inhibition of IL-1β
was found to attenuate steatosis and liver injury (78), improve
atherosclerosis (79), and lower glycemia (80). Furthermore, the
IL-1β deficiency mice exhibited less hepatic steatosis and intact
insulin sensitivity (188).

In humans, serum levels of IL-1β are increased in obesity,
NAFLD (189), T2D (190), and MetS (81), but decrease
significantly after extensive weight loss (82). Emerging clinical
studies showed that IL-1 receptor antagonist (anakinra) and IL-
1β-specific antibody (gevokizumab, canakinumab, LY2189102)
treatment improved glucose metabolism and insulin secretion in
patients with T2D (61, 83). Moreover, IL-1 antagonism was well-
tolerated with no evidence of drug-related adverse events, apart
from reactions at the anakinra injection site (61).

IL-6

IL-6 is a multifunctional cytokine with complex roles and is
expressed in numerous cells, including immune cells, skeletal
muscle cells, and islet β-cells (84). It has a dual role in modulating
insulin sensitivity, acting as both an enhancer and inhibitor of
insulin action (62).

To exert its biological effects, IL-6 utilizes two pathways:
classic and trans-signaling. While it is generally believed that
the classic signaling is participated in the anti-inflammatory and
regenerative activities of IL-6, the trans-signaling is involved in
the pro-inflammatory responses induced by this cytokine (85,
86). Moreover, IL-6 is responsible for macrophage recruitment
to adipose tissue in obesity, leading to the development of
inflammation, insulin resistance, and T2D (87). In addition, IL-6
has been shown to exert long-term inhibitory effects on the
gene transcription of IRS-1, GLUT4, and PPAR, along with a

marked reduction in IRS-1, and on insulin-stimulated tyrosine
phosphorylation and insulin-stimulated glucose transport, which
result in impaired insulin signaling and action (88). It is worth
noting that the central application of IL-6 suppresses feeding
and improves glucose tolerance via enhanced trans-signaling
in the CNS of obese mice, even under conditions of leptin
resistance (89). Studies have also shown that short- and long-
term administration of adipocytes with IL-6 produces different
influences on insulin signaling. Short-term treatment with IL-6
has been found not to impair the effect of insulin in the
adipose tissue of rats (191), but increased glucose uptake in
adipocytes (90). In contrast, chronic administration of IL-6
has been found to induce insulin resistance, suppress glucose
transport, and reduce insulin-induced lipogenesis (88, 91). In
humans, circulating levels of IL-6 are elevated in T2D, and this
cytokine is an independent predictor of T2D (92).

MONOCYTE CHEMOTACTIC PROTEIN 1
(MCP-1)

MCP-1, a member of the chemokine (chemotactic cytokine)
family, is a powerful monocyte agonist that plays a crucial role
in the recruitment of macrophages (93). MCP-1 is mediated
by NF-kB activation and oxidative stress (94), and up-regulated
by oxidized lipids, endoplasmic reticulum stress (95), and high
glucose concentrations (192). Additionally, MCP-1 links obesity
to insulin resistance and hepatic steatosis (96).

Mice that were engineered to express the MCP-1 transgene
showed macrophage infiltration into adipose tissue, elevated
hepatic triglyceride content, and insulin resistance (96).
MCP-1 induces hepatic steatosis and insulin resistance via
up-regulating the expression of SREBP-1c, a transcription
factor that regulates the expression of genes important in
lipid synthesis, and glucose-6-phosphatase (G6Pase), an
enzyme involved in hepatic glucose production (96). In
contrast, MCP-1 knockout mice and inhibition of MCP-1
activity exhibited improvements in insulin resistance and
hepatic steatosis (96, 97). Consistent with the findings in
mice, humans show increased plasma levels of MCP-1 in
T2D (98).

