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Enantioselective construction of ortho-
sulfur- or nitrogen-substituted axially
chiral biaryls and asymmetric synthesis of
isoplagiochin D

He Yang1 & Wenjun Tang 1,2

Axially chiral biaryl motifs possessing ortho-heteroatom-substituted func-
tionalities exist widely in the structures of natural products and have served as
foundation for constructing prominent chiral organocatalysts, ligands, func-
tional materials, and even bioactive molecules. However, a general and enan-
tioselective synthesis of such chiral structures with high synthetic value is rare.
Taking advantage of the BaryPhos-facilitated asymmetric Suzuki-Miyaura
cross-coupling, we have established a general, efficient and enantioselective
construction of the ortho sulfur- or nitrogen-substituted axially chiral biaryls.
The protocol shows excellent compatibility to various functional groups and
structural features, delivering chiral biaryl structures with ortho-sulfonyl
groups or with ortho-nitro groups at a broad range of molecular diversity and
complexity. The immobilization of BaryPhos on polyethylene glycol (PEG)
support has enabled homogeneous enantioselective cross-coupling in aqu-
eous media and the palladium catalyst recycling for multiple times. The
methodhas enabled a concise 10-step asymmetric synthesis of isoplagiochinD
as well as the construction of chiroptical molecules with circularly polarized
luminescence (CPL) properties.

Axially chiral biaryl motifs exist in numerous natural products and
endue these naturally occurring entities with different structural fea-
tures and biological activities1–3. In medicinal chemistry, bioactive
synthetic compounds based on axially chiral biaryl framework have
been emerging as a promising class of drug candidates4,5. The chiral
biaryl scaffolds also set up the foundation for chiral ligands/catalysts
development, as exemplified by BINOL, BINAP, and related derivatives
which have shown broad application in asymmetric catalysis6,7. Among
chiral structures of this type, the ortho S- or N-substituted chiral biaryls
are important and appealing, comprising a substantial proportion in
alkaloids (Fig. 1a)8,9. In addition, a series of chiral catalysts have been
developed based on axially chiral biaryl skeletons with S- or

N-substitution at the ortho position of the stereogenic biaryl axis, such
as the chiral amino alcohol NOBIN and BINOL-derived disulfonimide
catalysts10–12. In pharmaceutical industry, aryl sulfonyl group-
containing compounds, such as sulfonamides, sulfones, and sulfo-
nate, often display various biological activities and belong to a leading
class of therapeutic agents. Nevertheless, most of these pharmaceu-
tical compounds to date are achiral or with only central chirality13.
Drug molecules bearing ortho-sulfonyl-substituted axially chiral biaryl
scaffolds are rarely explored, but should be highly valuable since the
three-dimensional topology exerted by axial chirality would impact
their specificity and efficiency in protein binding4,14. Therefore, the
development of practical and enantioselective synthetic method of
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c. Synthesis of axially chiral ortho S- or N-substituted biaryls via cross-coupling (this work)
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ortho-sulfonyl-substituted chiral biaryls would certainly enhance their
accessibility to medicinal chemists and facilitate the illumination of
their biological profiles.

The asymmetric Suzuki-Miyaura cross-coupling has been a highly
pursued method for the synthesis of axially chiral biaryl compounds.
The last two decades have witnessed appreciable progress in this area,
assisted by the development of a variety of prominent chiral
ligands15,16. Despite the advancement, the employment of enantiose-
lective Suzuki-Miyaura coupling in the synthesis of axially chiral nat-
ural products and high value-added molecules remains a challenging
task and only a limited number of application have been reported to
date17–21. In addition, synthetic and medicinal chemists nowadays still
suffer from the situation of few readily available, practical and robust
enantioselective cross-coupling protocols for the efficient synthesis of
highly functionalized bioactive biaryl intermediates with axial chir-
ality. The reported asymmetric Suzuki-Miyaura coupling methodolo-
gies are mostly restricted to the preparation of axially chiral biaryl
products with ortho alkoxy, phosphonyl, alkyl, or amide groups. The
ortho aldehyde-, ester-, amino-, and nitro-functionalized chiral biaryls
which serve as precursors of chiral natural products and catalysts,
have been seldom synthesized through this asymmetric cross-
coupling method (Fig. 1b)22–24. Moreover, the biologically relevant
ortho cyano-, alkenyl-, and sulfonyl-substituted axially chiral biaryls
structures have never been synthesized via enantioselective Suzuki-
Miyaura cross-coupling methods25–29.

