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Patterns of sequencing coverage along a bacterial genome—summarized by a peak-to-trough ratio (PTR)—have been shown

to accurately reflect microbial growth rates, revealing a new facet of microbial dynamics and host–microbe interactions.

Here, we introduce Compute PTR (CoPTR): a tool for computing PTRs from complete reference genomes and assemblies.

Using simulations and data from growth experiments in simple and complex communities, we show that CoPTR is more

accurate than the current state of the art while also providing more PTR estimates overall. We further develop a theory

formalizing a biological interpretation for PTRs. Using a reference database of 2935 species, we applied CoPTR to a

case-control study of 1304 metagenomic samples from 106 individuals with inflammatory bowel disease. We show that

growth rates are personalized, are only loosely correlated with relative abundances, and are associated with disease status.

We conclude by showing how PTRs can be combined with relative abundances and metabolomics to investigate their effect

on the microbiome.

[Supplemental material is available for this article.]

Dynamic changes in the human microbiome play a fundamental
role in our health. Understanding how and why these changes oc-
cur can help uncovermechanisms of disease. In linewith this goal,
the Integrative HumanMicrobiome Project and others have gener-
ated longitudinal data sets from disease cohorts in which the
microbiome has been observed to play a role (Buffie et al. 2015;
DiGiulio et al. 2015; Lloyd-Price et al. 2019; Serrano et al. 2019;
Zhou et al. 2019). Yet, investigating microbiome dynamics is
challenging. On one hand, a promising line of investigation uses
time-series or dynamical systems–based models to investigate
community dynamics (Stein et al. 2013; Bucci et al. 2016;
Gibbons et al. 2017; Gibson and Gerber 2018; Shenhav et al.
2019; Joseph et al. 2020). On the other hand, the resolution of
such methods is limited by sampling frequency, which is often
limited by physiological constraints on sample collection for
DNA sequencing. Furthermore, although suchmethods accurately
infer changes in abundance, they do not directly assess growth
rates per sample.

Korem et al. (2015) introduced a complementary approach to
investigate microbiome dynamics. They showed that sequencing
coverage of a given species in a metagenomic sample reflects its
growth rate. They summarized growth rates by a metric called
the peak-to-trough ratio (PTR): the ratio of sequencing coverage
near the replication origin and near the replication terminus.
Thus, PTRs provide a snapshot of growth at the time of sampling,
and their resolution is not limited by sampling frequency.

Their original method—PTRC—estimates PTRs using reads
mapped to complete reference genomes. It has been used as a
gold standard to evaluate other methods (Brown et al. 2016;
Emiola and Oh 2018; Gao and Li 2018). However, most species
lack complete reference genomes, reducing PTRC’s utility to re-
searchers in the field. Therefore, follow-upwork has focused on es-
timating PTRs from draft assemblies: short sections of contiguous
sequences (contigs) in which the order of contigs along the ge-
nome is unknown. These approaches rely on reordering binned
read counts or contigs by estimating their distance to the replica-
tion origin. Although less accurate than PTRC, they allow PTRs
to be estimated for a larger number of species. iRep (Brown et al.
2016) sorts binned read counts along a 5-kb sliding window and
then fits a log-linear model to the sorted bins to estimate a PTR.
GRiD (Emiola and Oh 2018) sorts the contigs themselves by se-
quencing coverage. It fits a curve to the log sequencing coverage
of the sorted contigs using Tukey’s biweight function. DEMIC
(Gao and Li 2018) also sorts contigs. However, it uses sequencing
coverage across multiple samples to infer a contig’s distance from
the replication origin. Specifically, DEMIC performs a principal
component analysis on the log contig coverage across samples.
The investigators show that the scores along the first principal
component correlate with distance from the replication origin.
Ma et al. (2021) provide theoretical criteria for when such an ap-
proach is optimal. Finally, other estimators have focused on PTR
estimation for specific strains (Emiola et al. 2020) or on estimation
using circular statistics (Suzuki and Yamada 2020).
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Nonetheless, using PTRs has several limitations. From a theo-
retical perspective, it is not clear what PTRs estimate and how they
should be interpreted. Bremer and Churchward (1977) showed
that under exponential growth, PTRsmeasure the ratio of chromo-
some replication time to generation time, but this is not estab-
lished under arbitrary models of dynamics. From a practical
perspective, estimating PTRs at scale requires running multiple
tools across multiple computational environments—a cumber-
some task.

In the present work, we seek to address these issues. Our con-
tributions are threefold. First, we provide theory that shows PTRs
measure the rate of DNA synthesis and generation time, regardless
of the underlying dynamic model. Second, we derive two estima-
tors for PTRs—one for complete reference genomes and one for
draft assemblies. Third, we combine our estimators in an easy-to-
use tool called Compute PTR (CoPTR). CoPTR provides extensive
documentation, a tutorial, and precomputed reference databases
for its users.We show that CoPTR ismore accurate than the current
state of the art and concludewith a large-scale application to a data
set of 1304 metagenomic samples from a study of inflammatory
bowel disease (IBD).

Results

CoPTR overview

The method we developed models the
density of reads along the genome in a
sample by adapting an argument pro-
posed by Bremer and Churchward
(1977). Under an assumption of expo-
nential growth, they showed that the
copy number ratio of replication origins
to replication termini in a population,
R, is given by

log2 (R) =
C
t

, (1)

where C is the time it takes to replicate a
bacterial chromosome, and τ is the
(fixed) generation time. We generalize
this (see Supplemental Note S1) for dy-
namic quantities:

log2 (R(t)) =
C
t(t)

. (2)

The variable τ now depends on col-
lection time t.When a complete reference
genome is available, the PTR is an estima-
tor for R(t). However, the PTR is only cor-
related with R(t) on draft assemblies
because the assembly may not include
the replication origin or terminus.
Furthermore, although PTRs correlate

with the growth rates (i.e.,
1
t(t)

), they

only measure changes in abundance pro-
vided no cells are being removed from the
community (Supplemental Note S1.4).

