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Abstract

Background

Many microbes have evolved the ability to co-exist for long periods of time within other spe-

cies in the absence of overt pathology. Evolutionary biologists have proposed benefits to

the microbe from ‘asymptomatic persistent infections’, most commonly invoking increased

likelihood of transmission by longer-lived hosts. Typically asymptomatic persistent infec-

tions arise from strong containment by the immune system, accompanied by protective

immunity; such ‘vaccination’ from overt disease in the presence of a non-sterilizing immune

response is termed premunition or concomitant immunity. Here we consider another poten-

tial benefit of persistence and concomitant immunity to the parasite: the ‘exclusion’ of com-

peting super-infecting strains, which would favor transmission of the original infecting

organism.

Methodology / Principle Findings

To investigate this in the protozoan parasite Leishmania major, a superb model for the study

of asymptomatic persistence, we used isogenic lines of comparable virulence bearing inde-

pendent selectable markers. One was then used to infect genetically resistant mice, yielding

infections which healed and progressed to asymptomatic persistent infection; these mice

were then super-infected with the second marked line. As anticipated, super-infection

yielded minimal pathology, showing that protective immunity against disease pathology had

been established. The relative abundance of the primary and super-infecting secondary

parasites was then assessed by plating on selective media. The data show clearly that

super-infecting parasites were able to colonize the immune host effectively, achieving num-

bers comparable to and sometimes greater than that of the primary parasite.
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Conclusions / Significance

We conclude that induction of protective immunity does not guarantee the Leishmania para-
site exclusive occupation of the infected host. This finding has important consequences to

the maintenance and generation of parasite diversity in the natural Leishmania infectious
cycle alternating between mammalian and sand fly hosts.

Author Summary

Transmission is an essential aspect in the life cycle of obligate pathogens, and the ability of
a pathogen to be transmitted while simultaneously limiting the chances for other patho-
gens of the same species could provide an important selective advantage. One mechanism
whereby a pathogen could accomplish this is by co-opting its host’s immune response to
prevent super-infecting pathogens from becoming established, thus effectively gaining
exclusive transmission rights from that host. Several pathogen species have evolved the
ability to persist indefinitely within their hosts despite the host’s acquisition of protective
immunity against subsequent infection by that pathogen, a condition known as concomi-
tant immunity. We asked whether ‘exclusivity’ was a force underlying the evolution of
concomitant immunity using the protozoan parasite Leishmania major as a model. Using
genetically marked parasite lines derived from the same Leishmania strain, we show that
prior infection does not prevent the entry and survival of subsequently infecting parasites,
even though the pathology induced by the secondary infections was markedly reduced.
Thus, while persistent Leishmania parasites may vaccinate their hosts against pathology,
they do not confer protection against superinfection. This finding has important conse-
quences to the maintenance and generation of Leishmania genetic diversity, especially
through sexual processes.

Introduction
Persistent host/pathogen relationships are often characterized by a ‘stalemate’ in which the
host neither succumbs to disease nor is able to completely achieve sterile cure. Persistent infec-
tions can show varying degrees of pathology, ranging from chronic overt disease to asymptom-
atic infections, reflecting different mechanisms of disease tolerance [1,2,3,4,5,6]. For
asymptomatic persistent infections, often a key component is a strong immune response on
the part of the host, which is required to keep pathogen numbers in check. In some cases, this
immune response also serves to protect against pathology resulting from subsequent re-infec-
tion by the same pathogen, a process known as premunition or concomitant immunity [7,8,9].

Long-term host/pathogen relationships carry benefits and risks to both partners, and have
been the subject of considerable study from an evolutionary perspective [10,11,12]. In the case
of concomitant immunity, the host benefits by its immune system’s ability to control the infec-
tion and minimize pathology, as well as protection from disease arising from new infections.
However, this comes at the cost of increased risk of disease reactivation, typically following
immunosuppression or stress [1,4,13,14,15]. From the pathogen’s perspective, while concomi-
tant immunity decreases microbial numbers, it may improve the likelihood of transmission
due to the increased longevity of the infected host.