Appealed by their remarkable synthetic utilities and potential
biomedical applications, we herein report the enantioselective synth-
esis of ortho sulfonyl-substituted axially chiral biaryl compounds and
the efficient construction of ortho nitro-substituted axially chiral biar-
yls with unprecedented molecular diversity and complexity via asym-
metric Suzuki-Miyaura coupling (Fig. 1c). The post-transformations of
these highly functionalized chiral structures have enabled a concise
asymmetric synthesis of isoplagiochin D, a highly strainedmacrocyclic
bis(bibenzyls) natural product, and CPL-active chiroptical molecules.

Results and discussion
The generality of BaryPhos-mediated enantioselective cross-
coupling
Noncovalent interactions between chiral ligands and substrates have
been shown to be essential for catalytic asymmetric Suzuki-Miyaura

cross-coupling30,31. Taking advantage of this tactic, we previously
established the efficient synthesis of ortho-formyl-substituted axially
chiral biaryls using BaryPhos, a P-chiral ligand containing a tertiary
alcohol moiety as the hydrogen bond donor which could engage in
hydrogen bonding with the CHO group of substrate and promote
effective enantiocontrol in cross-coupling18. Structurally, substrates
with functional groups bearing similar properties in charge distribu-
tion to aldehydewere presumed to complywith this catalyticmode. As
shown in Fig. 2, a systematic evaluation of aryl bromide substrates
carrying varied substituents ortho to the Br group demonstrated the
feasibility of this concept and the rarely accessed ortho-ester (3a) and
-nitro (3b) substituted axially chiral biaryls were synthesized in high
yields and enantioselectivities from the coupling between the corre-
sponding aryl bromides and boronic acids. This coupling protocol also
enabled the highly enantioselective synthesis of axially chiral biaryl
compounds possessing ortho-alkenyl (3c), cyano (3d), and sulfonyl
functionalities (3e), demonstrating the generality and prominent
enantio-induction ability of BaryPhos (see Supplementary Table 2 for
ligands comparison).

Enantioselective synthesis of ortho sulfonyl-substituted axially
chiral biaryls
The ortho S-substituted axially chiral biaryl compounds possess sig-
nificant application potential in drug discovery and material science.
However, their asymmetric synthesis remains a challenging task. Pio-
neering work from Colobert and co-workers enabled the efficient
synthesis of ortho sulfinyl-substituted axially chiral biaryls via a
sulfoxide-directed asymmetric C-H functionalization strategy28,29. Zhao
and co-workers realized an electrophilic carbothiolation of alkynes for
the synthesis of chiral sulfide-substituted vinyl arenes that could be
converted to ortho S-functionalized axially chiral biaryls after post-
transformation27. Besides these progresses, the development of effi-
cient andgeneral syntheticmethodsoforthoS-substituted axially chiral
biaryl structures are still highly desirable. Fascinated by the important
function of sulfonyl groups in drug molecules including enhancing
potency and binding affinity, modulating solubility, and increasing
metabolic stability, we attempted to realize the enantioselective
synthesis of potentially valuable ortho-sulfonyl-substituted axially
chiral biaryl molecules. Pleasingly, the Pd/BaryPhos-catalyzed asym-
metric Suzuki-Miyaura cross-coupling was robust to provide a series of
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Reaction conditions: 1 (0.20mmol), 2 (0.30mmol), Pd2(dba)3 (0.5mol%), (S,S)-
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barrier ΔG‡ = 27.6 kcal/mol (Supplementary Fig. 3a). bThe reaction was conducted
at 35 °C in DCE/H2O (5:1), thermal racemization barrier ΔG‡ = 29.0 kcal/mol (Sup-
plementary Fig. 3b).
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axially chiral sulfones and sulfonamides in good yields and enantios-
electivities at nearly ambient temperature (3f–i) (Fig. 3). Unprotected
indolyl (3g) and quinolyl (3i) moieties were well-tolerated. The sulfonyl
fluorides are highly desirable compounds in drug discovery and
material science due to their ‘clickable’ characteristic in SuFex
chemistry32,33. In addition, the propensity to undergo nucleophilic
substitution renders them as versatile synthetic intermediates. Aryl