The derivation also suggests that
copy number along the chromosome de-
cays log-linearly away from the replica-
tion origin (Supplemental Note S2). We

used this fact to develop CoPTR: a maximum likelihood method
for estimating PTRs from complete genomes and draft assemblies
(Fig. 1). CoPTR takes sequencing reads from multiple metage-
nomic samples and a reference database of complete and draft ge-
nomes as input. It outputs a genome-by-sample matrix in which
each entry is the estimated log2(PTR) for each input genome in
that sample. It has two modules: CoPTR-Ref that estimates PTRs
from complete genomes, and CoPTR-Contig that estimates PTRs
from draft assemblies. As such, it combines the improved accuracy
enabled by complete genomes with the flexibility afforded by be-
ing able to work against draft and metagenomic assemblies.

For both methods, sequencing reads are first mapped to a ref-
erence database. CoPTR-Ref estimates PTRs by applying an adap-
tive filter to remove regions of ultra-high or ultra-low coverage. It
then fits a probabilistic model to estimate the replication origin
and the PTR. CoPTR-Contig estimates PTRs by first binning reads
into approximately 500 nonoverlapping windows. It filters out
windows with excess or poor numbers of reads. Coverage patterns
acrossmultiple samples are used to reorder bins using Poisson PCA.
The reordered bins serve as approximate genomic coordinates that
are used to obtain maximum likelihood estimates of PTRs. We
chose to reorder bins, rather than contigs, to be more robust to er-
rors in the assembly process, to have large changes in coverage pat-
terns along contigs owing tomobile genetic elements, and to have
coverage drops near the edges of contigs.

Figure 1. CoPTR workflow. Sequencing reads from multiple metagenomic samples are mapped to a
reference database containing representative strains from complete reference genomes and high-quality
assemblies (>90% completeness, <5% contamination). Multimapped reads are reassigned to a single ge-
nome using a probabilistic model. After read mapping, regions of each genome with ultra-high or ultra-
low coverage are filtered using filters designed for complete reference genomes or draft assemblies. Then,
PTRs are computed for each genome in each sample. For species with complete reference genomes, PTRs
are estimated by maximizing the likelihood of a model describing the density of reads along the genome
(CoPTR-Ref). For species with high-quality assemblies, reads are binned across the assembly, bins are re-
ordered based on sequencing coverage across multiple samples using Poisson PCA, and the slope along
this order is estimated by maximum likelihood (CoPTR-Contig). CoPTR outputs a table of the log2(PTR)
per genome in each sample.
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CoPTR-Ref accurately estimates PTRs using complete reference

genomes

We first evaluated CoPTR-Ref on simulated data. Briefly, we simu-
lated read counts based on read density maps generated from high
coverage genomic samples of Escherichia coli, Lactobacillus gasseri,
and Enterococcus faecalis from Korem et al. (2015; Supplemental
Fig. S1). The density maps reflect differences in coverage along a
genome owing to GC content and mappability. To facilitate com-
parison with CoPTR-Ref, we also reimplemented PTRC. The new
implementation, called KoremPTR, was designed to work with
simulated read counts and readsmappedwith Bowtie 2 (Langmead
and Salzberg 2012). KoremPTR showed a good correspondence
with the originalmethod (Pearson r>0.99) (Supplemental Fig. S2).

Our simulations showed that CoPTR-Ref requires as few as
5000 reads to achieve >0.95 Pearson’s correlation (Supplemental
Fig. S3). We confirmed our coverage requirements on real data
by down-sampling the number of reads from the Korem et al.
(2015) E. coli data set and comparing estimates from the down-
sampled data to the estimates from the complete data (Supplemen-
tal Fig. S4). CoPTR-Ref more accurately estimated PTRs than did
KoremPTR (Fig. 2A; Supplemental Fig. S3). KoremPTR appeared

to underestimate the simulated PTRs, causing the difference in ac-
curacy (Fig. 2B; Supplemental Fig. S3). Nonetheless, PTR estimates
by KoremPTR were highly correlated with the ground truth (Pear-
son r>0.88). We saw the same pattern across six genomic (bacteria
grown inmonoculture) andmetagenomic data sets (Fig. 2C). Both
methods were correlated, but CoPTR-Ref estimated larger PTRs
than did KoremPTR on the same samples.

To evaluatewhether variation among representative genomes
per 95% average nucleotide identity (ANI) clusters—an operation-
al threshold for defining species (Olm et al. 2020)—affects the ac-
curacy of CoPTR, wemapped the same samples to different strains.
We found that PTR estimates were robust to strain variation when
the MASH distance (Ondov et al. 2016) between strains was <0.05
—corresponding to∼95%ANI (Fig. 2D). These results indicate that
one reference genome per 95% ANI cluster covers the space of ge-
nomes for PTR estimation.

We compared log2(PTR) estimates to growth rates of E. coli
grown in a chemostat and to changes in population size of
E. coli in an unrestricted growth setting (Supplemental Fig. S5)
using data from Korem et al. (2015). Our theory suggests that
log2(PTR)s are correlated with both quantities in these settings.
We found a strong correlation (r>0.9) between log2(PTR) and

growth rates, as well as a strong correla-
tion (r>0.9) between log2(PTR)s and
changes in abundance. We additionally
replicated the growth rate experiments
using the E. faecalis (aerobic and anaero-
bic growth experiments) and L. gasseri
data sets, as by Korem et al. (2015). We
found a good correlation between esti-
mated growth rates and log2(PTR), simi-
lar to that of KoremPTR (Supplemental
Table S1).

CoPTR-Contig accurately estimates PTRs

using MAGs

Because CoPTR-Contig reorders bins, not
contigs, we could directly compare
CoPTR-Ref to CoPTR-Contig using the
same simulation framework (Fig. 3A; Sup-
plemental Fig. S6). Estimates by CoPTR-
Contig were highly correlated (Pearson r
>0.9) with the simulated ground truth
with as few as 5000 reads but were overall
less accurate than CoPTR-Ref. Similar to
CoPTR-Ref, we confirmed our coverage
requirements by down-sampling se-
quencing reads from real data (Supple-
mental Fig. S4). Our results highlight
the benefit of using the additional infor-
mation provided by complete reference
genomes.