A second potential benefit to the pathogen of concomitant immunity is ‘exclusivity’, in that
the pathogen may use its host’s immune response to gain a competitive advantage by reducing
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the invasion of the host by other strains or species. For Schistosoma mansoni, concomitant
immunity may limit intraspecific competition for limited resources [7,16]. This question has
been less studied in microbes, where potentially, concomitant immunity could completely or
partially preclude secondary colonization of the infected host, and thereby favor transmission
of the primary infecting strain. In some respects concomitant immunity might act as a barrier
to superinfection in a manner analogous to the mechanisms employed by lysogenic bacterio-
phages which generally render their bacterial host resistant to super-infection with closely
related phage [17]

The protozoan parasite Leishmania major provides an excellent model for investigating
forces of concomitant immunity and persistence. L.major is transmitted to mammalian hosts
by the bite of phlebotomine sand flies, and in laboratory mice a range of pathology ensues
depending on both the particular parasite and mouse strain [18]. Infections of genetically sus-
ceptible mice (such as BALB/c) with most L.major strains yields a progressive and fatal infec-
tion [18]. In contrast, infection of genetically resistant mice (such as C57BL/6) initially gives
rise to a progressive parasitemia and lesion pathology at the site of inoculation similar to that
seen in BALB/c mice, but after 4–6 weeks an immune response develops which controls both
parasitemia and pathology [18,19]. Notably, the healed mice are effectively vaccinated and
resistant to disease pathology from subsequent infections. Following healing, and for the
remainder of the host’s life, a small number of parasites often persists in the skin at the site of
inoculation and in the regional lymph node draining that site [20]. In keeping with concomi-
tant immunity/premonition paradigm, these persistent parasites appear to be important for the
maintenance of an anti-Leishmania immune response, as treatment resulting in sterile cure is
associated with the loss of immunity [21,22]. Indeed, the strong protective immunity induced
by persistent Leishmania is the basis for the ancient practice of leishmanization, in which live,
virulent parasites are intentionally inoculated in inconspicuous sites of the body to protect
against natural infection and pathology at other sites [23]. However, persistent Leishmania are
likewise the source for reactivation following immunosuppression [14,15].

Asymptomatic persistent Leishmania infections of C57BL/6 mice fit several criteria relevant
to understanding of the benefits and tradeoffs of concomitant immunity. The animals are
healthy, and despite the small numbers (< 1000 / mouse), persistent parasites can be efficiently
transmitted to sand flies [24,25,26]. Several previous studies exploring the immune response
induced by persistent parasites inoculated L.major into a primary site, waited for the lesion
pathology to resolve, and inoculated a challenge at a secondary site [22,27,28,29,30]. Each time,
viable parasites were recovered from the secondary site, the assumption being that these arose
from the secondary challenge. However, L.major is known to traffic to sites distant from the
site of inoculation [20]. Thus, parasites isolated at the secondary inoculation site may have
actually originated from the primary infection, perhaps accentuated by the transient reactiva-
tion of parasites at the primary infection site as reported by Mendes et al [27].

To unambiguously establish the question of secondary colonization and exclusivity, we gen-
erated parasites derived from the same strain of L.major of comparable virulence but bearing
independent drug resistance markers (PHLEO/phleomycin and SAT/nourseothricin). These
were then used in the classic infection/challenge persistence model, using one strain as the pri-
mary infection, which gave rise to the expected lesion/healing/persistence phenomenon, fol-
lowed by injection with the second strain in the opposite foot. The results show clearly that
under these conditions Leishmania persistence is not accompanied by ‘exclusivity’, in that sim-
ilar numbers of both ‘primary’ and ‘secondary’ parasites persisted at their respective sites of
inoculation. These data suggest that while persistent L.major vaccinates its host from disease
pathology, it does not confer exclusivity to the acquisition of secondary infecting Leishmania.
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This finding has important consequences to the maintenance and generation of Leishmania
genetic diversity, including that arising through sexual processes [31,32].

Materials and Methods

Parasite strains and culture
The generation of both the phleomycin resistant parasites (SSU:IR1PHLEO-YFP; referred to
here as LmjF-PHLEO) and the nourseothricin-resistant parasites (SSU:SAT-TK-LUC; referred
to here as LmjF-LUC-SAT) used in this study was described previously [33,34]. Parasites were
grown at 26˚C in M199 medium (US Biologicals) supplemented with 40 mM 4-(2-hydro-
xyethyl)-1-piperazine-ethanesulfonic acid (HEPES) pH 7.4, 50 μM adenosine, 1 μg ml−1 biotin,
5 μg ml−1 hemin, 2 μg ml−1 biopterin and 10% (v/v) heat-inactivated fetal calf serum [35].
Nourseothricin (Jena Bioscience, Jena, Germany) was used at a concentration of 100 μg/ml and
phleomycin (Sigma, St. Louis, MO) was used at a concentration of 20 μg/ml. Infective metacyc-
lic-stage parasites were recovered using the density gradient centrifugation method [36].