MYOKINES

Skeletal muscle is considered to be the largest organ in the body of
non-obese subjects and is now recognized as an active endocrine
organ due to its function in releasing numerous myokines
(3). Myokines are part of a complex communication network
within the body which connects skeletal muscle with other
organs, such as adipose tissue, liver, and pancreas (3). Recent
studies have indicated that myokines, such as irisin, interleukin
(IL)-13, and IL-15, are deeply involved in glucose and lipid
metabolism via autocrine, paracrine and endocrine activities (99).
It is speculated that the contractile activity influences skeletal
muscle secretory functions, which may link physical activity to
the health-promoting effects of exercise [5].

Frontiers in Endocrinology | www.frontiersin.org 7 October 2019 | Volume 10 | Article 703

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Shi et al. Cytokines, Glucose, Lipid Metabolism

IRISIN

Irisin, encoded by the Fndc5 gene, is the cleaved and secreted
product of the fibronectin type III domain-containing protein 5
(FNDC5). This myokine is a transmembrane protein expressed
principally in skeletal muscle (100), but is also expressed in WAT
to a lower extent (101).

Irisin participates in energy expenditure via stimulation
of the browning of WAT (100), direct induction of glucose
and fatty acid uptake, and regulation of gene expression of
metabolic enzymes in human muscle via AMPK activation
(102). Cell-based studies revealed that the treatment of
recombinant irisin greatly increased uptake of glucose and
fatty acids, as well as expression of genes involved in glucose
transport and lipid metabolism; however, the expression of
genes involved in glycogenolysis or gluconeogenesis was
suppressed (102). Furthermore, exogenously administered irisin,
adenovirus-over-expressed irisin and irisin transgenic mice
exhibited improved glucose homeostasis, ameliorated hepatic
steatosis, improved insulin resistance, reduced inflammatory
cytokine production, and weight loss (100, 103, 104, 193).
FNDC5 gene deficiency aggravated fat accumulation, obesity,
insulin resistance, and inflammation accompanied with
enhanced AMPK inhibition, macrophages recruitment, and M1
polarization (103).

In humans, irisin levels, and FNDC5 gene expression are
decreased in obese and T2D individuals (105). A previous study
reported that irisin increases immediately after exercise and is
positively correlated with exercise intensity (102). The positive
role of irisin in metabolism supports the idea that moderate
exercise is good for health. However, there are some conflicting
findings in the literature (194). To date, the role of irisin in T2D
is still not entirely clear. Further research is required to determine
the links between irisin and T2D.

IL-13

IL-13 is well-known as an anti-inflammatory cytokine by
inhibiting the secretion of some inflammatory cytokines derived
from macrophages and monocytes (106). Recently, however,
IL-13 was determined to also serve as a novel myokine
that is synthesized and released by human myotubes under
the conditions of accelerated glucose uptake and metabolism
through autocrine pathway (173).

It has been demonstrated that IL-13 is a master regulator
of glucose metabolism, working via suppression of hepatic
glucose production and directly inhibiting the transcription of
hepatic genes that encode key gluconeogenic enzymes, such
as PEPCK and G6P (107). In cultured human myotubes, the
levels of IL-13 were found to be significantly decreased (∼75%)
in those from T2D individuals compared to myotubes from
heathy subjects (108). IL-13 exposure increases skeletal muscle
glucose uptake, oxidation, and glycogen synthesis via an Akt-
dependent mechanism (108). On the contrary, genetic deletion
of IL-13 in mice resulted in hyperglycemia, which progressed to
hepatic insulin resistance and systemic metabolic disturbances
(107). And basal glycogen synthesis was found to be reduced

in cultured myotubes upon exposure to an IL-13-neutralizing
antibody (108).

However, the molecular mechanisms underlying the
regulation of IL-13 expression and release by exercise are, as yet,
unclear. Further research should be undertaken to explore how
exercise affects IL-13 expression and secretion.

IL-15

IL-15, a member of IL-2 superfamily, is a myokine that is highly
expressed in skeletal muscle and released by myotubes; it is also
produced by a wide variety of other cells and tissues (109).