To assess the applicability of our
method to metagenomic assemblies,
which are of variable quality and con-
tamination levels, we performed simula-
tions investigating their impact on the
accuracy of CoPTR-Contig. We found
that CoPTR-Contig is robust to the level
of genome completeness, providing
comparable accuracy with completeness

BA

C D

Figure 2. CoPTR-Ref is accurate on simulated and real data. (A) Accuracy of CoPTR-Ref and KoremPTR
on simulated data based on an E. coli genome. Performancewas compared by computing the root-mean-
square-error (RMSE) of the log2(PTR) (y-axis) across 100 replicates while varying the number of reads (x-
axis), varying the position of the replication origin, and varying the PTR. (B) Ground truth (x-axis) and
estimated (y-axis) log2(PTR) across 100 simulation replicates with 20,000 reads. KoremPTR appears to
underestimate the true log2(PTR). (C ) Comparison of KoremPTR log2(PTR) (x-axis) and CoPTR log2(PTR)
(y-axis) on six real genomic and metagenomic data sets. (D) Evaluation of CoPTR-Ref’s log2(PTR) esti-
mates using representative genomes from different strains (five E. coli strains, four L. gasseri strains,
and five E. faecalis strains). Each data set in panel C was mapped to strains from the same species, and
the Pearson’s correlation (y-axis) was computed for each pair of strains. When the distance between
strains (x-axis) is small, log2(PTR)s are highly correlated.
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as lowas 50%.We further found thatCoPTR-Contig’s estimates are
robust to moderate amounts of up to 5% contamination in the as-
sembly from other species (Supplemental Fig. S7).

We then compared CoPTR-Contig with GRiD, DEMIC, and
iRep across five real genomic and metagenomic data sets of E.
coli and L. gasseri, for which both complete reference genomes
and metagenomic assembled genomes (MAGs) were available
(Fig. 3B). We considered 10 high-quality MAGs (>90% complete-
ness, <5% contamination) from the IGGdb (Nayfach et al. 2019)
and computed the correlation between the log2(PTR) estimate
from each method and the log2(PTR) from CoPTR-Ref. For
CoPTR-Ref, reads were mapped to a single complete genome (see
Methods). All 10 of the E. coli MAGs were assigned to the same
95% ANI species cluster, whereas eight of the 10 L. gasseri MAGs
were from one cluster, and the remaining two from another. To al-
low for a fair comparison, we changed the default parameters of
each method to allow estimates on each sample—with the excep-
tion of DEMIC,which provides no command line options to chan-
ge filtering criteria. We note that almost all the samples we
explored were below the minimum recommended coverage for
iRep (Fig. 3C; Supplemental Fig. S8).

We found that CoPTR-Contig significantly outperformed (P-
value <0.05 using a two-sided paired t-test; the two L. gasseriMAGs
from a different species cluster were excluded) GRiD on three data
sets, DEMIC on two data sets, and iRep on all five data sets. All
models performed poorly on the two L. gasseri MAGs that were
from a different 95% ANI cluster (outliers on Fig. 3B), recapitulat-
ing results from the strain comparison analysis using CoPTR-Ref
(Fig. 2D). Many of the comparisons between CoPTR-Contig and
DEMIC failed to reach significance because DEMIC estimated few-
er PTRs overall (Fig. 3C; Supplemental Fig. S8), resulting in fewer
MAGs for comparison (points in Fig. 3C). We additionally quanti-
fied the accuracy acrossMAGs by counting the number ofMAGs in
which the correlation between the ground truth and eachmethod
was high.We found that CoPTR-Contig had high accuracy across a
larger number of MAGs (30 MAGs with Pearson r>0.9 for CoPTR-
Contig, compared with 19, 11, and zero for DEMIC, GRiD, and
iREP, respectively) (Supplemental Fig. S9).

An important aspect affecting the utility of PTR inference
methods is the number of PTR estimates they are able to provide
for a given sample.We therefore compared the number of estimat-
ed PTRs that passed the default filtering criteria of each method
(Fig. 3C; Supplemental Fig. S8). We mapped 10 samples from the
IBD data set (Methods) to 1009 high-quality MAGs from the
IGGdb and counted the number of PTR estimates. The reported es-
timates for GRiD are based on GRiD’s published minimum cover-
age requirement: specieswith >0.2× sequencing coverage.Wewere
unable to run GRiD’s high-throughput model on two systems
(Ubuntu 18.04.4 LTS and macOS 10.15) to produce estimates on
this data set. We found that CoPTR-Contig producedmore PTR es-
timates overall than the other models we evaluated. We note that
this number does not include the additional estimates from com-
plete genomes using CoPTR-Ref. Taken together with the im-
proved accuracy of CoPTR (Fig. 3B), these results show that
CoPTR outcompetes previous PTR estimation methods in both
the number of estimates produced and their accuracy, showing
its utility for microbiome analysis.

CoPTR accurately predicts in situ growth in a marine microbial

population

To evaluate the accuracy of CoPTR in complex natural communi-
ties, we used data from a recent study that benchmarked the accu-
racy of PTRs in estimating in situ growth rates of marine bacteria
collected from seawater. Long et al. (2021) conducted five growth
experiments, each with four to five samples collected over 42–44
h. They usedmetagenomic sequencing to assembleMAGs and cal-
culate PTRs, and combined total cell counts with relative abun-
dances to estimate absolute abundances and calculate growth
rates. The study concluded that PTRs rarely correlated to growth
in most marine bacterial populations.

We estimated PTRs for the MAGs provided by Long et al.
(2021) using CoPTR (Supplemental Table S2) and compared
them to growth rates calculated from absolute abundance esti-
mates (Methods). This is a challenging benchmark, owing to low
sampling frequency (average of 12 h between samples), challenges