Ethics statement
This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the United States National Institutes of Health. Animal
studies were approved by the Animal Studies Committee at Washington University (protocol
#20090086) in accordance with the Office of Laboratory Animal Welfare's guidelines and the
Association for Assessment and Accreditation of Laboratory Animal Care International.

Mouse infections
Female C57Bl/6J mice (Jackson Labs) were injected subcutaneously in a hind footpad with 105

metacyclic stage parasites. Naïve mice (6–8 weeks old) were injected in the left hind footpad.
Secondary injections took place in the right hind footpad at a time point>1 month after pri-
mary lesions had resolved. Footpad lesion thickness was measured using a Vernier caliper
(Mitutoyo). Lesion size was calculated as the difference in thickness between the infected and
uninfected footpads. Luciferase activity was determined as described elsewhere [34]. Briefly,
mice were given a dose of D-luciferin (150 μg gram-1 body weight; Biosynth) in PBS 10 minutes
prior to imaging with an IVIS 100 imaging system (Xenogen Corp). In this study, values less
than 105 p/s fall into the background range. Limiting dilution assays were performed as
described previously [37], with the addition of phleomycin or nourseothricin as indicated.
Reconstruction experiments suggest that the limit of detection was about 14 parasites/footpad.

Statistics
Data are presented as the arithmetic mean ± the standard deviation. P values were calculated
by the Student’s t-test.

Results

Development of two genetically marked L.major with comparable
virulence in resistant mice
We used two L.major Friedlin V1 parasites expressing genes conferring resistance to the anti-
biotics nourseothricin (SAT) or phleomycin (PHLEO). The nourseothricin resistant parasites
also express firefly luciferase, and will be referred to hereafter as “LmjF-LUC-SAT”, while the
phleomycin resistant parasites will be referred to as LmjF-PHLEO. To confirm that the
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LmjF-LUC-SAT and LmjF-PHLEO parasites were of comparable virulence in mice, 105 meta-
cyclic-stage parasites were inoculated into the footpads of naïve C57BL/6 mice (5 mice/group),
and the lesion pathology was monitored over time (Fig 1A). Both lines exhibited disease pro-
gression typical of untransfected L.major / C57BL/6 infections, with lesions developing
between 10–17 days post infection and reaching their maximum (~1.4 mm increased footpad
thickness) around 30 days post infection [38,39]. Thereafter the lesions declined, and were
completely resolved by 130 days post-infection (Fig 1A). While there was some tendency for
the LmjF-LUC-SAT line to show smaller lesion sizes, at no point was this difference statistically
significant. After resolution, mice were sacrificed and the parasite titers in the infected feet
were enumerated by limiting dilution analysis (Fig 1B). The number of persistent parasites
recovered for both lines was in agreement with what is expected in this experimental system
(typically 100–1000 parasites, with substantial variability amongst mice and experiments)
[20,27,28,30,40]. Importantly, we found no significant difference in the number of persistent
parasites between the two lines, with LmjF-LUC-SAT and Lmj-PHLEO showing a similar
range (Fig 1B) and mean (25 and 32 parasites / foot; P> 0.45 by Student’s t-test). We judged
these lines to be of comparable virulence and suitable for subsequent experiments.

Healed mice were protected against pathology from subsequent
challenge
Two experiments were performed in which naïve mice (4–5 mice per experiment) were inocu-
lated with 105 purified metacyclic-stage LmjF-LUC-SAT parasites in the left hind footpad pri-
mary infection site. A lesion formed at that site and resolved in accordance with the data
shown in Fig 1A. At a time point>1 month after resolution (1.5 and 3 months for experiments
1 and 2 respectively), 105 metacyclic LmjF-PHLEO parasites were inoculated into the right
hind footpad secondary infection site. Footpad swelling of both the primary (L) and secondary
(R) injection sites was then measured over time. We also used in vivo imaging of luciferase
activity to visualize LmjF-LUC-SAT parasites, as a second probe of whether transient reactiva-
tion of primary parasites occurred [27].

