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Background: Pain is a common complication for patients with metastatic bone disease.

Animal models suggest that the pain, in part, is driven by pathological sprouting and

reorganization of the nerve fibers innervating the bone. Here, we investigate how these

findings translate to humans.

Methods: Bone biopsies were collected from healthy volunteers (n= 7) and patients with

breast cancer and metastatic bone disease (permissions H-15000679, S-20180057 and

S-20110112). Cancer-infiltrated biopsies were from patients without recent anticancer

treatment (n = 10), patients with recent anticancer treatment (n = 10), and patients with

joint replacement surgery (n = 9). Adjacent bone sections were stained for (1) protein

gene product 9.5 and CD34, and (2) cytokeratin 7 and 19. Histomorphometry was used

to estimate the area of bone marrow and tumor burden. Nerve profiles were counted,

and the nerve profile density calculated. The location of each nerve profile within 25µm

of a vascular structure and/or cancer cells was determined.

Results: Cancer-infiltrated bone tissue demonstrated a significantly higher nerve profile

density compared to healthy bone tissue. The percentage of nerve profiles found

close to vascular structures was significantly lower in cancer-infiltrated bone tissue. No

difference was found in the percentage of nerve profiles located close to cancer between

the subgroups of cancer-infiltrated bone tissue. Interestingly, no correlation was found

between nerve profile density and tumor burden.

Conclusions: Together, the increased nerve profile density and the decreased

association of nerve profiles to vasculature strongly suggests that neuronal sprouting

and reorganization occurs in human cancer-infiltrated bone tissue.
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INTRODUCTION

Cancer patients point to pain as their most important and one of
the most distressing symptoms (1). The dissemination of cancer
to bone can lead to significant pain, and up to 85% of terminally
ill cancer patients suffer from cancer-induced bone pain (2–4).

Mouse models of cancer-induced bone pain have
demonstrated substantial sprouting of both sensory and
sympathetic fibers giving rise to an increased nerve fiber density
as cancer cells invade and proliferate in the bone tissue (5, 6).
The nerve sprouting is observed in periosteum, mineralized
bone and bone marrow (7, 8). In healthy mouse bone, sensory
and sympathetic nerve fibers display a distinct morphology.
Sensory fibers present with a long and linear morphology, while
sympathetic nerve fibers have a spiral-like appearance and
wrap around associated blood vessels (6, 9). Upon the invasion
of cancer cells, the morphology changes to a disorganized
appearance where sensory and sympathetic nerve fibers are
intermingled (6). It has been proposed that such pathological
reorganization can render the nerve fibers highly sensitive to
movement of the tumor-bearing limb, reflecting movement-
evoked pain (10), which is a key symptom of metastatic bone
disease (11, 12). Also, formation of neuroma-like structure
has been described in animal models of cancer-induced
bone pain (6), and it is speculated that these structures may
lead to spontaneous discharge contributing to spontaneous
breakthrough pain, which has a strong impact on the patients’
quality of life (12, 13).

Although the first reports of cancer-induced sprouting in
animal models of cancer-induced bone pain occurred more than
15 years ago (8, 14), it is yet unknown how these findings translate
to humans with metastatic bone disease. The present study
examines the histological appearance of nerve profiles in bone
biopsies from breast cancer patients with metastatic bone disease
compared to bone biopsies from healthy controls. The density of
nerve profiles and their association with vascular structures and
cancer cells are evaluated in the bone marrow.

MATERIALS AND METHODS

Human Bone Biopsies
Bone biopsies were collected from healthy volunteers and
patients with breast cancer and metastatic bone disease (MBD).
The biopsies were either archived transiliac bone samples from
the Pathological Biobank at Odense University Hospital obtained
as part of a diagnostic procedure (n = 20, aged 37–92 years) or
collected during joint replacement surgeries at the Department
of Orthopedic surgery at Rigshospitalet due to either impending
fracture or fracture caused by metastatic burden (MBD surgery,
n = 9, aged 50–80 years). The diagnostic biopsies were divided
into two groups representing biopsies from patients who had
not received anticancer treatment within the last two years
(MBD untreated, n = 10), and biopsies from patients who had
received anticancer treatment (chemotherapy, radiotherapy or a
combination) within the last year (MBD treated, n= 10). None of
these patients had received bisphosphonate treatment. Biopsies
from joint replacement surgeries were from patients who had

not received anticancer treatment three months prior to surgery.
Four of these patients had received bisphosphonate treatment.
As controls, transiliac biopsies collected from healthy, female
volunteers (n= 7, aged 25–67 years) were included.