BA C

Figure 3. CoPTR-Contig is accurate on simulated and real data. (A) Comparison of CoPTR-Ref and CoPTR-Contig on simulated data using the E. coli den-
sity map. Performance was evaluated by computing the correlation (y-axis) between simulated and estimate log2(PTR)s across read counts (x-axis), ran-
domly chosen replication origins, and PTRs. CoPTR-Contig shows high accuracy above 5000 reads. (B) Comparison of CoPTR-Contig to GRiD, DEMIC, and
iRep across five genomic (monoculture) and metagenomic data sets (x-axis). For each data set, reads were mapped to a single reference genome for each
species (see Methods). Performance was evaluated by comparing log2(PTR) estimates from CoPTR-Ref to the log2(PTR) estimate from eachmethod across
10 high-quality metagenome assembled genomes (MAGs; points on the figure). Significance was computed using a two-tailed t-test: (∗) P<0.05, (∗∗) P<
10−2, (∗∗∗) P<10−3, (∗∗∗∗) P<10−4. (C ) Number of PTR estimates from species passing the filtering criteria for each model. The mean and SD are reported
for the E. colimetagenomic gut and genomic data sets across MAGs from B. Error bars depict 1 SD. Eachmodel was also applied to 10 samples from the IBD
data set using 1009 high-quality MAGs from the IGGdb. The total number of PTRs passing filtering criteria for each model is reported.
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in estimating growth rates in which cell death likely plays a role
(417 of 1818 calculated growth rates were negative), and low
MAG quality (median [IQR] completeness of 66.9% [56.8–84.2%]
and redundancy of 2.9% [2.2–4.3%]). Nevertheless, CoPTR
showed reasonable accuracy (median [IQR] Pearson r of 0.40
[−0.10–0.64]) (Fig. 4A,B), with r>0.3 for 29 of 47 MAGs, and
high accuracy (r>0.6) for 14 of them. Out of the nine MAGs
with available measurements and completeness >90% (Supple-
mental Fig. S10), seven had positive correlations, with a median
[IQR] Pearson r of 0.45 [0.22–0.72], indicating a potential to im-
prove the overall accuracy of estimates with MAGs of higher
quality.

We next compared the accuracy of CoPTR to iRep, GRiD, and
DEMIC. CoPTRoutperformed all threemethods (two-sidedMann–
Whitney U P= 3.2 ×10−4, P=0.0047, and P=0.016 for DEMIC,
GRiD, and iRep, respectively) (Fig. 4C). These results again show
the improved accuracy of CoPTR even in this challenging setting.

PTRs recapitulate a signal of antibiotic resistance

We next evaluated if we could use CoPTR to detect a signal of an-
tibiotic resistance in Citrobacter rodentium. Korem et al. (2015) gen-
erated 86 samples from three populations of in vitro culture of C.
rodentium. One population was treated with erythromycin, a
growth-inhibiting antibiotic; another was treated with nalidixic
acid, to which C. rodentium is resistant. The final population was
a control and received no treatment.

We wanted to see if we could recapitulate this signal using
CoPTR. Similar to the original study, we observed a difference in
PTRs between the populations exposed to erythromycin and nali-
dixic acid (Supplemental Table S3). Our results add to the original
study by assigning an effect size to each condition. We found that
erythromycin has a strong negative effect size on the log2(PTR),
whereas nalidixic acid has a strong positive effect size. Our results
suggest that C. rodentium has an increased growth rate in response
to nalidixic acid. However, this decrease did not correspond to an
increased rate of population growth (P=0.706, two-sided t-test).

PTRs are highly personalized

We next sought to show how PTR measurements can be used in a
large-scale study. To this end, we considered 1304 metagenomic
samples from 106 individuals in a case-control study of IBD

(Lloyd-Price et al. 2019). Individuals in the study had two different
subtypes of IBD: Crohn’s disease and ulcerative colitis.Wemapped
the metagenomic samples to a database from IGGdb (Nayfach
et al. 2019) consisting of 2935 complete genomes, assemblies,
andMAGs, selected as representative genomes from 95%ANI clus-
ters (Methods). Individuals had between three and 23 associated
metagenomic samples each, with a median of 11 samples
(Supplemental Fig. S11A). PTR estimates were sparse among spe-
cies (Supplemental Fig. S11B). Of the species that had at least
one observed PTR, the median number of PTR estimates was 28;
Approximately 20% of species had fewer than nine observed PTRs.

A large data set with multiple samples per individual allowed
us to investigate sources of variation for PTRs. To this end, we esti-
mated the fraction of variation explained by differences between
individuals, disease-status, age, and sex (Methods). Inter-individu-
al differences in PTRs accounted for the largest fraction of variance
among variables explored (Fig. 5A,B), consistent with the original
study that found inter-individual variation to be the largest source
of variation among the other multiomic measurement types col-
lected (Lloyd-Price et al. 2019). We repeated the experiment using
the top 50% of individuals with the most observations and found
similar results (Supplemental Fig. S12). PTRs were mostly uncorre-
lated with relative abundances, suggesting that PTRs tag a signal
of biological variation complementary to relative abundances
(Fig. 5C).

PTRs are associated with IBD

We then asked if we could associate species to disease status
through their PTRs (Methods; Fig. 6A). We found one species
that was significantly associated (FDR q=0.025, effect size =
−0.1574) with Crohn’s disease (Supplemental Table S4), Subdoli-
granulum sp., and three species with ulcerative colitis (Supplemen-
tal Table S5): Roseburia intestinalis (q= 1.07× 10−3, effect size =
0.094), Ruminiclostridium sp. (q=2.5 ×10−2, effect size =−0.138),
and Subdoligranum sp. (q=2.69×10−2, effect size =−0.168). Vila
et al. (2018) also report an increased PTR in R. intestinalis in indi-
viduals with Crohn’s disease and ulcerative colitis in a separate co-
hort, using PTRC. We did not observe a significant association
between the relative abundance of R. intestinalis and disease status,
nor did Vila et al. (2018). Altogether, our results provide additional
evidence that R. intestinalismay play a role in ulcerative colitis, ob-
servable only through analysis of growth dynamics.

BA C

Figure 4. CoPTR values strongly correlate with observed growth rates. (A,B) log2(PTR) estimates (y-axis) versus observed growth rates (x-axis; Methods),
for two well predicted MAGs: MAG 6, classified as Flavobacteriales (A), andMAG 13, classified as SAR86 (B). Lines are linear regressions. (C) Comparison of
per-MAG Pearson r (y-axis) for all MAGs with more than three pairs of measured growth rates and calculated PTRs. CoPTR values are compared to GRiD,
DEMIC, and iRep. Significance was computed using a two-sided Mann–Whitney U test.
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For the remaining investigation, we focused on R. intestinalis.
We asked if we could assess the impact of various species on R.
intestinalis by associating relative abundances across species esti-
mated with MetaPhlAn2 (Truong et al. 2015) with its log2(PTR)
(Supplemental Table S6). We found two species with a positive as-
sociation with R. intestinalis and one with a strong negative associ-
ation (Fig. 6B). Finally, we investigated if we could relate
metabolomic measurements to log2(PTR)s (Supplemental Table
S7). We found two metabolites with a positive association with
the log2(PTR) of R. intestinalis (Fig. 6C). One of them—2-hydroxy-
glutarate—is part of the butanoate metabolic pathway, and R.
intestinalis is a known butyrate-producing bacteria. Altogether,
these results show the utility of PTRs for integrating multiomic
measurements with metagenomic data sets.

