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Abstract
In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram
(EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features.
Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally.
The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio
of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of
instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are
reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis,
decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features
generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification
problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is
effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimizationmodel
can improve classification accuracy.

Abbreviations: AB = AdaBoost, ANN = artificial neural network, DT = decision tree, EEG = electroencephalogram, EER =
extreme energy ratio, FFT = fast Fourier transformation, GA = genetic algorithm, GAFDS = genetic algorithm-based frequency-
domain feature search, k-NN = k-nearest neighbor, LDA = linear discriminant analysis, MFDFA = multifractal detrended fluctuation
analysis, MLP = multilayer perceptron, NB = Naïve Bayes, SEER = semisupervised extreme energy ratio, SVM = support vector
machine.
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1. Introduction

Epilepsy is a chronic disease characterized by a sudden abnormal
discharge of brain neurons. In 2013, over 50 million patients
were afflicted with epilepsy worldwide, with most patients
originating from developing countries.[1] Approximately 9
million epileptic patients were recorded in China in 2011. Every
year, 600,000 new epileptic patients are recorded.[2] In China,
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epilepsy has become the second most common nerve disease,
coming in second to headache. Therefore, the accurate diagnosis
and prediction of epilepsy are significant. Electroencephalogram
(EEG) signals are often used to evaluate the neural activities of the
brain. These signals, which are acquired by electrodes placed on
the scalp, can reflect the state of brain neurons at a specific time.
The recorded EEG signals are complex, nonlinear, unstable, and
random because of the complex interconnection among billions
of neurons. Several scholars have focused on EEG signal analysis
and processing to aid in the diagnosis and treatment of epilepsy.
The first step in EEG signal analysis is to extract and select

relevant features. The major signal feature extraction methods
are based on time-domain, frequency-domain, time–frequency
domain, and nonlinear signal analyses.[1] Altunay et al[3]

presented a method for epileptic EEG detection based on time-
domain features. Chen et al[4] extracted features of EEG signals
by using Gabor transform and empirical mode decomposition,
which involves frequency-domain and time–frequency domain
technologies. For nonlinear signal analysis, Zhang and Chen[5]

extracted 6 energy features and 6 sample entropy features of EEG
signals. In feature extraction, researchers have often mixed
multiple methods and obtained new features by various models.
Zhang et al[6] combined an autoregressive model and sample
entropy to extract features, and results showed that the combined
strategy can effectively improve the classification of EEG signals.
Geng et al[7] used correlation dimension and Hurst exponent to
extract nonlinear features. Ren and Wu[8] used convolutional
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deep belief networks to extract EEG features. By contrast, other
researchers have extracted fixed features. Chen et al[9] extracted
dynamic features by recurrence quantification analysis. Tu and
Sun[10] proposed a semisupervised feature extractor called
semisupervised extreme energy ratio (SEER). Improving on this
work, they further proposed 2 methods for feature extraction,
namely, semisupervised temporally smooth extreme energy ratio
(EER) and semisupervised importance weighted EER.[11] Both
methods presented better classification capabilities than SEER.
Rafiuddin et al[12] conducted wavelet-based feature extraction
and used statistical features, interquartile range, and median
absolute deviation to form the feature vector. Wang et al[13]

extracted EEG features by wavelet packet decomposition.
After feature extraction, the selected features should be classified

to recognize different EEG signals. Classifiers for EEG classifica-
tion can be grouped into 5, namely, linear classifiers, neural
networks, nonlinear Bayesian classifiers, nearest neighbor classi-
fiers, and combinations of classifiers.[14] Li et al[15] used a multiple
kernel learning support vector machine (SVM) to classify EEG
signals.Murugavel et al[16] used an adaptive multiclass SVM. Zou
et al[17] classifiedEEG signals by Fisher linear discriminant analysis
(LDA). Djemili et al[18] fed the feature vector to a multilayer
perceptron (MLP) neural network classifier. The classification
capacity of a single classification method is limited; thus, an
increasing number of researchers have attempted to combine 2 or
more methods to improve classification accuracy. For example,
Subasi andErçelebi[19] adopted anartificial neural network (ANN)
and logistic regression to classify EEG signals. Wang et al[20]

combined cross-validation with a k-nearest neighbor (k-NN)
classifier to construct a hierarchical knowledge base for detecting
epilepsy. Murugavel and Ramakrishnan[21] proposed a novel
hierarchical multiclass SVM integrated with an extreme learning
machine as kernel to classify EEG signals. To classify multisubject
EEGsignals,Choi[22] usedmultitask learning,which treats subjects
as tasks to capture intersubject relatedness in the Bayesian
treatment of probabilistic common spatial patterns.
Researchers have also studied the application of machine