The collection of biopsies was approved by the National
Committee onHealth Research Ethics (H-15000679, S-20180057,
and S-20110112), permission to collect data was granted through
local Data Committees (514-0331/19-3000) and the study
was conducted in accordance with the Helsinki Declaration.
Healthy volunteers and surgery patients gave written informed
consent. The National Committee on Health Research Ethics
granted permission to obtain archived biopsies without prior
written consent.

Processing Bone Biopsies
Archived and control biopsies were fixed in 4%
paraformaldehyde up to 24 h and decalcified in 10% formic
acid for about 7 h. Biopsies isolated at joint replacement surgery
were fixed at 4◦C in 4% paraformaldehyde for 48–120 h and
decalcified with 0.4M EDTA with 0.4% paraformaldehyde at 4◦C
for 56–71 days. Subsequently, all bone biopsies were dehydrated
and embedded in paraffin. Two adjacent 3.5µm thick sections
were cut from each biopsy, mounted on FLEX, IHC Microscope
slide (Dako, Agilent, Denmark) and dried overnight at 37◦C.

Immunostaining
The bone sections were deparaffinized, blocked for endogenous
peroxidases, subjected to overnight antigen retrieval in Tris-
EDTA buffer (pH 9.0) at 60◦C, and blocked with 1%
casein in Tris-buffered saline to reduce unspecific binding.
The first adjacent section was double-immunostained with
rabbit anti-protein gene product 9.5 (PGP9.5, sab4503057,
Millipore, Denmark), a pan neuronal marker, and mouse
anti-CD34 (clone QBEND/10, ab78165, Abcam, Denmark),
a vascular marker of endothelial cells. The second section
was immunostained for monoclonal mouse anti-cytokeratin 7
and 19 (clone OV-TL 12/30 and A53-B/A2.26, Cell Marque,
Denmark) to visualize cancer cells. This section was used
as a reference to verify the identification of cancer cells.
Primary antibodies were diluted in Renoir Red diluent (PD904,
Biocare Medical, Sweden). Primary antibodies were detected
with polymeric alkaline phosphatase-conjugated BrightVision
poly AB-Anti-Rabbit IgG (Immunologic, VWR, Denmark) or
polymeric horseradish-peroxidase-conjugated BrightVision anti-
mouse IgG (Immunologic), and visualized with Stay Red
(ab103741, Abcam) or Deep Space Black, DSB (bri4015L,
Biocare Medical), respectively. All sections were counterstained
with Mayer’s hematoxylin and mounted with Aquatex (Merck,
Denmark). Unspecific staining of secondary antibodies and
visualization systems were investigated by the omission of
primary or secondary antibodies.

Histomorphometry
Histomorphometric analysis was conducted on scans of the
immunostained sections. The sections were scanned with a
NanoZoomer Slide Scanner (Hamamatsu, Japan), and analyzed
using NDP.view 2.8.24 software (Hamamatsu Photonics K.K.,
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FIGURE 1 | Cancer-infiltrated bone marrow has a significantly increased nerve profile density compared to healthy bone marrow. (A) Illustration of the

histomorphometric method used to estimate the area of analysis. (B,C) Overview of sections (B1,C1) and close ups demonstrating the identification of

PGP9.5-positive nerve profiles and CD34-positive endothelial cells found in healthy controls (B2,B3), and in the bone marrow of patients with metastatic bone disease

(MBD) (C2). For patients with MBD the adjacent section was stained for cytokeratin 7 and 19 (CK7/19, gray arrow heads) to identify cancer cells (C3). (D) The nerve

profile density was significantly increased in the cancer-infiltrated bone marrow compared to healthy bone marrow. (E) Subgroups within the cancer-infiltrated biopsies

demonstrated a significant increase in nerve profile density in the bone marrow of both the MBD untreated and MBD treated group compared to healthy bone. No

difference was found in between the two groups. Comparisons were performed with Mann-Whitney U test or Kruskal–Wallis one-way analysis of variance followed by

Dunn’s multiple comparisons test as appropriate. Data are presented as mean ± SEM. **p < 0.01, ***p < 0.001. Scale bars: B1 and C1, 500µm, B2,3 and C2,3

20µm.