Discussion

PTRs have the potential to be a valuable tool for investigating
microbiome dynamics. Here, we provided theory giving PTRs a bi-
ological interpretation. We showed that PTRs are correlated with
growth rates defined as the reciprocal of generation time but are
not always correlated with changes in population size. We intro-

duced CoPTR, a software system combin-
ing two methods for estimating PTRs:
CoPTR-Ref estimates PTRs with the assis-
tance of a complete reference genome,
and CoPTR-Contig estimates PTRs from
draft assemblies. CoPTR is easy to use,
has extensive documentation, and pro-
vides a precomputed reference database
for its users.

We showed that CoPTR-Ref is more
accurate than KoremPTR, the current
gold standard for PTR estimation from
complete reference genomes. The differ-
ence in performance is likely driven by
two key differences between the models
of each method. First, KoremPTR applies
a strong smoother to binned read counts
that reduces the variance in read counts
among adjacent bins. The smoother clips
read counts near the replication origin
and terminus, causing KoremPTR to un-
derestimate PTRs. CoPTR-Ref does not
apply a smoother but instead filters out
regions of excess or poor coverage.
Second, KoremPTR estimates PTRs by
taking the ratio of read counts between
the replication origin and terminus. In
contrast, CoPTR-Ref uses a probabilistic
model to take a maximum likelihood es-
timate of the PTR under a parametric
model.

We also showed that CoPTR-Contig
was more accurate than the current state
of the art for PTR estimation using draft
assemblies, while providingmore PTR es-
timates overall. A potential limitation of
CoPTR-Contig is its reliance on multiple
samples to reorder binned read counts
along the genome. However, this is not
a severe limitation. Our simulations

show that as few as five samples are required to estimate a PTR.
Furthermore, because PTRs are not comparable across species,mul-
tiple PTRs per species are required to reach reasonable sample sizes
for statistical testing. Thus, for most purposes, the sample require-
ment is negligible.

When building CoPTR, we focused on estimating PTRs per
species rather than per strain. Our goal was to allow CoPTR to be
applied to recent database efforts that combined representative ge-
nomes from MAGs, assemblies, and complete genomes clustered
at ∼95% ANI (Almeida et al. 2019, 2021; Forster et al. 2019;
Nayfach et al. 2019; Pasolli et al. 2019; Zou et al. 2019). There
are benefits and drawbacks to this approach. The major benefit is
reduction in database size and, therefore, in computational time
required for read mapping. Our results showed that PTR estimates
from the same samples mapped to different closely related strains
were highly concordant. Thus, there is notmuch to be gained from
including all strains in the reference database. Nonetheless, the
drawback is that CoPTR may not distinguish differences in PTRs
across samples owing to differences in strains.

We also focused on estimating PTRs from high-quality MAGs
(>90% completeness, <5% contamination). Inference fromMAGs
is more challenging than other assembly types, owing to

BA

C

Figure 5. PTRs are highly personalized and uncorrelated with relative abundances. (A) Fraction of var-
iance of log2(PTR) explained per species by variation between individuals, disease-statuses, age, and sex.
Inter-individual variation accounts for most variation among log2(PTR)s of the variables explored. (B)
Boxplots of the log2(PTR) (x-axis) of Parabacteroides distasonis across individuals (y-axis). P. distasonis
had the smallest P-value when testing for individual differences using the Kruskal–Wallis test on controls.
PTRs appear stable within individuals. (C ) Correlation between standardized log2(PTR) and log2(relative
abundance) on species matched to relative abundances estimated with MetaPhlAn2.
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differences in assembly completeness and contamination from
other species. Many things can go wrong during the assembly pro-
cesses. These, in turn, can affect PTR inference. In our opinion, it is
better to have fewer high-quality estimates thanmore poor-quality
ones, and for this reason, we have chosen strict inclusion criteria
for MAGs. Nevertheless, even in a complex metagenomic bench-
mark of oceanic microbes with lower-quality MAGs, we show
that the accuracy of CoPTR significantly outperform other PTR in-
ference methods. Contrary to previous claims (Long et al. 2021),
we show that PTRs are able to provide reasonably accurate esti-
mates of in situ growth even in this slow-growing, naturally-occur-
ring ecosystem.

Our results on the IBD data set showed that PTRs were highly
personalized. Indeed, a large fraction of variance in PTRs was ex-
plained by inter-individual variation. To our knowledge, we are
the first study to show an individualized effect for PTRs. Because
of their close connection to growth rates, our results suggest that
species’ growth rates are individual specific and somewhat stable
in healthy individuals. We also showed that some species display
differences in PTRs, depending on disease status. It would be inter-
esting to test whether this is a systematic difference in PTRs be-
tween cases and controls or whether PTRs deviate from a stable
baseline during active periods of disease.We could not test this hy-
pothesis here because themetadata do not indicate disease severity
at the time of sampling. Nonetheless, future work should investi-
gate this further.

There are other benefits to using PTRs as well. Compared with
relative abundances, PTRs have a clearer biological interpretation
because an increase in relative abundance does not necessarily cor-
respond to an increase in population size. In contrast, we showed

that an increase in PTR in a species corresponds to an increase in
the rate of DNA synthesis and that an increase in the log PTR cor-
responds to a decrease in generation time. Either of these facts can
be used to generate hypotheses about the drivers of differences
across conditions. Furthermore, because PTRs provide a snapshot
of growth at the time of sampling, they potentially alleviate the
need to performdense-in-time sampling typically needed to detect
dynamic changes. This suggests that it may be more cost-effective
to sequence more individuals rather than more samples per indi-
vidual. Finally, we showed that relative abundances andmetabolo-
mic profiles can be used to associate species or metabolites with
PTRs. Altogether, our study shows that PTRs can provide new ap-
proaches for investigating community interactions, relating mul-
tiomic measurements to the microbiome, and for investigating
the relationship between microbiome dynamics and disease.