learning and optimization algorithms to improve the accuracy of
epilepsy detection. Amin et al[23] compared the classification
Figure 1. Overall process of EEG signal classification. In feature extraction, GAFDS
used to optimize the selection of the features. The classifiers used for analysis includ
multilayer perceptron, and Naïve Bayes. EEG = electroencephalogram, GAFDS =
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accuracy rates of SVM, MLP, k-NN, and Naïve Bayes (NB)
classifiers for epilepsy detection. Nunes et al[24] used an optimum-
path forest classifier for seizure identification.Moreover, artificial
bee colony[25] and particle swarm optimization[26] algorithms
were also used to optimize neural networks for EEG data
classification. Nevertheless, the study of the application of
machine learning and optimization algorithms to epilepsy
detection is currently insufficient.
In this paper, genetic algorithm-based frequency-domain feature

search (GAFDS) method is proposed. This method searches for
effective classification features in the frequency spectrum rather than
using the maximum, minimum, and mean values of the frequency
spectrum as features. This method can be easily extended to the
feature extraction of other spectra. Formulticlassification problems,
a high classification accuracy can be achieved using the features
selected by the GAFDS method. The accuracy can be further
improved by combining other nonlinear features. An optimization
algorithm is used to optimize feature selection.
2. Methodology

The EEG data used in this study are based on a previous
published dataset,[39] thus ethics approval is not required for this
study. As shown in Fig. 1, numerous features of the EEG signals
are first extracted by various feature extraction methods.
Subsequently, the best feature combination subset is selected
by a feature selection method. Finally, the feature combination
subset is used by a classifier for the classification of the EEG
signals.

2.1. Feature extraction
2.1.1. GAFDS method. Genetic algorithm (GA) is a random
searchmethod that simulates the biological laws of evolution. GA
is a probability optimization method, which exhibits global
optimization capability. The following standard parallel GA[27] is
used in this study to search for features in the frequency domain:

GA ¼ fC;E; P0;M;F;G;C;Tg; ð1Þ
and extraction methods are used for nonlinear features; a genetic algorithm is
e the k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost,
genetic algorithm-based frequency-domain feature search.



Figure 2. Flowchart of genetic algorithm-based frequency-domain feature
search.
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where C is the chromosome coding in GA, E is the individual
fitness function, P0 is the initial population, M is the size of the
initial population, F is the selection operator, G is the crossover
operator, C is the mutation operator, and T is the given
termination condition.
In signal processing, the frequency domain is a coordinate

system that describes the frequency features of the signals. Often
used to analyze signal features, a frequency spectrogram reflects
the relationship between the frequency and amplitude of a signal.
The GAFDS method adopts GA to search for a set of
classification-suitable features in the frequency spectrum (Fig. 2).
Figure 3 shows the frequency spectrograms of 5 classes of

signals (i.e., A, B, C, D, and E) after fast Fourier transformation
(FFT). The x-axis represents the frequency, whereas the y-axis
represents the amplitude. A significant variation occurs in each
class at a certain frequency, such as the amplitudes enclosed in red
boxes. By contrast, the amplitudes enclosed in green boxes are
difficult to distinguish. The proposed feature extraction method
searches for several superior frequency spaces in the frequency
spectrogram. Subsequently, the mean values of the amplitudes in
the spaces are used as the features. Then, theGAwith global search
capability is employed to search for the optimal frequency spaces.
A time series X{x1, x2, . . . , xn} with a length of n is formed

after a signal is sampled. Then, a series Y{y1, y2, . . . , ym} with a
length of m is obtained by applying FFT to X. For i, j∊ [1, . . . ,
m] and i< j,

fij ¼ 1
j� iþ 1

Xj

k¼1

yk: ð2Þ
Figure 3. Frequency-domain feature extraction. The features in the red boxes are s
The goal of the genetic algorithm-based frequency-domain feature search metho
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The fij in Eq. (2) is the feature in the frequency interval [i, j].
The main process of using GA in frequency intervals involves

obtaining several frequency features with high distinguishing
capabilities. Details of this process follow.
1.
uita
d is
Individual encoding
On the assumption that the total number of features to be

searched for is a, the length of the individual coding array C
is 2a. The value of each element in C is between 0 and the
highest frequency. Both C2i and C2i+1 (0� i<a) from C are
taken as the frequency range to calculate the features. As
shown in Fig. 4, C3 and C4 can be used to calculate the
feature f C3 ;C4

.
However, the constraint i< j should be applied to calculate

feature fi,j. When i≥ j, the feature makes no sense. Therefore, a
negative slack variable b (when i≥ j, b=0) is adopted to
implement the constraint.
Fitness function
2.