bromides possessing ortho-fluoro sulfonyl functionality underwent
smooth cross-coupling with substituted 1-naphthylboronic acids to
afford axially chiral sulfonyl fluorides (3j–l) in excellent yields and
enantioselectivities. It was noteworthy that tetra-ortho-substituted
chiral biaryl 3m was synthesized with the current coupling protocol at
elevated temperature. The coupling reaction was also compatible with
various substrate skeletons, such as pyrenyl- (3n) and anthracenyl- (3r)
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based boronic acids and the one possessing morpholine amide group
(3q). Besides using naphthalene-type boronic acids, ortho-vinyl-sub-
stitutedphenylboronic acid (3o) and carbazolyl boronic ester (3p)were
suitable substrates and the reactions successfully delivered the corre-
sponding coupling products. The post-functionalization of 3s led to a
library of ortho sulfonyl-substituted axially chiral biaryl products. In
specific, substitution reaction with hydroxyl and alkoxy nucleophiles
provided axially chiral aryl sulfonic acid (3t) and 2,2,2-trifluoroethyl
arylsulfonate (3u) in 88% and 96% yield, respectively. Treatment of 3s
with n-hexyllithium or a C(sp2) nucleophile provided chiral sulfones 3x
or 3w in high yields, albeit with a slight loss in enantiomeric excess. The
reaction between 3s and substituted lithium acetylide nucleophile gave
3v in 90% yield and 91% ee. Presumably, a nucleophilic substitution
preceded initially followed by a subsequent Michael addition. Axially
chiral sulfonyl fluoride 3s was also converted to chiral biaryl sulfona-
mide 3y in the presence of a lithium amide nucleophile.

Enantioselective synthesis of ortho nitro-substituted axially
chiral biaryls
The immobilization of noblemetal catalysts offers distinct advantages,
suchas adjustable solubility of catalyst, easeof catalyst separation, and
recycling34,35. In the enantioselective synthesis of ortho-nitro-sub-
stituted axially chiral biaryls, a PEG2000-bound BaryPhos was devel-
oped, enabling the asymmetric Suzuki-Miyaura coupling to proceed in
water. A serial of axially chiral biaryl products possessing ortho-nitro
and -methoxy groupswere fashioned in high yields and ee’s (6a–d, 6o)
(Fig. 4). The absolute configuration of 6a was determined by single
crystal X-ray diffraction. Chiral biaryls bearing fluorine atom at the
ortho position were also synthesized efficiently (6e–g). Highly func-
tionalized aryl bromides could also serve as suitable substrates and 6h
containing substituted pyrrole ring was afforded in 80% yield and 88%
ee, while 6i with an aminoindanol pendant was produced in 64% yield