EU). In each biopsy, the bone marrow was analyzed using a
point-grid to estimate the analyzed area of bone marrow and
the area occupied by cancer cells. The point-grid was made on
transparent paper with 4 x 7 squares of 125 x 125µm projected
to fit a computer screen with a zoom setting of 10x. The grid was
placed in rows across the full width of the biopsy (≥3mm) at a
distance of one mm (twice the height of the grid). If <100 nerve
profiles were counted in the analyzed area of a biopsy, additional

rows of grids were placed across the biopsy, decreasing the
distance of the rows until either>100 nerve profiles were counted
or the full area of the bone marrow in the biopsy was analyzed
(see Figure 1A for illustration of method). Nerve profiles were
identified as individual clear red dots. For each nerve profile it
was furthermore determined if it was located within a distance
of 25µm to vasculature and/or cancer cells. Vasculature was
identified as CD34-positive structures that presented with a
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TABLE 1 | Patient characteristics.

Group Control MBD untreated MBD treated MBD surgery

n 7 10 10 9

Age, median

(range)

50 (25–67) 77 (37–87) 62 (50–92) 64 (50–80)

Site of biopsy Iliac crest Iliac crest Iliac crest Femur, shaft,

n = 4

Femur, trochanter,

n = 2

Humerus, shaft,

n = 2

Pelvis, iliac spine,

n = 1

morphology consistent with vasculature. Structures that had a
cell-like appearance were excluded as hematopoietic stem cells.
The nerve density was estimated as the number of nerves per
combined area of bone marrow and cancer cells area (mm2).
The tumor burden was estimated as the area occupied by cancer
cells divided by the combined area of bone marrow and cancer
cells. Nerve profiles were counted and marked within the scan,
allowing a second experienced observer to review the analysis.

Statistical Analysis
Statistical analysis was performed with GraphPad Prism (version
9.3.0 GraphPad Software, LLC, CA, USA). D’Agostino-Pearson
normality test was used to check if the data was Gaussian
distributed. The statistical analysis of differences between nerve
profile densities and differences between the percentage of
nerve profiles in close association to vasculature or cancer
cells was performed with Mann-Whitney U test or Kruskal–
Wallis one-way analysis of variance followed by Dunn’s multiple
comparisons test as appropriate. Spearman correlation was used
to assess the linear correlation between nerve profile density
and the cancer burden, expressed at the percentage of the
total bone marrow that was occupied by cancer cells. For all
statistical analyses, a probability value of p< 0.05 was considered
significant. All data are presented as mean ± standard error of
the mean (SEM).

RESULTS

Bone Biopsies
The bone biopsies were isolated from healthy female volunteers
and patients with metastatic bone disease. Details on patients’ age
and skeletal site of biopsy isolation are presented in Table 1. The
analysis was performed in the bone marrow, in which the cancer-
infiltrated biopsies presented with a tumor burden ranging from
0.0 to 71.7%. In the MBD surgery group, 6 out of 9 patients had
a fracture. The biopsies varied in overall size and preservation of
trabecular bone due to different degrees of cancer-infiltration.