Methods

CoPTR implementation

Read mapping

Reads aremapped using Bowtie 2 (Langmead and Salzberg 2012) us-
ing the parameter -k 10 to allow up to 10 mappings per read. We
chose this parameter after observing that 99% of reads mapped to
10 or fewer locations in the IGGdb using a subset of 10 samples
from the IBD data set. Reads with fewer than 10 mapping were as-
signed using a variational inference algorithm described in
Supplemental Note S3. We chose variational inference to reassign
multimapped reads, rather than expectationmaximization, because
it provides a more flexible framework for possible extensions to our

B

A

C

Figure 6. Association of log2(PTR)s with disease status (A), relative abundances (B), andmetabolomics (C). (A) log2(PTR)s can be used to associate species
with disease status. Significance was assessed by a fitting a linear model to log2(PTR) per species and correcting for false-discoveries (q-values denote false-
discovery rate). PTRs can be combined with relative abundances to assess species interactions (B) or the impact of metabolites (C).
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method. In the present work, reads with 10 (or more) mappings
were discarded from downstream analysis. However, CoPTR has a
command line argument to adjust this setting.

Before reassigning multimapped reads, reads are filtered by
alignment score. Alignment score is more sensitive than mapping
quality, because different alignment scores can result in the
same mapping quality. Bowtie 2 assigns penalties to mismatched
bases weighted on their base quality score. Bases with a perfect
quality score receive a −6 penalty for a mismatch, decreasing as
the quality score decreases. For a read of length L, we filtered out
reads with a score less than −6 ×L×0.05. Given a read with perfect
quality scores, this corresponding to removing reads with <95%
identity to the reference sequence. Of course, reads do not have
perfect quality scores, so this threshold is less strict than 95%
identity.

CoPTR-Ref

PTRs from species with complete reference genomes are estimated
with CoPTR-Ref. Regions of the genome with excess or poor cover-
age per sample are first filtered out in two steps. In the first step, we
apply a coarse-grained filter by binning reads into 500 bins. Letm be
the median log2 read count across nonzero bins, and s the larger of
one or the SDof the nonzero log2 read counts. Bins are filtered out if
they fall outside the interval (m−α0.025, m+α0.025), where α0.025 is
the two-sided (1−0.025) critical region fromanN(m,s) distribution.
After the coarse-grained filter, we apply a fine-grained filter by com-
puting read counts across a rolling window encompassing 12.5% of
the genome. We apply the same filtering criteria around the center
of each window. After filtering, quality is assessed per genome per
sample. No estimate is produced if a genome has fewer than 5000
reads or if >25% of binned read counts are zero.

Bins in genomes from the remaining samples are concatenat-
ed, and read positions are normalized so that they fall in the unit in-
terval [0,1]. Let x∈ [0, 1] be the coordinate of a read, xi be the
coordinate of the replication origin, and xi= (xi+0.5) mod 1 be
the replication terminus.We estimate the log2(PTR) and replication
origin across all samples bymaximizing the likelihood of themodel

a = log2 r
xi − xt

= log2 p(xi)− log2 p(xt )
xi − xt

x1 = min {xi, xt }

x2 = max {xi, xt }

c(x) = log2 p(xi) if x = xi
log2 p(xt ) if x = xt

{

log2 p(x) =
−a(x− x1)+ c(x1) if x ≤ x1
a(x− x1)+ c(x1) if x1 , x , x2
−a(x− x2)+ c(x2) if x ≥ x2

⎧⎪⎨
⎪⎩ (3)

We describe how to compute log 2 p(xi), log 2 p(xt) and the nor-
malizing constant in Supplemental Note S2. We maximize the
likelihood using the SLSQP optimizer in SciPy (Virtanen et al.
2020). We first maximize with respect to each sample separately
to get initial estimates of the log2(PTR) per sample and then jointly
estimate the replication origin given these estimates. Finally, given
the estimated replication origin from all samples, each individual
log2(PTR) is updated once more.

CoPTR-Contig

PTRs from species with draft assemblies are estimated with CoPTR-
Contig. Reads across contigs are binned into approximately 500

bins (adjusted such that the average length of each bin is divisible
by 100 bp). We choose 500 bins, rather than fixed bin size, so that
the model would behave similarly across genomes of different
lengths. We then apply a similar coarse-grained filter to the log2
read counts binned into 500 bins. Bins that are filtered are marked
as missing for the Poisson PCA step. Genomes in samples with
>50% missing bins, with fewer than 5000 reads after filtering,
with fewer than total 50 bins, or observed in fewer than five sam-
ples are excluded.

The remaining bins are reordered by applying a Poisson PCA
to read counts across samples. Let B be the number of bins, and
N the number samples. Let xbi be the read count in bin b from sam-
ple i, and letΩ= {xbi :bin b is notmissing from sample i}. In Poisson
PCA, we model the read count in each bin using a matrix C≈ exp
{WV}, W∈RB×k, V∈Rk×N with low-rank structure. Specifically, we
assume rank 1 structure where W∈RB×1 and V∈R1×N. The read
count xbi is modeled by

xbi � Poisson( exp (wbvi)). (4)

The parameters W and V are estimated by iteratively maxi-
mizing the likelihood

L(W, V) =
∑

(b,i)[V

log p(xbi; W, V) (5)

with respect to W then V until convergence.
The scores for each bin wb are used to reorder bins based on

their rank, representing approximate distance from the replication
origin. After reordering each the top and bottom 5% of bins re-
moved in each sample. The log2(PTR) is estimated by maximizing
a discretized version of Equation 3 using the SLSQP optimizing in
SciPy, fixing the replication origin at one end and terminus at the
other.