Fig 1. The LmjF-LUC-SAT and LmjF-PHLEO strains show comparable virulence in infections of resistant mice.C57BL/6 mice (5 per group) were
infected with 105 metacyclic stage LmjF-LUC-SAT or LmjF-PHLEO L.major. (A) Measurements of lesion pathology (increase in footpad thickness). Error
bars show the standard deviation. (B) Persistent parasites numbers were determined by limiting dilution assay from footpad tissue 130 days post infection.
Horizontal bars show the geometric mean. †, P > 0.05.

doi:10.1371/journal.pntd.0004811.g001
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As expected, in both experiments the mice showed good protection, as evidenced by a
reduction in lesion pathology at the secondary ‘challenge’ site. Although with some variation,
in both experiments the lesions generated by the secondary LmjF-PHLEO parasites were sig-
nificantly smaller and resolved more rapidly than those in naïve mice (Fig 2A). We saw no

Fig 2. Mice persistently infected with LmjF-LUC-SAT show protection from disease pathology by secondary challenge with LmjF-PHLEO
parasites.Mice (4-5/group) were inoculated with 105 metacyclic LmjF-LUC-SAT parasites in the left hind footpad (primary site), after which they
developed lesions and then went on to heal (similar to that shown in Fig 1A). (A) At least one month after resolution of the primary lesions, each mouse
was inoculated in the right hind footpad (secondary site) with 105 metacyclic LmjF-PHLEO parasites, and lesion progression is shown in the figure. The
dashed line represents the average of the data presented in Fig 1A for infections of naïve mice with LmjF LUC-SAT and LmjF-PHLEO for comparison. In
these experiments “time 0” is when the secondary inoculation was performed unless otherwise indicated. For all plots, error bars show the standard
deviation (n = 4 or 5 in expt. 1 or 2 respectively). (B) Footpad thickness at the primary injection site (left foot). (C) Monitoring of reactivation of the primary
LmjF-LUC-SAT parasites at the primary (♦,■) or secondary (^,□) infection sites site by bioluminescent imaging of luciferase expression in vivo;
experiment 1 (♦,^); experiment 2 (■,□). The gray circle (upper right) shows the luminescence profile of LmjF-LUC-SAT parasites infecting naïve mice at
the peak of infection, included for comparison only. Error bars depict the standard deviation.

doi:10.1371/journal.pntd.0004811.g002
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evidence of reactivation of the “primary” LmjF-LUC-SAT parasite, as judged by either lesion
measurement (Fig 2B) or in vivo imaging of parasite luciferase (Fig 2C, left), the latter yielding
values in the background range, and orders of magnitude less than what is seen following infec-
tion of naïve mice by these parasites at the peak of parasitemia (Fig 2C, right).

Similar numbers of both “primary” and “secondary” parasites persist
Having established the classic Leishmania paradigm of vaccination following resolution of a
primary challenge for the genetically marked lines in our study, we then measured the occur-
rence of both the primary- and secondary- infecting parasites, in both infection sites. This was
performed by limiting dilution assays at day 87 (experiment 1) or day 139 (experiment 2) post-
infection. Total parasites were assessed by growth in the absence of drug, while LmjF-LUC-
SAT (primary) was estimated from growth in media containing nourseothricin and
LmjF-PHLEO (secondary) from growth in media containing phleomycin. The results from
individual mice from both experiments as well as the global averages are shown in Fig 3.

Parasites were recovered from all primary infection sites, ranging from 14 to 504 parasites/
foot, with an average of 282 ± 158 parasites recovered per foot (N = 9). These parasites were
exclusively the primary LmjF-LUC-SAT parasite, as they were unable to grow in the presence
of phleomycin. In one animal parasites expressing the SAT marker were apparently lost; simi-
lar results have been reported in L. tarentolae and attributed to the genetic plasticity of the ribo-
somal RNA locus [41], and we have seen this occasionally in other experiments in L.major.