Traversing C to calculate the features yields a features

ff1g ; f2g ; . . . ; fagg and a slack variables {b1, b2, . . . , ba}. For the
optimization of the features, the samples should ideally present
larger interclass distances and smaller intraclass distances in
the feature space. LDA is employed to evaluate these features.
The calculation involves a large number of iterations; thus,
LDA is used because of its high calculation speed. The fitness
value is calculated by

FitnessðCÞ ¼ LDAðf1g ; f2g ; . . . ; fagÞ �
Xa

i¼1

bi: ð3Þ

Operators
3.
In GAFDS, G is a multipoint crossover operator, C is a
Gaussian mutation operator, and F is a roulette wheel selection
operator.
ble for classification, whereas those enclosed in green boxes are ineffective.
to find a number of effective features.
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Figure 4. Structure of the individual encoding.

Figure 5. Multifractal detrended fluctuation analysis-basedmultifractal spectra
of the 5 classes of signals. For each sample, the coordinates of p1, p2, and p3 in
the fractal spectrum are taken as the features of the sample.
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2.1.2. Nonlinear features. An EEG signal is random and
unstable; thus, using FFT alone cannot effectively distinguish
EEG signals. For this reason, other nonlinear methods, namely,
sample entropy, Hurst exponent, Lyapunov exponent, and
multifractal detrended fluctuation analysis (MFDFA), are used in
this study to extract the effective features.
Proposed by Richman and Moorman[28] in 2000, sample

entropy, which improves on Pincus approximate entropy,[29] is
a measure of regularity to quantify the levels of complexity of a
time series. Sample entropy is often used to extract the features
of EEG signals.[5,6] A feature based on sample entropy is
defined by

fse ¼ Sample EntopyðX; sn; sm; srÞ: ð4Þ

Sample entropy requires 3 parameters: signal length, sn;
embedding dimension, sm; and similar tolerance, sr. The value of
sr is the standard deviation of X multiplied by parameter x.
TheHurst exponent was first proposed by England hydrologist

H.E. Hurst.[30] Often used in the chaos–fractal analysis of a time
series, it is an index for judging whether the time series data are
random walk or biased random walk. In a previous study,[7] the
Hurst exponent was adopted as the main feature for EEG
classification and defined by

fhurst ¼ Hurst ExponentðXÞ: ð5Þ

The Lyapunov exponent is used for computing how fast nearby
trajectories in a dynamic system diverge. This exponent is one of
the features used to recognize chaotic motions.[31] In this study,
the largest Lyapunov exponent is used as a feature of EEG and
given by

flle ¼ LLEðYÞ: ð6Þ

In physiology, fractal structures exist in physiological signals.
Multifractals can reveal the complexity and inhomogeneity of
fractals. MFDFA is the algorithm used for analyzing the
multifractal spectrum of a biomedical time series.[32]

Figure 5 shows the MFDFA-based multifractal spectra of the 5
classes of signals (i.e., A, B, C, D, and E). When the q-order
moments of the wave function are �8, �6, �4, �2, 0, 2, 4, 6,
and 8, several multifractal spectra are formed. Three points
from each multifractal spectrum, namely, p1, p2, and p3, are
selected, where p1 is the point with the minimum hq, p2 with the
maximum hq, and p3 with the maximum Dq. Each point has 2
coordinate values; thus, 6 features are obtained. The 6 features
include f1mf ; f

2
mf (i.e., the hq and Dq values of p1); f

3
mf ; f

4
mf (i.e., the

hq and Dq values of p2); and f5mf ; f
6
mf (i.e., the hq and Dq values of

p3). The maximum value of Dq is always equal to 1;
accordingly, f6mf can be removed. Finally, the feature set
ff1mf ; f