Cancer-Infiltrated Bone Marrow Presents
With Enhanced Nerve Profile Density
The nerve profile density was significantly increased in the
bone marrow of cancer-infiltrated bone biopsies compared to

the bone marrow of healthy bone tissue (60.6 ± 7.8 vs. 11.9
± 2.1 profiles/mm2, p < 0.001, Figures 1B–D), ranging from
3.4 to 166.3 profiles/mm2 in cancer-infiltrated bone biopsies.
Subdivision of the cancer-infiltrated bone biopsies into MBD
untreated and MBD treated demonstrated that both groups had
a significantly higher abundance of nerve profiles (68.1 ± 11.6
profiles/mm2, p < 0.01, and 77.8 ± 16.3 profiles/mm2, p <

0.001, respectively) compared to the control group (11.9 ± 2.1
profiles/mm2, Figure 1E). No statistically significant difference
in nerve profile density was found comparing theMBD untreated
group with the MBD treated group (p = 0.8534). In addition, no
statistically significant difference was found comparing the MBD
surgery group with controls (p= 0.2552, Figure 1E).

Nerve Profiles Are Less Associated With
Vasculature in Cancer-Infiltrated Bone
Marrow
The association between nerve profiles and vascular structures
was determined within the bone marrow. For each nerve profile
it was measured whether there was a vascular structure within a
25µm range (Figures 2A–D). The percentage of nerve profiles
near a vascular structure was significantly lower in the bone
marrow of cancer-infiltrated bone tissue as compared to healthy
bone marrow (47.5 ± 2.8% vs. 76.3 ± 3.3%, p < 0.001,
Figure 2D). Subdivision of the MBD groups showed that the
MBD treated (46.6 ± 4.2%, p < 0.01) and MBD surgery group
(40.5± 5.3%, p < 0.001) had a lower percentage of nerve profiles
located near vascular structures compared to that of healthy bone
tissue (76.3 ± 3.3%, Figure 2E). No difference (p = 0.0504) was
found between controls and the MBD untreated subgroup (76.3
± 3.3% vs. 54.7± 4.6%, Figure 2E), and no significant difference
was found comparing the MBD untreated and MBD treated
groups (p= 0.3527).

Nerve Profile Density and Tumor Burden Is
Not Correlated in Cancer-Infiltrated Bone
Marrow
To investigate a possible interplay between nerves and cancer
cells, the percentage of all identified neuronal profiles located
within 25µm of cancer cells was determined. The mean
percentage of neuronal profiles found in close proximity to
cancer cells was 31.5 ± 10.5%, 61.0 ± 9.3%, and 50.2 ±

9.1% for the MBD untreated, MBD treated and MDB surgery
group, respectively (Figures 3A,B). No difference was found
between the three subgroups of cancer-infiltrated bone tissue.
Furthermore, the percentages of nerve profiles associated with
cancer cells varied greatly with ranges of 0.0–83.9% (MBD
untreated), 0.5–99.3% (MBD treated), and 0.5–92.5% (MBD
surgery), respectively (Figure 3B). This was in part due to
variations in the tumor burden observed in the individual
biopsies, which presented with mean and ranges of 19.9 ± 7.2%
and 0.0–58.2% (MBD untreated), 36.7 ± 6.6% and 0.0–67.0%
(MBD, treated), and 25.5 ± 4.9% and 3.4–71.7% (MBD surgery),
respectively. A correlation of nerve profile density to tumor
burden demonstrated no apparent relationship, neither overall
nor in either of the subgroups (overall correlation, R2 = 0.0309,
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FIGURE 2 | Nerve profiles are less associated with vasculature in cancer-infiltrated bone. (A) For each nerve profile it was determined if it was associated within a

distance of 25µm (green hatched line) or unassociated (yellow hatched line) with vasculature. (B,C) Representative illustrations of nerve profiles found within 25µm of

a vascular structure in the bone marrow of human healthy tissue (B1,B2) and the bone marrow of patients with metastatic bone disease (MBD) (C1,C2). Sections

were stained for protein gene product 9.5 (PGP9.5, red arrow heads) and CD34-positive endothelial cells (black arrowheads), while the adjacent section was stained

for cytokeratin 7 and 19 [CK7/19, gray arrow heads, (C2)] to identify cancer cells. (D) The percentage of nerve profiles found proximate to a vascular structure was

significantly higher in the healthy bone marrow compared to the cancer-infiltrated bone marrow. (E) Analysis of the three subgroups of cancer-infiltrated bone

demonstrated a decreased association of nerve profiles and vascular structures in the MBD treated group and the MBD surgery group compared to controls. The

comparison of healthy bone tissue with the MBD untreated subgroup did not reach significance (p = 0.0504). Comparisons were performed with Mann-Whitney U

test or Kruskal–Wallis one-way analysis of variance followed by Dunn’s multiple comparisons test as appropriate. Data are presented as mean ± SEM. **p < 0.01, ***p

< 0.001. Scale bars: 25µm.

p = 0.3613, Figure 3C). Hence, there is no indication that nerve
sprouting mostly occurs near cancer cells.