Parasites were also recovered from the secondary infection site from 8 of the 9 mice, ranging
from 14 to 785 parasites/foot, with an average of 119 ± 156 parasites/foot. Importantly, nearly
all of the parasites recovered from the secondary infection site were the LmjF-PHLEO parasite
inoculated there (99 ± 3%). In only one mouse (#2–5) was colonization of the secondary site by
‘primary’ infection site LmjF-LUC-SAT parasites found, suggesting that metastasis of parasites
from the primary to the secondary sites occurs infrequently. Importantly, the numbers of ‘pri-
mary’ infection site LmjF-LUC-SAT parasites were not significantly different from that seen
for the ‘secondary’ infection site LMjF-PHLEO parasites (P> 0.08, Student’s T-test). These
data show that despite successful ‘vaccination’, as defined by reduction in lesion pathology, this
immunity was not ‘sterilizing’ against secondary infection and did not preclude efficient colo-
nization of the infected mouse significantly.

Discussion
A number of factors have been proposed to contribute to the maintenance of pathogens for
long periods of time in the host, including an insufficient immune response and the benefits
accruing to the pathogen from residing within a longer-lived host thereby increasing the likeli-
hood of transmission [10,12]. In many cases this relationship has progressed to the point
where the pathogen infection is asymptomatic, thereby fulfilling the evolutionary dictum that a
‘successful pathogen does not kill its host too quickly”. Often this asymptomatic persistence is
accompanied by protection from disease induced by further infections of the same or related
pathogens, a process termed concomitant immunity [7]. Such a relationship provides benefits
to both the pathogen and the host through increased longevity of the latter (albeit with some
risk of reactivation), and increased transmission of the former.

Leishmania provides an attractive system for the study of concomitant immunity
[20,21,27,42,43,44] and here we have used this to consider another potential benefit to the
pathogen, one of ‘exclusivity’. Exclusivity would favor transmission of the primary infecting
pathogen due to reduction in the ability of secondary infecting parasites to becoming estab-
lished in a previously infected host. However, our data show clearly that despite induction of a
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protective immune response able to mitigate disease pathology (Fig 2), secondary Leishmania
major infections are nonetheless able to establish themselves effectively in a previously infected

Fig 3. Retention of both primary and secondary infecting parasites following secondary challenge despite
protection from disease pathology. The graph plots the number of persistent parasites present in sites of primary
and secondary Leishmania infections >10 weeks post secondary challenge as assessed by limiting dilution analysis
in unselective (white bar), nourseothricin-containing (gray bars; resistance mediated by SATmarker) or phleomycin-
containing (black bars; resistance mediated by PHLEOmarker) as described in the methods. The number of
parasites in the primary infection site (LmjF-LUC-SAT inocula) is displayed in the top graph, and the number of
parasites in secondary infection site (LmjF-PHLEO inocula) foot is displayed in the bottom graph. The numbers
between the two graphs represent the mouse identification number (experiment number-mouse number). “Avg.”
represents the mean for all mice.

doi:10.1371/journal.pntd.0004811.g003
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host (Fig 3). While this result may have been anticipated from prior studies [22,28], this is the
first time this has been established rigorously for Leishmania using genetically marked para-
sites able to distinguish primary from secondary infections and bioluminescent imaging to
assess reactivation. Our studies also provide limited support for the prior assumption that in
general parasites are not frequently transferred from the primary to the secondary site of infec-
tion, although we did observe transfer in one mouse (Fig 3, mouse #2–5).

Consistent with prior studies, the immunity generated by persistent parasites was not always
sterilizing and the average number of “secondary” parasites was not statistically different from
that of the “primary” parasites (Fig 3). Nonetheless, the average number of parasites recovered
from the secondary site was about 2-fold less than from the primary site, similar to the findings
of Mendez et al (2004) [27]. Thus, it is possible that secondary infecting parasites may experi-
ence a modest quantitative disadvantage, which over evolutionary time could provide a strong
positive selective force on the parasite favoring the induction of concomitant immunity. This
phenomenon may warrant further study in the future.

In our studies an inoculum of 105 purified metacyclic parasites was used. While most sand
flies transmit less than 600 parasites to mice, some transmit up to 105 [25]. Thus, the infecting
dose used here falls on the high side of the biologically relevant range. Studies using low-dose
infections with 100 metacyclics also recovered parasites from the site of secondary infection,
although genetic markers were not available to confirm their identity [22,27,28,29]. Undoubt-
edly there are a number of experimental variables that could be pursued in future studies,
including infecting dose, the relative timing of the primary and challenging infections, or sites
of inoculation other than the footpad that may be potentially relevant, such as the ear, snout or
tail. Another important variable is the extent of genetic identity between the primary and sec-
ondary infections; we purposefully chose to study isogenic parasite lines here to maximize the
likely efficacy of concomitant immunity, the efficacy of which might be expected to decrease
with heterologous strains or event species. Lastly, while our experiments were carried out in an
‘orderly’manner with primary and secondary infections in separate feet, nature is decidedly
less so, and indeed infections may occur at the same location [45], thereby increasing the likeli-
hood of transmissible mixed infections.