The IL-15 secreted from skeletal muscle communicates
with the adipose tissue to stimulate a reduction in fat mass
and adipogenesis, and to decrease triglycerides and VLDL in
blood (110), primarily through the UCPs and PPAR-δ signaling
pathways (195). Moreover, in skeletal muscle and liver, IL-15
may enhance insulin sensitivity (196) and subsequent glucose
transport and utilization, thereby improving glucose homeostasis
through the activation of GLUT4 via Jak3/STAT3 (197). It has
been demonstrated in animal models and human that IL-15:
improves lipid and glucose metabolism, and insulin sensitivity;
enhances mitochondrial activity; reduces WAT inflammation;
and alleviates endoplasmic reticulum stress (197). Genetic
research reported that IL-15 transgenic mice exhibited lean body
condition, whereas IL-15 gene knockout mice showed significant
increase in weight gain without changes in appetite (111).

In humans, plasma IL-15 is significantly decreased in obesity
(111) and negatively associated with fat mass (112). Therefore,
IL-15 may be a feasible therapeutic target for prevention and
treatment in obesity and T2D.

BRAIN-DERIVED NEUROTROPHIC
FACTOR (BDNF)

BDNF, a member of the neurotrophic factor family, is a protein
produced in skeletal muscle cells that is increased by contraction
(113). BDNF regulates neuronal differentiation and synaptic
plasticity, and its reduced levels are involved in the pathogenesis
of Alzheimer’s disease and other disorders (114).

It is reported that BDNF increases phosphorylation of
AMPK and acetyl CoA carboxylase, enhances fat oxidation
(115), regulates glucose metabolism, and ameliorates insulin
sensitivity (116). In obese diabetic mice, BDNF reduces food
intake and lowers blood glucose levels (131). In another study,
the administration of BDNF enhanced insulin-triggered tyrosine
phosphorylation of the insulin receptor in the liver (116)
and insulin-stimulated phosphatidylinositol-3 kinase (PI3K)/Akt
activity, which demonstrated that BDNF can enhance insulin
signal transduction (116). Moreover, in db/db mice, the
hypoglycemic effect induced by the administration of BDNF was
found to last for several weeks after treatment cessation and
was independent of food reduction (131). Conversely, BDNF-
deficient mice displayed hyperphagia, obesity, hyperleptinemia,
and hyperinsulinemia (198).
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In humans, plasma BDNF is decreased in individuals with
both obesity and T2D, and is inversely correlated with serum
levels of free fatty acids and insulin resistance (199). Moreover,
lower BDNF levels are involved with obesity and diabetic
complications (200).

OSTEOKINES

Recently, bone has emerged as an unexpected pleiotropic
endocrine organ according to the finding of its secretion
of molecules, which act in autocrine/paracrine manners to
modulate skeletal homeostasis as well as some extra-skeletal
systems (201). Bone is not only metabolically active, with glucose
as the major energy source, but also actively takes part in
systemic energy metabolism (4). First, osteoblasts can uptake
glucose (a process primarily mediated by GLUT1) for utilization
through aerobic glycolysis (202). Interestingly, the total uptake
of glucose by bone exceeds that of traditional glucose-utilizing
organs, including muscle, WAT, and the liver (203). Second,
numerous key enzymes associated with the glycolytic pathway
in carbohydrate metabolism are also present in osteoblasts
(204) and osteoclasts (136). Moreover, osteoblasts express both
the insulin receptor (205) and GLUT (117), which provides
the basis for bone-mediated regulation of glucose metabolism.
In addition, several osteokines (bone-derived cytokines), such
as osteocalcin (118), lipocalin 2(201) and sclerostin (119)
link bone and glucose metabolism, with involvement in
modulation of glucose homeostasis, appetite, and browning of
adipose tissue.

OSTEOCALCIN

Osteocalcin, also known as bone γ-carboxyglutamic acid
protein, is one of the osteoblast-specific proteins that is an
established biomarker of bone turnover, and it is reported
to be associated with glucose and fat metabolism (118, 120).
Circulating levels of undercarboxylated and bioactive osteocalcin
double during aerobic exercise at the time levels of insulin
decrease (121).