DISCUSSION

Here we provide first evidence that neuronal sprouting and
reorganization occur in human breast-cancer infiltrated bone
tissue. Firstly, we observe a significant increase in the nerve
profile density of cancer-infiltrated human bone marrow tissue,

and secondly, we find that these nerve profiles are less associated
with vascular structures.

Overall, we found a five-fold increase in the nerve profile
density of cancer-infiltrated human bone marrow compared to
the healthy control bone marrow. Of note, the level of nerve
profile density in the control biopsies was comparable to what
was previously described in the bone marrow of patients with
primary hyperparathyroidism (15). A recent study, investigating
innervation in axial and appendicular human cadaveric bone,
demonstrated that the numbers of nerve fibers significantly
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FIGURE 3 | Nerve profile density and tumor burden are not correlated. (A1) Illustration of the method. For each nerve profile it was determined if it was located within

a distance of 25µm to cancer cells. (A2,A3) Representative illustration of nerve profiles found within 25µm of cancer cells in the bone marrow of a patient with

metastatic bone disease (MBD). Sections were stained for protein gene product 9.5 (PGP9.5, red arrow heads) and CD34 [black arrow heads, (A2)], while an adjacent

section was stained for cytokeratin 7 and 19 [CK7/19, gray arrow heads, (A3)] to identify cancer cells. (B) No difference was found in the percentage of nerve profiles

found within 25µm of cancer cells in between the three groups of cancer-infiltrated bone tissue. (C) No correlation was found between the nerve profile density and

the tumor burden, neither overall nor in any of the subgroups. Analyses were performed with Kruskal–Wallis one-way analysis of variance followed by Dunn’s multiple

comparisons test and Spearman correlation. Data are presented as mean ± SEM. Scale bars: 25µm.

declined per year of age in elderly individuals (age range 66–99).
Extrapolating this finding to younger individuals, it is possible
that the increase in nerve profile density in MBD is even higher
in magnitude due to the lower median age of the healthy controls
(16). The subgroup analysis revealed a significant increase in the
nerve profile density in both groups of archived cancer-infiltrated
bone marrow. Interestingly, anti-cancer treatment within two
years of obtaining the bone marrow biopsy did not seem to
affect the nerve density. No significant change in nerve profile
density was identified in the cancer-infiltrated biopsies collected
during joint replacement surgeries. These biopsies were isolated
from various locations in femoral, humeral, and pelvic bones
and thus represent a more heterogeneous composition than the
biopsies isolated from the iliac crest. Additionally, these biopsies
were decalcified in EDTA for 56–71 days, and although EDTA
in general is believed to preserve epitopes, the specific effect
on PGP9.5 is unknown. That said, in mouse models of cancer-
induced bone pain, the bone marrow space has been described
to become devoid of nerve fibers as it gets filled with tumor (8),
and it is tempting to speculate that the non-significant increase
in nerve profile density seen in bone biopsies from patients
undergoing joint replacement surgery is due to a beginning
denervation. In support, we do not observe any nerve profiles in

necrotic areas, visually observed as areas without apparent cell
nuclei. In addition, six of nine biopsies were isolated from the
intramedullary space of the femoral or humeral shaft, which is
the area where cancer cells are seeded in the mouse models of
cancer-induced bone pain.