An important question is the relevance of ‘needle’ infections performed here to natural sand
fly transmission, where parasites are deposited along with immunomodulatory factors of both
sand fly and parasite origin. These factors include saliva and secreted parasite molecules such as
proteophosphoglycan, both of which typically act to facilitate primary infections [46,47,48,49]
but which can also engender various protective responses [50,51] and thus have the potential to
either favor or hinder the entry of the secondary ‘invading’ Leishmania. In several studies exam-
ining challenge by sand fly bite of mice which had healed from primary infections, sterilizing
immunity was seen in 33/64 mice tested in challenge infections (52%), while the remainder
showed minimal pathology accompanied by parasite numbers ranging from 100 to 10,000 at the
challenge bite site [48,52]. Assuming that these parasites arise primarily from the challenge para-
site (as shown here), both natural sand fly and ‘needle’ challenge can yield infections with robust
parasite survival at the secondary challenge site at significant frequencies.

Consequences of ‘nonexclusive’ parasitism to parasite diversity and
vaccination strategies
That concomitant immunity induced by primary L.major infections protects against pathology
can occur at significant frequencies without sterilization, instead leading to ‘mixed’ infections
of the host, has important implications for the generation and maintenance of Leishmania
diversity. In regions where Leishmania is endemic, mammalian hosts are likely subjected to
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many bites by infected sand flies [53,54], which over time could result in the host being persis-
tently infected with several genetically distinct parasite lines. There are numerous reports docu-
menting the recovery from infected animals and humans of Leishmania stabilates exhibiting
mixed genotypes, using a variety of molecular taxonomic methods [55]. Some fraction of these
represent true mixed infections, while others may arise from the presence of intra- or inter-spe-
cific hybrids [31,55,56,57,58,59,60]. In several studies the incidence of mixed populations
exceeded 10% [54,61,62,63]. Moreover, concerns have been raised about the efficiency of detec-
tion of mixed infections, ranging from technical analysis to problems associated with differen-
tial outgrowth during adaptation to culture [62,63,64], suggesting that the true incidence may
be greater than presently appreciated. Notably, human infections showing overt pathology
have been most highly sampled, and even for humans the situation in the more prevalent
‘asymptomic’ infections (primary or secondary) is largely unknown. Thus while it is difficult to
say with any certainty what fraction of natural Leishmania infections are truly ‘mixed’ in
human or animal reservoir populations, they are far from rare, and potentially quite common.

Once established, mixed infections have the potential to be passed on to sand flies, which
have recently been shown to be the site of both intra-specific and interspecific genetic exchange
[32,65,66,67,68]. Since the frequency of sand flies bearing Leishmania in natural populations is
relatively low (often just a few percent) [69,70,71], the accumulation and maintenance of
mixed populations over time in persistent mammalian infections would act to increase the fre-
quency at which sand flies acquire mixed infections, which thereafter undergo genetic
exchange and generate diversity. While genetic exchange occurs relatively infrequently on a
per Leishmania cell basis (<10−4; [32]), Leishmania numbers in sand flies are sufficient to yield
hybrid parasites at high frequencies (25% or greater per fly; [32,65]. Thus, the lack of ‘exclusiv-
ity’ even in the presence of protection against disease pathology may result in increased oppor-
tunities for genetic exchange and the emergence of new disease phenotypes in nature [72].

Our data also have some consequences to vaccination strategies. Currently the ‘healed’
mouse is considered a ‘gold standard’ for the maintenance of effective immunity against disease
pathology, and the generation of live-attenuated parasite lines that persist without pathology
while immunizing against virulent challenge has been a priority in vaccine research [40,73].
Our data suggest that such an approach would likely allow virulent parasites from subsequent
natural infections to establish their own persistent infections, which could then pose a risk of
reactivation and/or transmission. This may provide further impetus for the development of
vaccines conferring sterilizing, long-lasting protection against both pathology and parasitemia.
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