The endocrine functions of osteocalcin are fulfilled by
its undercarboxylated form, termed undercarboxylated
osteocalcin (ucOC) (4). Osteocalcin receptors are present
in both central nervous system (122) and peripheral tissues,
for instance, in the pancreas (123), adipocytes (124), and
muscle (121), thereby facilitating its physiological functions.
There is a growing body of experimental evidence suggesting
that ucOC promotes pancreatic β-cell proliferation and
insulin expression and secretion (118, 123), induces up-
regelation of adiponectin in adipocytes to ameliorate insulin
resistance (124), promotes release of glucagon-like peptide-1
to indirectly stimulate insulin secretion (206), and favors
glucose and fatty acid uptake and utilization in muscle
during exercise (121). Mice lacking osteocalcin manifested
decreased β-cell proliferation, glucose intolerance, and insulin
resistance (118), In contrast, the metabolic abnormalities

in these mice were improved by infusion of exogenous
ucOC (125).

In humans, serum osteocalcin levels are significantly lower in
subjects with T2D (126) and MetS (120). However, the results
regarding incident T2D are controversial. In several longitudinal
studies, the serum osteocalcin level was found to not associate
with the development of T2D (127).

OSTEOPONTIN

Osteopontin, a member of small integrin-binding ligand
N-linked glycoproteins (SIBLINGs) family, is a major non-
collagenous bone matrix protein which participates in normal
and pathological calcification (128). This glycoprotein is
expressed in a variety of cells, including osteoblasts, osteoclasts,
macrophages, as well as T-lymphocytes (128). Osteopontin
acts as a mediator of obesity-related hepatic alterations
including steatosis, inflammation, insulin resistance, and excess
gluconeogenesis (129).

Cell-based experiments have shown that osteopontin
impaired differentiation and insulin sensitivity of primary
adipocytes as determined by inhibition PPAR-γ, adiponectin
gene expression and insulin-stimulated glucose uptake (130).
Mice deficient in osteopontin have improved glucose tolerance
and lower fasting plasma glucose, insulin, triglycerides, and
proinflammatory cytokines after high fat diet regime compared
to wild-type mice (129) and antibody-mediated neutralization of
osteopontin action reduces obesity-induced inflammation and
insulin resistance (207).

In humans, serum osteopontin may reflect up-regulated gene
expression during liver fibrosis in NAFLD and may serve as a
test for advanced hepatic fibrosis in NAFLD (208). Moreover,
osteopontin is involved in the development of diabetic vascular
complications (132, 209).

LIPOCALIN (LCN)2

LCN2, a small secreted transport protein, was initially recognized
for its role in innate immunity (133) and was then identified as
an adipokine capable of inducing insulin resistance (134). More
recently, a new insight on LCN2 was gained with the discovery
of Lcn2 expression in mice being at least 10-fold higher in bone
than that in WAT (201).

Mechanistically, osteoblast-derived LCN2 has been shown
to cross the blood-brain barrier and suppress appetite after
binding to the melanocortin 4 receptor (or MC4R) in the
hypothalamus by activating an MC4R-dependent anorexigenic
(appetite-suppressing) pathway, thereby decreasing body weight
and fat mass and improving insulin sensitivity (201). Mice
lacking Lcn2 specifically in osteoblasts, rather than in adipocytes,
showed increased food intake, fat mass, and body weight,
along with decrease in glucose tolerance, insulin sensitivity,
and serum insulin levels after glucose or arginine load (201).
Meanwhile, islet number and size, β-cell mass and proliferation,
and insulin secretion were also decreased in the LCN lacking
mice (201). Conversely, chronic administration of exogenous
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LCN2 to lean and obese mice produced similar effects, with
food intake, fat mass and body weight gain becoming reduced
and glucose metabolism and energy expenditure becoming
heightened (201).

In humans, postprandial serum levels of LCN2 become
significantly increased in normal-weight individuals
after high-fat meals, and this effect is accompanied by
enhanced total energy expenditure; the effect is opposite
(decreased LCN2) in obese subjects (135). Intriguingly, LCN2
expression and serum levels are higher in obesity (210), T2D
(137), and NAFLD (138). In addition, LCN2 levels were
positively correlated with adiposity, hypertriglyceridemia,
hyperglycemia, and insulin resistance index but negatively
correlated with HDL cholesterol (139). As such, there
may be a compensatory mechanism at the early stage of
this disease.