2
mf ; . . . ; f

5
mfg can be obtained using MFDFA. At the same
4

time, the detrended fluctuation analysis value of the signal is
also a feature:

fdfa ¼ DFAðYÞ: ð7Þ

2.1.3. Feature selection and optimization. Feature extraction
is useful in data visualization and comprehension. It reduces the
requirement for data calculation and storage as well as the time for
training and application. Numerous signal feature extraction
algorithms are used in practice. Researchers often combine several
feature extraction algorithms to analyze data. However, the use of
multiple algorithms usually results in feature dimension expansion
and feature redundancy. Feature selection reduces the dimensionof
a feature space and thus facilitates data training and application.
The selection of an optimal feature subset is an nondetermin-

istic polynomial time problem; therefore, GA is used to search for
the optimal feature subset. The algorithm codes individuals in the
population in a binary array whose length is the number of
features. In the array, 1 means the feature is selected, whereas 0
indicates otherwise. The object function of the algorithm is

minðFPR� ð1� TPRÞÞ; ð8Þ

where FPR is the fall-out or false positive rate and TPR is the
sensitivity or true positive rate.
2.2. Classification model

After feature extraction, multiple models, including k-NN, LDA,
decision tree (DT), AdaBoost (AB), MLP, and NB, are used to
classify EEG signals.
Cover and Hart[33] first proposed k-NN. The main idea of k-

NN is as follows: if most of the k samples most similar (nearest in
feature space) to a sample belong to a class, then the sample also
belongs to that class.
LDA was introduced into pattern recognition and artificial

intelligence by Belhumeur et al.[34] The basic functional concept
of LDA is projecting high-dimensional pattern onto the optimal
discriminant vector space to extract classification information
and reduce feature space dimension. After projection, the pattern
samples exhibit the maximum interclass distances and the
minimum intraclass distances in the new subspace; that is, the
pattern presents the best separability in the space.



[35]
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DT implements a group of classification rules represented
by a tree structure to minimize the loss function on the basis of the
known occurrence probability of each situation. This model is a
graphical method that intuitively uses probability analysis. The
decision nodes resemble branches of a tree, and thus, the model is
called a DT.
AB[36] is an iterative algorithm that trains different classifiers

(weak classifiers) with the same training set and combines these
weak classifiers of different weights to construct a stronger
classifier (strong classifier).
MLP[37] is a feed-forward ANN consisting of multiple layers of

nodes in a directed graph, with each layer fully connected to the
next. Each node is a processing element with an activation
function. MLP uses backpropagation for training the network to
distinguish data.
NB[38] is the classification method based on Bayes theorem and

feature conditional independence assumption. NB originates
from classical mathematics and offers solid mathematical basis
and stable classification accuracy. In addition, this model only
requires few parameters. It is also insensitive to missing data. In
theory, the NB model presents minimal error compared with
other classification methods.
2.3. Method flow

Figure 6 shows the process of combining the optimization
algorithm and classification model. The original dataset is
divided into a training dataset and a testing dataset. After feature
extraction and selection, a feature subset is acquired from the
training dataset. Subsequently, on the basis of the feature subset,
features are separately extracted from the training dataset and
Figure 6. Combination of the optimizatio
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testing dataset to obtain the new training set and testing set.
Finally, a new training set is used to train the classifier and test the
classifier on the new testing set.

3. Experiments and results

3.1. Dataset

The dataset is obtained from the work of Andrzejak et al.[39] It
includes 5 classes of data (i.e., A, B, C, D, and E). Each class has
100 single-channel EEG samples, each with a length of 23.6 s.
The sampling frequency is 173.61Hz; thus, each sample is a time
series with 4097 numbers. Sets A and B are collected when
healthy volunteers open and close their eyes. Sets C, D, and E are
from epileptics. The samples in set D are recorded from the
epileptogenic zone, whereas those in set C are obtained from the
hippocampal formation of the opposite hemisphere of the brain.
Sets C and D contain only the activities measured during seizure-
free intervals, whereas set E only contains seizure activities. The
relation among these 5 classes of EEGs is shown in Fig. 7.
Numerous previous studies focused on A, E classification; {C, D},
E classification; A, D, E classification; and A, B, C, D, E
classification. This paper examines A, E classification; {C, D}, E
classification; and A, D, E classification. Figure 8 illustrates the
sample data of the 5 classes.

3.2. Environment and parameter

All the algorithms are written using Python programming
language and run on a computer (Ubuntu 14.04 LTS, Core i7-
6850K CPU, 3.6GHz, 128 GB memory space). The algorithms
are implemented using Pyevolve[40] and Scikit-learn[41] libraries.
n algorithm and classification model.

http://www.md-journal.com


Figure 7. Relation graph of the 5 classes of electroencephalogram signals. A
and B are captured from the scalp, whereas C, D, and E come from the
intracranial electrodes.

Table 1

Parameters and their values.