Simulations

To generate realistic simulations, we computed read density maps
by mapping reads from genomic (monoculture) samples to refer-
ence genomes for which the strain was known. For each density
map,we computed the read count in 100-bp bins and then divided
by the total number of reads to obtain empirical probabilities that a
read originates from a location in the genome. These probabilities
are conditioned on the PTR in the sample. We therefore used
KoremPTR to estimate the PTR for each sample using the replica-
tion origin from the DoriC database (Luo and Gao 2019) and
reweighted the probabilities by the estimated PTR. Specifically,
let p1, …, pN be the unadjusted probabilities that a read originates
from a bin, let p̃1, . . . , p̃N be the probabilities under the model giv-
en the replication origin and PTR, and let p̂1, . . . , p̂N be the adjust-
ed probabilities. The adjusted probabilities are

log2 p̂i = log2 pi − log2 p̃i +N, (6)

where N is the normalizing constant.
We generated density maps for E. coli from a genomic sample

with 894,685 reads (14× coverage), a L. gasseri sample with
2,645,206 reads (104× coverage), and E. faecaliswith 581,836 reads
(14.75× coverage) from Korem et al. (2015). Supplemental Figure
S1 displays the adjusted density maps. When simulating data, we
performed the reversed adjustment by the simulated replication
origin and PTR. Given p̂1, . . . , p̂N and theoretical probabilities for
the simulated PTR and replication origin �p1, . . . , �pN , we computed
the probability that a read is derived from bin i by computing

log2 pi = log2 p̂i + log2 �pi + N. (7)
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To compare CoPTR-Ref and KoremPTR, we performed 100
simulations each for read counts of 1000, 2500, 5000, 10,000,
and 20,000. For each simulation, a random replication origin
and PTR are chosen. Reads counts in 100-bp bins are simulated
based on the adjusted probabilities described above and then con-
verted to genomics coordinates. The coordinates are provided to
CoPTR-Ref and KoremPTR to estimate PTRs.

To evaluate CoPTR-Contig, we performed 20 simulation rep-
licates consisting of 100 samples each, while varying the number
of simulated reads. Because PTR estimates can be sparse, we pro-
cessed samples in batches of five to explore how well CoPTR-
Contig reordered bins at small sample sizes.

Completeness and contamination experiments

We extended our simulation framework to investigate genome
completeness and contamination. To simulate genome complete-
ness, we held out random fragments of the E. coli density map in
1% increments selected uniformly at random. The remaining sec-
tions of the genome were treated as contigs, and reads were simu-
lated from the contigs. To simulate genome contamination, we
simulated reads from two separate genomes: E. coli and L. gasseri.
For a given contamination percentage c, reads were simulated
from the E. coli genome, setting the completeness percentage to
100− c. Then, simulated read counts from contigs in L. gasseri ge-
nomewere added until the percentage of contamination by L. gas-
seri was c.

Data sets and reference genomes for benchmarking experiments

We downloaded genomic samples from Korem et al. (2015) and
metagenomic samples from the Human Microbiome Project
(Lloyd-Price et al. 2017), the NCBI BioProject database (https://
www.ncbi.nlm.nih.gov/bioproject/) accession number PRJNA275
349, and the IBD data set (Lloyd-Price et al. 2019). Vaginal and
gut metagenomic samples from the Human Microbiome Project
were selected by mapping reads to reference genomes of E. coli
and L. gasseri, and retaining samples withmore than 2500mapped
reads. Gut samples of L gasseri from the IBD data set were selected
based on whether CoPTR had an estimated PTR. Complete acces-
sion numbers per experiment are listed in Supplemental Table S8.

To compare estimates across reference genomes, we down-
loaded reference genomes from NCBI. Accession numbers for ge-
nomes and MAGs are listed in Supplemental Table S8. We
selected genomes from each of E. coli, L. gasseri, and E. faecalis
matching the strains reported by Korem et al. (2015), and per-
formed comparison on genomic samples using these strains. The
genomes NC_007779.1, NC_008530.1, and NZ_CP008816.1 cor-
respond to the strains used by Korem et al. (2015). Distances be-
tween reference genomes were computed using MASH v2.2
(Ondov et al. 2016).

To compare estimates across MAGs, we downloaded high-
quality assemblies from Nayfach et al. (2019). On both complete
references and MAGs, we noted that the L. gasseri genomes were
from two different 95% ANI species clusters: eight MAGs were
from one cluster, and two MAGs were from the another. To com-
pare PTR estimates from L. gasseri MAGs to CoPTR-Ref estimates,
we selected a reference genome corresponding to the species clus-
ter with eight MAGs. We did this by downloading a complete ge-
nome in the same species cluster identified by Nayfach et al.
(2019) and computing the MASH distance with genomes above.
We found one genome with zero MASH distance to the species
cluster, which we used for analysis.

To perform the model comparison experiments and the C.
rodentium experiments, we mapped reads to one genome at a

time using Bowtie 2’s default parameters and provided these as in-
put to CoPTR. We used CoPTR’s default settings to assess metage-
nomic samples for quality.

Down-sampling experiments

We additionally assessed read count requirements for CoPTR-Ref
and CoPTR-Contig using the E. coli–genomic data set. Using sam-
ples with more than 20,000 mapped reads, we computed the
Pearson’s correlation between log2(PTR)s estimated from all reads
to log2 computed by down-sampling 2500, 5000, 10,000, and
20,000 reads, respectively. To assess CoPTR-Contig, we download-
ed an E. coli assembly corresponding to the strain fromKorem et al.
(2015) from the NCBI GenBank database (https://www.ncbi.nlm
.nih.gov/genbank/) (NZ_JAGGIP010000010.1).

Growth rate and abundance change experiments

We downloaded additional data from Korem et al. (2015) corre-
sponding to the E. coli unrestricted growth experiments, and the
E. coli chemostat experiment. For the E. coli chemostat experiment,
we computed the Pearson’s correlation between log2(PTR) at each
time t from each method and 1/t(t). For the E. coli unrestricted
growth experiments, we computed the Pearson’s correlation be-
tween log2(PTR) at each time point i with sample time ti, and the
finite-difference estimate of the change in population size com-
puted using optical densities:

log (OD(i))− log (OD(i− 1))
ti − ti−1

. (8)

Additional growth rate experiments using E. faecalis and L.
gasseri data sets were performed following the supplement in
Korem et al. (2015) (the section “Calculation of Temporal Growth
Correlation with PTR,” data sets correspond to Supplemental Fig.
S2). Genome assembly for L. gasseriwas performed in PATRIC (Da-
vis et al. 2020; https://www.patricbrc.org) with the SPAdes assem-
bler (Prjibelski et al. 2020). We could not generate a high-quality
assembly for E. faecalis and instead used an assembly available in
PATRIC (1351.4268).