and 93% de. It should be noted that the naphthalene ring was not a
necessity for the current enantioselective cross-coupling, as the reac-
tion between aryl bromides and ortho vinyl-substituted phenylboronic
acids led to chiral biphenyls (6j–m, 6p) and pyrrolyl-phenyl coupling
product 6n with excellent stereochemical fidelity. Functional groups
including aldehyde (6j, 6n) and piperidine ring (6p) were well toler-
ated. The coupling reaction was also compatible with 2-styryl- and
difluorovinyl-substituted phenyl boronic acid derivatives to give
enantioenriched axially biaryl products 6q and 6s. Variation of the
ortho-methoxy unit within aryl bromide to a methyl group (6r) had
little influence on the reactivity and enantioselectivity of the reaction.
With respect to the sterically demanding cross-coupling for the
synthesis of tetra-ortho-substituted biaryl 6t, a higher temperature
(70 °C) was required to maintain consistent reactivity, while a slightly
diminished enantioselectivity was observed. The transformation of
these coupling products was straightforward and reduction of
nitroarene 6o by Zn delivered axially chiral amine 6v in 88% yield and
no erosion of ee value was observed. Additionally, chiral biphenyl 6u
underwent a hydroboration-oxidation sequence to give an alcohol
intermediate which was converted to axially chiral acid 6w upon
treatment with RuCl3/NaIO4. The recyclability of the catalyst with PEG-
supported chiral ligand was demonstrated in the cross-coupling of 4a
and 5g. Benefited from the sharply different solubility of hydrophilic
catalyst in H2O and Et2O, the supported catalyst was reused readily by
recycling the aqueous phase, while product 6u and trace amounts of
starting materials was separated by extraction with Et2O. The Pd cat-
alyst supported by PEG10000-BaryPhos was used for four cycles to
provide good yields (>80%) and steady enantioselectivity (93-94% ee).
Further recycling operations led to a slight decrease in yield and ee
of 6u (77% yield and 89% ee after 4 runs), which was presumed
due to Pd leaching or gradual catalyst loss during the recycling
process.
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Enantioselective synthesis of isoplagiochin D
Having established an efficient synthesis of ortho-sulfonyl and -nitro-
substituted axially chiral biaryls, the application of this general cross-
coupling protocol was explored in the asymmetric synthesis of iso-
plagiochin D, a cyclophane-type natural product containing an axially
chiral di-ortho-substituted biphenyl unit embedded in its strained
macrocycle. Previous asymmetric synthesis of this macrocyclic
bis(bibenzyls) molecule using an asymmetric macrocyclization36 or
Heck reaction37,38 suffered from either unsatisfactory yields or enan-
tioselectivities (Fig. 5a). We presumed that the axial chirality could be
generated prior to the macrocyclic ring closure by using a highly
enantioselective cross-coupling, and theobtained tri-ortho-substituted
axially chiral biaryl intermediate possessing a removable group suchas
NO2, could be elaborated as the chiral di-ortho-substituted biphenyl
moiety (Fig. 5b). Macrocyclic ring closure followed by removal of the
nitro group would unambiguously furnish the key chiral di-ortho-
substituted biphenyl unit.With this concept, our asymmetric synthesis
commenced with the preparation of aryl bromide 9 from the Horner-
Wadsworth-Emmons reaction between the known aldehyde 8 and
phosphonate derivative of 7 (Fig. 6). A subsequent Miyaura borylation
converted 9 to boronic ester 10 in 83% yield. In the presence of Pd/
(S,S)-BaryPhos catalyst, the enantioselective Suzuki-Miyaura cross-
coupling of 10 bearing a complex structural skeleton and multi-
functionalized 11 furnished chiral biaryl 12 in 70% yield and 90% ee,
demonstrating the practicality and robustness of this atroposelective
coupling protocol. The tri-ortho-substituted biaryl 12 served as the
chiral foundation of the synthesis and was transformed to chiral

intermediate 13 under homogeneous hydrogenation using Wilkinson
catalyst. It was noteworthy that both the alkene moiety and the more
electron-deficient aldehyde group was reduced, which enabled the
synthesis of phosphonate 14 after iodination of 13 and subsequent
phosphonation. An intramolecular Horner-Wadsworth-Emmons reac-
tion afforded an inseparable Z/E isomeric mixture of macrocycle 15
whose alkene group was reduced via catalytic hydrogenation. Under
the same condition, the nitro functionality was converted to an amino
group which was finally removed by reductive deamination (NaNO2,
H3PO2), giving rise to 16 in 46% yield over three steps. A final deme-
thylation afforded isoplagiochin D with M configuration in 87% yield.
To the best of our knowledge, this 10-step asymmetric synthesis of
isoplagiochin D represents an example of building strained axially
chiral cyclophane-type natural products from an open-chain chiral
biaryl precursor and this efficient strategy should be valuable for the
synthesis of macrocycles possessing axially chiral biaryl subunit.