N Description Value

1 Population size 100
2 Maximum number of generations 1000
3 Crossover probability 0.90 per pair
4 Mutation probability 0.03 per integer
5 a 4
6 b 0.05
7 x 2
8 sm 2

Wen and Zhang Medicine (2017) 96:19 Medicine
Table 1 lists the parameters used in the experiments. These
parameters are based on the general guidelines given in the
literature and the authors’ computational experiments on the
proposed algorithms.
3.3. Results
3.3.1. Feature extraction and selection. The results of the
feature selection inevitably influence the classification results. The
nonlinear features of signals do not change across different
classification problems. However, the optimization variables of
the object function of GAFDS vary across different classification
problems, and the selected features are different. In this study, the
object function of GAFDS distinguishes the 5 classes.When a=4,
4 features (i.e., f1, f2, f3, and f4) are extracted by GAFDS, and
5 features (i.e., f5, f6, f7, f8, and f9) are extracted by MFDFA. In
addition, sample entropy f10, Hurst exponent f11, largest
Lyapunov exponent f12, and DFA feature f13 are obtained.
Figure 8. Sample data of the 5 c

6

Figure 9 shows the distributions of the 5 classes of samples in
feature space f1. Most feature values of class A are below 3,
whereas most feature values of class E exceed 3. Therefore,
classes A and E can be distinguished by feature f1. Approximately
50% of the samples of classes B and C can be classified by f1, but
the other samples are mixed.Most class C and class D samples are
mixed and difficult to distinguish. Overall, classes C and D
present outliers, and class E is discrete. Figure 10 shows the
distributions of each class in different feature spaces. The median
increases from class A to class E for f4 but decreases for f6. Feature
f13 can effectively distinguish {B, C} and {B, D}. This analysis
shows that a single feature usually distinguishes 2 classes at most.
Therefore, further analysis of the feature combination is
necessary.
As shown in Fig. 11, features f1, f4, f6, f7, f9, f10, f11, and f13 are

extracted to construct different 2-dimensional feature spaces. A
point in the space represents a sample of a class. In space {f1,
f11}, all samples of the 5 classes are concentrated on the left
side, and they are difficult to separate. In space {f4, f9}, the
outlines of classes A, B, E, and {C, D} are clear, but classes C
and D are mixed. Every class is discrete in space {f6, f7} and
{f10, f13}; however, in space {f10, f13}, each class occupies a
certain distribution area, and each class crosses only at the
edges.
lasses (i.e., A, B, C, D, and E).



Figure 9. Distributions of the 5 classes of samples in f1. A and B as well as E
and {A, B, C, D} are distinguishable.

Figure 10. Distributions in feature space
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In 1- or 2-dimensional feature spaces, features can be directly
observed. However, as the dimension increases, feature evalua-
tion based on distances is the most direct method, regardless of
the classifier. In this study, the features {f1, f2, f3, f4} extracted by
GAFDS are evaluated by comparing the ratios of the interclass
distance and intraclass distance of all the classes with those of the
nonlinear features {f10, f11, f12, f13}. The interclass distance
between 2 classes is their distance in a feature space. With n
samples in class A, n feature vectors fvA1 ; . . . ; vAi ; . . . ; vAj ; . . . ; vAn g
are generated after feature extraction. Vector vAi represents
sample i∊A. Accordingly, the intraclass distance of class A is
calculated by

dist1 ¼ 1
n ⋅ n

Xn

i¼1

Xn

j¼1

ðvAi � vAj Þ2: ð9Þ

The distance between sample i and itself is 0. The interclass
distance between n samples in class A and m samples in class B is
calculated by
s f2–f13 of the 5 classes of samples.

http://www.md-journal.com
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Table 3

Classification accuracies of the common classifiers for classes A
and E in feature spaces {f1, f2, f3, f4} and {f10, f11, f12, f13} (using k-fold
cross-validation, k=5).

A, E k-NN LDA DT MPL AB NB

{f1, f2, f3, f4} 0.995 0.89 0.995 0.995 0.995 0.995
{f10, f11, f12, f13} 0.995 0.995 0.975 0.985 0.97 0.98

AB=AdaBoost, DT=decision tree, k-NN= k-nearest neighbor, LDA= linear discriminant analysis,
MLP=multilayer perceptron, NB=Naïve Bayes.