SCLEROSTIN

Sclerostin is a secreted protein predominantly expressed in
osteocytes and is inhibited by osteoblast differentiation and
bone formation (211). In general, sclerostin is considered a
local inhibitor of bone acquisition that antagonizes deep bone
metabolism via Wnt/β-catenin signaling (119).

Sclerostin exerts profound control over skeletal and whole-
body metabolism by regulating the Wnt/β-catenin signaling
pathway (119).Serum sclerostin levels were increased in mice
models of disturbed metabolism, while sclerostin-deficient
mice and those treated with a sclerostin-neutralizing antibody
exhibited a reduction in the accumulation of WAT, along
with corresponding enhancements in glucose and fatty acid
metabolism, and increased insulin sensitivity (119). In contrast,
recombinant sclerostin treatment was found to enhance de
novo lipid synthesis and reduce both fatty acid oxidation
and the expression of genes associated with fatty acid
catabolism (119).

In humans, circulating levels of sclerostin are increased
in T2D (140) and positively associated with BMI and
fat mass (141). Moreover, the serum sclerostin levels
exhibit a positive correlation with fasting glucose and
result in insulin resistance; but negatively correlated
with whole-body glucose disposal and insulin clearance
rate (142).

FGF23

FGF23, a unique member of the FGF family, is derived from
bone that acts as a hormone and regulates renal phosphate and
vitamin D metabolism (143). A growing body of epidemiological
and experimental evidence suggests that FGF23 may regulate
lipid and glucose metabolism as well as insulin action (144), but
the underlying mechanisms are unclear. Furthermore, FGF23
involvement has been implicated in the onset and progression of
atherosclerosis via its effects on endothelial cell function (145).

FGF23 knockout mice presented with reduced fat mass,
developed hypoglycemia and increased peripheral insulin
sensitivity, and showed improved subcutaneous glucose
tolerance (146), suggesting a link between FGF23 and insulin
resistance. However, another study in FGF23 lacking mice
demonstrated no influence on aging, glucose homeostasis, or
lipid metabolism with a non-functioning vitamin D receptor
(147), suggesting that FGF23 may exert its effects depend on
functioning vitamin D receptor.

In humans, serum FGF23 levels are elevated in individuals
with obesity (212), MetS (144), prediabetes (213), and T2D (214).
Moreover, FGF23 is associated positively with triglycerides, BMI,
waist circumference, and fat mass, and negatively correlated
with HDL and apolipoprotein A1 (144). However, another
cross-sectional study of small sample did not show differences
in circulating FGF23 levels between diabetic and non-diabetic
patients, but reported that circulating FGF23 is associated with
bone mineral density and preclinical vascular disease in T2D
patients (215). Further experimental studies are needed to shed
more light on the underlying mechanisms between FGF23 and
glucose and lipid metabolism, and prospective studies of large
scale are needed to determine the association between FGF23 and
metabolic disease, such as T2D.

CONCLUSION

Overnutrition and physical activity alter cytokines secretion,
thereby influencing metabolic and immune regulatory pathways
that caused or promoted metabolic disorders. These cytokines
are part of a complex network that mediates communication
between multiple organs and tissues (e.g., adipose, liver, muscle,
skeleton). The emerging data support the contributions of
certain cytokines to metabolic disorders. Given the disease-
related changes in levels of relevant cytokines (for instance,
leptin, adiponectin, reisitin, FGF21, Fetuin A, TNF-α, IL-
6, MCP-1), these factors may serve as biomarkers for the
early detection of metabolic disorders. Moreover, based
on preclinical studies, certain cytokines (FGF21, leptin,
adiponectin, irisin) that can induce improvements in glucose
and lipid metabolism and may emerge as novel targets of
broader and more efficacious treatments and prevention of
metabolic disease.
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