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Background: There is growing evidence to suggest that delusions associatedwith schizophrenia arise from altered
structural brain connectivity. The present study investigated whether structural changes in three major fasciculi
that interconnect the limbic system – the cingulum bundle, uncinate fasciculus and fornix – are associated with
delusions in chronic schizophrenia patients.
Methods: Free-water corrected Diffusion Tensor Imaging was used to investigate the association between delu-
sions and bothmicrostructural changes within these three fasciculi and extracellular changes in the surrounding
free-water. Clinical data and diffusion MRI scans were obtained from 28 healthy controls and 86 schizophrenia
patients, of whom 34 had present state delusions, 35 had a lifetime history but currently remitted delusions,
and 17 had never experienced delusions.
Results: While present state and remitted delusions were found to be associated with reduced free-water
corrected fractional anisotropy (FAT) and increased free-water corrected radial diffusivity (RDT) in the cingulum
bundle bilaterally, extracellular free-water (FW) in the left cingulum bundle was found to be specifically associ-
ated with present state delusions in chronic schizophrenia. No changes were observed in the remaining tracts.
Conclusions: Thesefindings suggest that state and trait delusions in chronic schizophrenia are associatedwithmi-
crostructural processes, such as myelin abnormalities (as indicated by decreased FAT and increased RDT) in the
cingulum bundle and that state delusions are additionally associated with extracellular processes such as neuro-
inflammation or atrophy (as indicated by increased FW) in the left cingulum bundle.
© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Delusions are described as “fixed beliefs that are not amenable to
change in light of conflicting evidence” (American Psychiatric
Association, 2013) and are one of the most distinctive and common
symptoms of schizophrenia. It has long been suggested that delusions
represent a misinterpretation or misperception of sensory experiences
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resulting from abnormal neural connectivity. Frith et al. (2000) sug-
gested that certain delusions might result from an abnormal connectiv-
ity between the frontal lobe and the parietal cortex, leading to a
misattribution of internally generated events to external sources. It
has been proposed that this abnormal fronto-parietal communication
might be the result of structural changes in frontally extending white
matter tracts that connect these distant cortical regions (Whitford et
al., 2014a).

Other studies have focused on connectivitywithin the limbic system.
The limbic system is a complex network of interconnected gray matter
structures including the amygdala, hippocampus, hypothalamus, thala-
mus, basal ganglia, and cingulate gyrus (Mega et al., 1997). While the
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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limbic systemplays a role in behavior, motivation and olfaction, its prin-
cipal functions are in emotional regulation and memory (Salcman,
1978). The limbic system is interconnected by threemajorwhitematter
fasciculi, namely the cingulum bundle, uncinate fasciculus, and fornix.
The cingulum bundle connects the anterior cingulate cortex with the
nucleus accumbens, the amygdala and the medial dorsal thalamus
(Nestor et al., 2007), and is involved in memory, emotion and attention
(Catani and Thiebaut de Schotten, 2008). The uncinate fasciculus is a
ventral limbic connection that originates in the temporal lobe and pro-
jects into orbital, medial and ventral regions of the frontal cortex (Catani
et al., 2002; Price et al., 2008). The uncinate fasciculus has been reported
to be involved in memory (Cohen, 2011; Schott et al., 2011), emotion,
and inhibition (Price et al., 2008). The fornix connects the hippocampus
with themammillary bodies, thalamus and nucleus accumbens (Davies
et al., 2001; Takei et al., 2008), and is thought to be primarily involved in
memory functions (Catani and Thiebaut de Schotten, 2008; Takei et al.,
2008).

There is growing evidence to suggest that abnormalities in the struc-
tural and functional connectivity of the limbic system may be a causal
factor in the development of delusions in individuals with schizophre-
nia. With regards to functional connectivity, Javanbakht (2006) sug-
gested that delusions emerge from a fronto-limbic imbalance resulting
from an increase in limbic dopamine, which has been observed during
psychotic episodes of schizophrenia but not during remission. Accord-
ing to this account, a hyperactive limbic system attributes enhanced
emotional importance to internal and external events (Javanbakht,
2006). This in turn leads to a breakdownof theprefrontal cortex's ability
to differentiate internally from externally generated events and thereby
gives rise to the development of delusions. Support for the involvement
of the limbic system in the development of delusions comes from an
fMRI study which reported that disrupted functional connectivity in
fronto-limbic structures were associated with acute psychotic states
(Schott et al., 2015). Additionally, a positron emission tomography
(PET) study reported an association between metabolic changes in
brain circuits of the limbic system and the development of psychosis
in schizophrenia (Tamminga et al., 1992).

With regards to structural connectivity, findings from several Diffu-
sion Tensor Imaging (DTI) studies have noted correlations between se-
verity of white matter abnormalities in the constituent fasciculi of the
limbic system and severity of delusions in patients with schizophrenia
(Bracht et al., 2014; Chan et al., 2010; Fitzsimmons et al., 2014;
Whitford et al., 2014a, 2014b). Given the established association be-
tween structural and functional connectivity within the limbic system
(Cohen et al., 2008), it is feasible that abnormalities in structural con-
nectivity could underpin the observed abnormalities in functional con-
nectivity, which could, in turn, lead to the development of delusions.