Table 2

Ratios of the interclass and intraclass distances of the 5 classes in feature spaces {f1, f2, f3, f4} and {f10, f11, f12, f13}.

f1, f2, f3, f4 f10, f11, f12, f13
A B C D E A B C D E

A 1 0.745 0.826 2.996 0.743 1 0.914 1.952 2.355 1.642
B 1.793 1 1.318 7.067 1.110 1.238 1 2.616 3.296 2.061
C 2.434 1.613 1 8.405 1.009 1.980 1.958 1 2.125 1.233
D 1.176 1.153 1.120 1 1.198 1.368 1.413 1.217 1 1.521
E 4.250 2.639 1.959 17.460 1 2.166 2.006 1.603 3.452 11

The bold-emphasized value illustrates that the ratio of the interclass and intraclass distances in feature space {f1,f2,f3,f4} is greater than that in feature space {f10,f11,f12,f13}. For example, rBA is 1.793 in
feature space {f1,f2,f3,f4}, but its value in feature space {f10,f11,f12,f13} is 1.238.

Figure 11. Distributions of the 5 classes in different 2-dimensional feature spaces. In the 2-dimensional combination space (f10, f13), classes E, B, and {A, C, D} are
evidently divided into 3 parts.

Wen and Zhang Medicine (2017) 96:19 Medicine
dist2 ¼ 1
n ⋅m

i¼1 j¼1

ðvAi � vBj Þ2: ð10Þ

Therefore, the ratio of the interclass distance and intraclass
distance between class A and class B is

rAB ¼ dist2=dist1: ð11Þ
The ratio of the interclass distance and intraclass distance

between a class and itself is 1; that is, rAA= rBB= rCC= rDD=
rEE=1.
Table 2 shows the ratios of the interclass distance and

intraclass distance of the 5 classes in feature spaces {f1, f2, f3, f4}
and {f10, f11, f12, f13}. The features retrieved by GAFDS are
comparable to the nonlinear features.
The 5 classes of samples in {f1, f2, f3, f4} and {f10, f11, f12, f13}

feature spaces are simultaneously classified by numerous classical
classifiers. The classifiers used, namely, k-NN, LDA, DT,
AB, MLP, and NB, are included in the Scikit-learn library. For
the k-NN classifier, k=3. Themaximum depth of DT is 5. For the
8

MLP, a=1. Other parameters use the default values in the
library.
A, E classification involves classifying the EEG signals

produced by healthy people and epileptics. As shown in Table 3,
numerous classifiers can achieve high accuracies by using the
listed features.
The classification of {C, D} and E means classifying EEG

signals produced during seizure-free intervals and during



Table 5

Classification accuracies of the common classifiers for A, D, E in
feature spaces {f1, f2, f4, f5, f6, f9, f10, f11, f12, f13} (using k-fold cross-
validation, k=5).

A, D, E k-NN LDA DT MPL AB NB

{f1, f2, f4, f5, f6, f9, f10, f11, f12, f13} 0.967 0.917 0.967 0.933 0.967 0.917

AB=AdaBoost, DT=decision tree, k-NN=k-nearest neighbor, LDA= linear discriminant analysis,
MLP=multilayer perceptron, NB=Naïve Bayes.

Table 6

Accuracies for {C, D} and E classification based on the features
extracted by GAFDS.

Cross-validation k-NN LDA DT MPL AB NB

2-fold 0.963 0.910 0.947 0.943 0.963 0.947
5-fold 0.967 0.907 0.963 0.953 0.973 0.950
10-fold 0.950 0.923 0.973 0.96 0.970 0.950

AB=AdaBoost, DT=decision tree, GAFDS=genetic algorithm-based frequency-domain feature
search, k-NN= k-nearest neighbor, LDA= linear discriminant analysis, MLP=multilayer perceptron,
NB=Naïve Bayes.

Table 7

Accuracies for {C, D} and E classification based on the features
optimized by GA selection.

Cross-validation k-NN LDA DT MPL AB NB

2-fold 0.977 0.983 0.960 0.963 0.973 0.95
5-fold 0.983 0.983 0.973 0.97 0.98 0.957
10-fold 0.98 0.983 0.96 0.976 0.99 0.967

AB=AdaBoost, DT=decision tree, GA = genetic algorithm, k-NN= k-nearest neighbor, LDA= linear
discriminant analysis, MLP=multilayer perceptron, NB=Naïve Bayes.

Table 8

Accuracies for A, D, E classification based on features extracted
by GAFDS.

Cross-validation k-NN LDA DT MPL AB NB

2-fold 0.93 0.857 0.917 0.9 0.693 0.81
5-fold 0.973 0.887 0.897 0.9 0.67 0.823
10-fold 0.937 0.886 0.92 0.913 0.71 0.817

AB=AdaBoost, DT=decision tree, GAFDS=genetic algorithm-based frequency-domain feature
search, k-NN= k-nearest neighbor, LDA= linear discriminant analysis, MLP=multilayer perceptron,
NB=Naïve Bayes.