Pathological sprouting of nerve fibers is not only described in
models of cancer-induced bone pain, but also in the periosteum
of geriatric mice with painful arthritic joints and in painful non-
healed bone fractures (17, 18). In the model of cancer-induced
bone pain, nerve sprouting is in part believed to drive the pain, as
blockade of the nerve sprouting can attenuate the development
of late-stage pain related behaviors (6, 19). Nerve growth factor
(NGF), released by cancer cells and associated stromal cells, is
thought to be a key player in the nerve sprouting as therapies that
block the NGF/tropomyosin receptor kinase A (TrkA) pathway
in early stages block the sprouting and effectively attenuate the
development of cancer-induced bone pain (6, 19). Interestingly,
results from a placebo-controlled proof-of concept study and a
non-controlled open-label study with tanezumab, a humanized
monoclonal antibody that blocks the binding of NGF to TrkA,
suggest that the NGF-driven pathology also applies to patients
with metastatic bone disease (20). In this study, we did not have
access to pain reports from patients; therefore it was not possible
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to investigate a potential relationship between bone pain and
the increase in nerve profile density. However, the significant
increase in nerve profile density found in our study combined
with the effect of tanezumab in clinical studies suggest that the
same mechanism may in part drive the pain in human metastatic
bone disease.

Myelinated and unmyelinated fibers have been demonstrated
to be mostly associated with vascular structures in human bones
(15, 16, 21). In a recent study, examining the association of nerve
profiles to vasculature in the bone marrow of iliac crest biopsies
isolated from patients with primary hyperparathyroidism,
we found that more than 90% of the nerve profiles were
associated with vasculature (15). This is in accordance with
the present finding in the control biopsies where the majority
of nerve profiles were associated with vasculature. In the
bone marrow of cancer-infiltrated bone tissue, we found a
significantly lower percentage of nerve profiles associated with
vasculature compared to healthy bone marrow tissue. This
may indicate that structural changes occur in the neuronal
network leading to a disorganization of the nerves. Of note,
the association of nerve profiles to vascular structures was
investigated from the innervation perspective only. Thus, the
present data do not provide information on specific types
of vasculature or any information on the total coverage of
vascular structures. As a qualitative observation, the vasculature
of the cancer-infiltrated bone marrow appeared denser and
more disorganized as compared to the vasculature of the
healthy bone tissue (not shown). Following inoculation of
prostate cancer cells, the vasculature of mouse femurs has
been reported irregular and disorganized (5). In human breast
cancer, hyper-vascularization is generally observed and has
been shown to play a role in cancer development, invasion,
and metastasis (22). The increased and irregular vascular
network visually observed in this study could indicate that
cancer cells have the same effect on the vasculature in
human bone.

We did not identify any correlation between tumor burden
and nerve profile density suggesting that the sprouting is
independent of close contact to cancer cells, but instead may be
driven by humoral factors. A few cancer-infiltrated bone biopsies
would present with no or very few cancer cells. Due to the
method of area estimation, the latter would end up with a tumor
burden of 0.0%. However, in these biopsies an increased density
of neuronal profiles ranging from 19.5 to 120.2 profiles/mm2

was still evident. Of note, since the analysis is limited to a
thin, 2-dimensional section, it is only possible to identify the 2-
dimensional nerve profiles and their in-plane association with
vasculature and cancer cells. In reality, nerves are elongated 3-
dimensional structures that could be associated with vasculature
and cancer cells above or below the section plane, meaning
that the reported percentages underestimate the 3-dimensional
associations with vasculature and cancer cells. In addition, the
bone biopsies were isolated from different skeletal sites. Most
biopsies were from the iliac crest, but the biopsies from the
joint replacement surgeries came from femoral, humeral, and

pelvic bones. It has recently been demonstrated that there are
differences within the nerve profile density of different bone
compartments, i.e. periosteum, cortical pores and bone marrow
(15), but it is yet unknown if there are differences between
individual skeletal sites, including the weight bearing long bones
and less strained bones, such as the iliac crest. Lastly, it is not
possible to determine how progressed the cancer is, as patients
with metastatic disease per definition are in the most advanced
stage of breast cancer (stage IV).

In conclusion, the increased nerve profile density and
decreased association of nerve profiles to vasculature found
in cancer-infiltrated biopsies strongly suggest that neuronal
sprouting and reorganization occur in human cancer-infiltrated
bone tissue.
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