Benchmark on marine microbial data

Raw readswere downloaded from theNCBI Sequence ReadArchive
(https://www.ncbi.nlm.nih.gov/sra), project ID PRJNA5 51656,
and MAGs from figshare (https://doi.org/10.6084/m9.figshare
.9730628). CoPTR was run with default parameters. Values for
GRiD, iRep, and DEMIC were obtained from Supplemental Table
S2 of Long et al. (2021). The observed growth rates were calculated
as the slope of log-transformed MAG abundances, also obtained
from Supplemental Table S1 of Long et al. (2021). As the sampling
frequency was low and as PTR is meant to provide an instanta-
neous estimate of growth, we used two consecutive data points
to estimate growth (Equation 8), compared them to the PTR at
the first of the two, and discarded negative growth rates. We
used FastANI (Jain et al. 2018) to ascertain that all MAG pairs
had <95% ANI: two pairs—MAGs 6 and 19, and MAGs 8 and 22
—had ANI> 99%; we therefore discarded MAGs 19 and 22, which
had lower completion. Following themethod of Long et al. (2021),
we removed MAGs that were not growing, which we defined as
those with maximal observed growth rate of <2/d. Finally, we in-
cluded only MAGs that had more than three pairs of observed
growth rates and PTRs.
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Antibiotic-resistance experiment

We applied CoPTR to a data set of 86 longitudinal samples from
three populations of C. rodentium. Samples were taken from three
periods of the experiment: a treatment period in which the antibi-
otic was applied, a recovery period when the antibiotic was re-
moved, and a stationary period. The structure of the experiment
requires a model that accounts for the sampling time under each
period. Let P = {Treatment, Recovery, Stationary}, and for each
p [ P, denote Tp as the number of time points. We fit the follow-
ing model:

log2 (PTR) = aEry1Ery + aNal1Nal =
∑
p[P

∑Tp−1

t=0

1p(bp − apt)+ e. (9)

The parameters bp allow a different mean log2(PTR) under
each time period; the ap model directional changes within each
period over time. The variables aEry and aNal measure the effect of
each antibiotic on the log2(PTR). Although themodel is somewhat
complex, it is a reflection of the sampling process and dynamics of
in vitro populations in culture.

IBD data set experiments

We downloaded 1317 metagenomic samples from a case-control
study of 106 individuals with IBD (Lloyd-Price et al. 2019) from
theNCBI BioProject database (PRJNA398089). The samples includ-
ed all publicly available metagenomic samples from the study ex-
cluding technical replicates. Additional metadata from the study
was downloaded from the Integrative Human Microbiome
Project data portal (https://hmpdacc.org/ihmp/) to group metage-
nomic samples by individual. Samples were mapped to the IGGdb
(Nayfach et al. 2019) of representative genomes for human gut
species with a high-quality genome (N=2935) downloaded from
GitHub (https://github.com/snayfach/IGGdb). The database was
indexed, and reads were mapped, using CoPTR’s (version 1.1.0)
wrapper around Bowtie 2 (version 2.4.1). Sample quality was as-
sessed per genome per sample using CoPTR’s default parameters
(see CoPTR Implementation) and estimates produced for each ge-
nome that passed CoPTR’s quality thresholds. The resulting PTR
table included estimates from 1304 individuals and 660 species:
13 samples had no PTR estimates.

Computing the fraction of variance explained

Let rij be the jth PTR of a species observed in categorical variable i
(i.e., an individual, age group, sex, or disease status). To compute
the fraction of variance explained, we fit the random effectsmodel

log2 rij = m+ Ui + eij, (10)

Ui � N(0, s2
u), (11)

eij � N(0, s2
e ), (12)

using the Statsmodels package (Seabold and Perktold 2010) and re-

ported
s2
u

s2
u + s2

e
per species. Because individuals accounted for a

large fraction of variation, we selected one PTR at random from
each individual to estimate variance components for disease sta-
tus, age, and sex. For age, we divided individuals into a younger
and older group using 18 yr as a cutoff, resulting in two categories.
PTR estimates are sparse across species (Supplemental Fig. S11).
Therefore, when computing individual variation, we only includ-
ed species that had at least 10 PTR estimates in at least three indi-
viduals; for all other categories, we only included species that had
at least 10 PTR estimates in each category.

Correlation with relative abundances

We computed the correlation between log2(PTR) and relative
abundances from MetaPhlAn2 (Truong et al. 2015). We matched
species names from IGGdb to species names in MetaPhlAn2. For
each species with more than 25 estimated PTRs, we computed
standardized log2(PTR) and standardized log2(Rel Abun) by sub-
tracting the mean and dividing by the SD and then concatenated
the resulting estimates from all species together into a single vec-
tor. The Pearson’s correlation was computed between the two con-
catenated vectors.

Associating PTRs with disease status

Because individuals havemultiple samples, PTR estimates from the
same individual are not independent. Therefore, we tested for a
difference in means between cases and controls by taking the
mean per individual and adjusting by sample size. We chose this
strategy over a linear mixed model because it has higher statistical
power. Let rij be the jth estimate of a PTR in a species for individual
i, ni be the total number of PTRs in individual i for that species, and

�ri = 1
ni

∑ni

j=1

rij. We fit the model
���
ni

√
log2 �ri =

���
ni

√ + eij,

m = intercept+ b(1is a case).

We computed P-values for β separately for each species and
disease status, as well as adjusted for false-discoveries using the
Benjamini–Hochberg procedure (Benjamini and Hochberg
1995). We limited our investigation to species with at least 10
PTR estimates in both cases and controls.

Associating PTRs with relative abundances and metabolomics

Because relative abundances andmetabolite quantities change per
sample, we could not use the same association procedure. We
therefore fit the linear mixed model

log rij = m+ Ui + bxk + eij,

where μ is a fixed mean, Ui is a random effect for each individual,
and xk is the measurement of interest (a relative abundance or me-
tabolite quantity). For metabolites, we used a log transformation
with pseudocount one for zeros following the original study
(Lloyd-Price et al. 2019). For metabolites, we limited our associa-
tions to named metabolites in the Human Metabolome
Database. P-values were adjusted for false-discoveries using the
Benjamini–Hochberg procedure (Benjamini and Hochberg 1995).

Software availability

CoPTR is available under a GPL-3.0 at GitHub (https://github
.com/tyjo/coptr) and as Supplemental Code. Documentation for
CoPTR is on https://coptr.readthedocs.io/.
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