Table 9

Accuracies for A, D, E classification based on the features
optimized by GA selection.

Cross-validation k-NN LDA DT MPL AB NB

2-fold 0.93 0.94 0.913 0.916 0.68 0.897
5-fold 0.96 0.953 0.927 0.94 0.587 0.907
10-fold 0.943 0.953 0.92 0.933 0.71 0.893

AB=AdaBoost, DT=decision tree, k-NN=k-nearest neighbor, LDA= linear discriminant analysis,
MLP=multilayer perceptron, NB=Naïve Bayes.

Table 10

Classification accuracies of the common classifiers for A and E
classes in feature spaces {f�1, f

�
2, f

�
3, f

�
4} (using k-fold cross validation,

k=5).

A, E k-NN LDA DT AB MPL NB

{f�1; f
�
2; f

�
3; f

�
4} 0.995 0.89 0.99 0.925 0.99 0.995

AB=AdaBoost, DT=decision tree, k-NN= k-nearest neighbor, LDA= linear discriminant analysis,
MLP=multilayer perceptron, NB=Naïve Bayes.

Table 4

Classification accuracies of common classifiers for {C, D} and E
classes in feature spaces {f1, f2, f4, f5, f7, f8, f9, f10, f12} (using k-fold
cross-validation, k=5).

{C, D}, E k-NN LDA DT MPL AB NB

{f1, f2, f4, f5, f7, f8, f9, f10, f12} 0.973 0.983 0.957 0.98 0.987 0.977

AB=AdaBoost, DT=decision tree, k-NN=k-nearest neighbor, LDA= linear discriminant analysis,
MLP=multilayer perceptron, NB=Naïve Bayes.

Wen and Zhang Medicine (2017) 96:19 www.md-journal.com

9

seizure. GA is used to select the features for this classification.
The results are shown in Table 4. A, D, E classification is the
classification of EEG signals acquired from healthy people,
seizure-free epileptics, and epileptics during seizure. The results
are shown in Table 5.

3.3.2. Classification results. In the previous section, the
features extracted by GAFDS are optimized for the classification
problems of the 5 classes. However, for real binary or 3-
classification problems, the optimization object should be set
according to the requirement; that is, the object function in Eq.
(3) should be adjusted.
Table 3 shows good results for A, E classification. For the

{C, D} and E classification problem, Table 6 lists the results based
on the features extracted by GAFDS, whereas Table 7 illustrates
the results based on the features optimized by GA selection from
the GAFDS-obtained features and other features.
For a multiclassification problem, Tables 8 and 9 show that

GAFDS and the feature selection method can obtain good results
for A, D, E classification.

4. Discussion

4.1. GAFDS method

EEG signals are nonlinear, time varying, and unbalanced. FFT is
a global linear method. However, a frequency spectrum does not
reflect the frequency changes in the time domain; thus, FFT has
certain limitations when applied to nonstationary signal analysis.
As shown in Table 2, the features extracted by GAFDS present
poor cohesiveness compared with other features. For example,
class E presents a wide distribution in f6, whereas class D has
numerous outliers. Thus, features {f1, f2, f3, f4} in Figs. 9 and 10
are standardized to obtain new features {f�1; f

�
2; f

�
3; f

�
4} within the

range [0, 1]. After feature standardization, the accuracy of the AB
classifier presents minimal reduction, whereas those of other
classifiers remain unchanged, as shown in Table 10. These results
indicate that the features extracted by GAFDS have better
independence.
Table 2 presents a comparison based on Eq. (11) between the

features extracted by GAFDS with nonlinear features. As
shown in the table, rBA is good even though the features
extracted by GAFDS present poor cohesiveness. Therefore, the
features extracted by GAFDS are superior to the nonlinear
features in A, E classification. Furthermore, GAFDS presents
great extensibility. GAFDS selects features by searching a
frequency spectrum; however, it can also search for new
features in a Hilbert spectrum and several other signal spectra.
Figure 12 shows the instantaneous frequency change in the
samples in classes A and E in the time domain after Hilbert
transformation. A period along the time axis can also be
searched using GAFDS. Subsequently, the average value of the
positive instantaneous frequencies in this period can be used as
a feature. With this feature, the accuracy of the LDA classifier

http://www.md-journal.com


Figure 12. Instantaneous frequencies of the samples in classes A and E
whose mean value t in the red box is taken as the feature of the sample.
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can reach up to 74.5% when classifying samples in classes
A and E.