Photophysical properties investigations
In recent years, the development of chiroptical structures displaying
CPL properties has been an attractive area and chromophores based
on axially chiral framework have received significant attention39,40. The
three-dimensional orientation of these molecules endows them with
unique photophysical properties at both ground and emitting excited
states. Benefited from the convenient synthesis of enantioenriched 3n
through asymmetric cross-coupling, the post-functionalization of this
entity led to pyrenyl containing compounds P-17 and P,P-18 (Fig. 7a).
The absolute structure of 17was unambiguously determined by single
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crystal X-ray diffraction and a strong π-π stacking interaction between
the two pyrenyl rings was observed in the solid state. Under UV light
irradiation (365 nm), the solution of 17 in CH2Cl2 exhibited cyan
luminescence, while 18 displays bright green luminescence (Fig. 7b).
Both compounds show similar UV-vis spectra ranging from
220–350 nm while an additional broad absorption peak was found for
18 at 435 nm due to its extended π system (Fig. 7c). The emission
maxima in dilute dichloromethane were recorded at 492 nm and
495 nm for 17 (Φ =0.49) and 18 (Φ =0.73), respectively. Strict mirror
images were observed for the circular dichroism (CD) spectra of M-
17/P-17 and M,M-18/P,P-18, displaying clear cotton effects at several
wavelengths (Fig. 7d, e). It was delighting that both pairs of enantio-
mers M-17/P-17 and M,M-18/P,P-18 are CPL-active. In particular, M-17
emits intense positive CPL signals ranging from 420nm to 550 nm,
while P-17 displays a negative signal within the same region (Fig. 7f). In
addition, the luminescence dissymmetry factor (glum) of 17 was mea-
sured as high as 9.3 × 10−3 (Fig. 7g). These chiroptical properties
demonstrated the high application potential of related axially chiral
molecules in developing new organic chiroptical functional materials.

In this work, a general, efficient and enantioselective synthesis of
the ortho sulfur- or nitrogen-substituted axially chiral biaryls has been
established by a Pd/BaryPhos-catalyzed Suzuki-Miyaura cross-cou-
pling. The versatile protocol shows excellent compatibility to various
functional groups and structural features, delivering chiral biaryl
structures with ortho-sulfonyl groups or with ortho-nitro groups at a
broad range of molecular diversity and complexity. The development
of PEG10000-BaryPhos has allowed the asymmetric cross-coupling to
proceed in aqueous media and the palladium catalyst recycling for
multiple times. Additionally, themethod has enabled a concise 10-step
asymmetric synthesis of isoplagiochin D as well as the construction of
chiroptical molecules with CPL properties, demonstrating its high
synthetic values and application potential in natural product synthesis,
medicinal chemistry, and material science.

Methods
General procedure for asymmetric Suzuki-Miyaura coupling
To a mixture of aryl halide or triflate (0.20mmol), arylboronic acid
or arylboronic ester (0.30mmol), base (0.60mmol), Pd2(dba)3
(1.0 μmol) and chiral ligand (2.0 μmol, Pd/ligand mol ratio: 1/1)
under N2 was charged degassed solvent. The mixture was stirred at
noted temperature for noted time. Ethyl acetate (15mL) was added
and the organic phase was washed sequentially with water (5mL)
and brine (5 mL). The organic layer was separated, dried over
Na2SO4, filtered and concentrated. The crude enantioenriched
chiral biaryl product was purified by silica gel flash column chro-
matography. A mixture of DCE/H2O (5:1) was used as solvent and
K3PO4 as the base for sulfonyl-substituted substrates and the reac-
tion was conducted at 35 °C for 48 h unless otherwise specified. H2O
was used as solvent and K2CO3 as the base for nitro-substituted aryl
bromide substrates and the reaction was conducted at 30 °C for 12 h
unless otherwise specified.

Data availability
The data that support the findings of this study are available within the
paper and its supplementary information files. Source Data of photo-
physical property studies are provided with this paper. Materials and
methods, experimental procedures, characterization data, 1H, 13 C,
19 F NMR spectra and mass spectrometry data are available in
the Supplementary Information. The X-ray crystallographic coordi-
nates for structures reported in this study have been deposited at the
Cambridge Crystallographic Data Center (CCDC), under deposition
numbers CCDC 2130064 (6a), and CCDC 2130065 (P-17). These data
can be obtained free of charge from The Cambridge Crystallographic
Data Center via www.ccdc.cam.ac.uk/data_request/cif. Source data are
provided with this paper.
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