4.2. Analysis and comparison of classification results

As shown in Tables 3–5, the classifiers have different accuracies
in different feature spaces. This study uses few features and
small searching space. The classification results show that the
GA-based feature selection can obtain superior feature
combination.
For the A, E classification problem, the features extracted by

GAFDS can effectively facilitate classification. For the {C, D} and
E classification, Tables 6 and 7 show that the classification
accuracy increases after combining new features with the features
extracted by GAFDS and feature selection. However, when the
complexity of the problem increases, such as in the A, D, E
classification (Tables 8 and 9), the classification accuracies of the
classifiers using the features extracted by GA selection are not
significantly higher than those of the classifiers using the features
only generated by GAFDS. Furthermore, the AB classifier
performs well in the 2-classification problem but poorly in the
multiclassification problem because the parameters of the
classifiers are not optimized.
Table 11 shows a comparison of the classification results

between recent classifiers and the classification scheme proposed
in this paper. Using wavelet transform-based statistical features,
Table 11

Comparison of the results of existing models for EEG classification

Work Year Feature extraction

Chandaka et al[42] 2009 Cross-relation
Guo et al[43] 2010 Line length feature
Liang et al[44] 2010 Wavelet transform and line length feature
Pachori et al[45] 2014 SODP of IMFs
Sharma et al[46] 2015 2D PSR of IMFs and IQR of the Euclidian

distances of the 3D PSR of IMFs
Murugavel et al[21] 2016 Wavelet transform-based statistical features,

largest Lyapunov exponent, and approximate ent

Present work 2016 GAFDS and nonlinear features

AB=AdaBoost, DT=decision tree, EEG = electroencephalogram, GAFDS=genetic algorithm-based fre
k-nearest neighbor, LDA= linear discriminant analysis, MLP=multilayer perceptron, NB=Naïve Bayes, PSR

10
largest Lyapunov exponent, and approximate entropy
features, Murugavel et al[21] developed an ANN and hierarchical
multiclass SVM with a new kernel classifier to improve the
accuracy for A, D, E classification to 96%. Sharma and
Pachori[46] used the features based on 2- and 3-dimensional
phase space representation of intrinsic mode functions as well as
an SVM classifier to classify {C, D}, E. Their work achieved a
classification accuracy of 98.67%. The scheme proposed in the
present study exhibits better classification results with the use of
several classifiers based on the GAFDS-selected features and
nonlinear features.
5. Conclusion

EEG provides important information for epilepsy detection.
Feature extraction, selection, and optimization methods exert
significant influence in EEG classification. In this study, a GA-
based frequency feature search method is proposed for EEG
classification. The method presents global searching capability to
search for classification-suitable features in EEG frequency
spectra and combine these features with nonlinear features.
Finally, GA is used to select effective features from the feature
combination to classify EEG signals.
The experimental results show that the standardization and

normalization of the features extracted by GAFDS do not affect
the accuracy of the classification results and thus indicate that the
features extracted by GAFDS have good independence. Com-
pared with nonlinear features, GAFDS-based features allow for
high classification accuracy. Furthermore, GAFDS can effectively
extract features of instantaneous frequency in the signal after
Hilbert transformation; thus, GAFDS presents good extensibility.
For the A, E and {C, D}, E 2-classification problems and the A,

D, E 3-classification problem, the GAFDS-based features and
optimized features are used by several classifiers (i.e., k-NN,
LDA, DT, AB, MLP, and NB). The classification accuracies
achieved are better than those by previous classification models.
In our future work, we will use GAFDS to extract new features

and use time-domain, frequency-domain, or time–frequency
domain features in feature optimization and selection to achieve
improved classification accuracy. The parameters and perfor-
mance of GAFDS also need further improvement. The precision,
complexity, and dimension of EEG data increase; thus, we need
to continuously improve the extraction method and conduct
further research on feature selection optimization to meet the
challenging requirements of EEG analyses.
and the scheme proposed in this paper.

Classification Set Accuracy, %

Support vector machine A, E 99
Artificial neural network A, E 98
Artificial neural network A, E 97
Artificial neural network {C, D}, E 97.75
Support vector machine {C, D}, E 98.67

ropy
Artificial neural network, hierarchical

multi-class SVM with new kernel
A, E 99

A, D, E 96
k-NN, LDA, DT, AB, MPL, and NB A, E 99

{C, D}, E 99
A, D, E 97

quency-domain feature search, IMFs= intrinsic mode functions, IQR= interquartile range, k-NN=
=phase space representation, SODP= second-order difference plot, SVM= support vector machine.
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