Reduced fractional anisotropy (FA; Mori and Zhang, 2006) and in-
creased radial diffusivity (RD; Song et al., 2005) have repeatedly been
reported in patients with schizophrenia (Prasad et al., 2015; Seal et al.,
2008). Abnormal axial diffusivity (AD), on the other hand, has not
been linked to schizophrenia as reliably as FA and RD changes (Seal et
al., 2008). Two of themore common interpretations of thesewhitemat-
ter findings in schizophrenia are changes to the myelin sheath sur-
rounding the axons (Kubicki et al., 2005; Muller and Schwarz, 2006;
Uranova et al., 2007) and neuroinflammation (Laan et al., 2009;
Pasternak et al., 2012; van Berckel et al., 2008). Distinguishing between
these two pathologies is of utmost importance to our understanding of
the neurobiological basis of schizophrenia and for the development of
more effective treatments (Pasternak et al., 2009).

At this time, it is not possible to differentiate myelin changes from
neuroinflammation with common DTI metrics. Both pathologies lead
to a decrease in FA (Pasternak et al., 2009), and while an increase in
RD is typically associated with myelin alterations (Song et al., 2005),
RD measures can also be contaminated by inflammation (Lodygensky
et al., 2010; Wang et al., 2014). Pasternak et al. (2009) developed a
novel technique, termed free-water (FW) imaging, to address this
problem by differentiating between diffusion properties of brain tissue,
such as white matter fiber bundles, and surrounding free-water such as
cerebrospinal fluid. Changes to the myelin sheath impact the diffusion
of water molecules in close proximity to the axon (Song et al., 2005),
whereas neuroinflammation increases the fractional volume of water
molecules diffusing freely in the extracellular space (Syková and
Nicholson, 2008) where microglia modulate immune defense
(Schwartz et al., 2006). Thus, neuroinflammation is associated with ex-
cessive extracellular free-water, which can be partialled out to yield im-
proved DTI indices such as free-water corrected fractional anisotropy
(FAT), free-water corrected radial diffusivity (RDT) and free-water
corrected axial diffusivity (ADT), all of which provide a more precise es-
timation of tissue changes (Pasternak et al., 2012).

The aim of the present studywas to investigate the diffusion proper-
ties of white matter fiber tracts of the limbic system in relation to delu-
sions in patients with schizophrenia. For this purpose, FAT, RDT, ADT and
FW of the cingulum bundle, uncinate fasciculus and fornix were com-
pared between schizophrenia patients with present state delusions,
schizophrenia patients with remitted delusions, schizophrenia patients
without a lifetime history of delusions, and healthy controls.

2. Materials and methods

2.1. Participants

The data for this study were obtained from the Australian Schizo-
phrenia Research Bank (ASRB). Details on the original data collection
process are provided elsewhere (Loughland et al., 2010). Data were an-
alyzed for 115 participants, consisting of 28 healthy controls (HC) and
87 individuals who had been diagnosed with schizophrenia according
to the DSM-IV (American Psychiatric Association, 1994). Diagnostic
and clinical informationwere acquired by conducting the Diagnostic In-
terview for Psychosis (DIP; Castle et al., 2006). Exclusion criteria includ-
ed an inability to converse fluently in English, intellectual disability
(IQ b 70), movement disorders, a present diagnosis of substance depen-
dence, electroconvulsive therapywithin the past sixmonths, brain inju-
ry and/or organic brain disorders. One statistical outlier, defined as a
value greater than three standard deviations from the sample mean,
was identified for FW in the SZD + PS group and was therefore excluded
from further analyses. A subset of the participant sample has been re-
ported on previously in the context of two studies exploring associa-
tions between auditory verbal hallucinations and FA in the arcuate
fasciculus (McCarthy-Jones et al., 2015), and in the inferior occipito-
frontal fasciculus (Oestreich et al., 2015).

Of the 86 schizophrenia patients, 69 had a lifetime history of delu-
sions, which was operationalized as a total score N 0 on the lifetime rat-
ings of the DIP items #58 (other primary delusions), #59 (delusions of
passivity), #60 (persecutory delusions), #61 (delusions of influence),
#62 (primary delusional perception), #63 (grandiose delusions) and
#64 (bizarre delusions). Of these 69 patients, 34 (SZD + PS) had present
state delusions (i.e. delusions present during the past month), while 35
(SZD + LT) had a lifetime history but currently remitted delusions (i.e.,
no delusions within the past month). The remaining 17 schizophrenia
patients (SZD−) reported no lifetime history or present state delusions.

Data on the duration of antipsychotic drug use were available for 81
out of the 86 patients with schizophrenia (see Table 1). Lifetime history
of alcohol or substance abusewas assessedwith DIP items#74 (lifetime
diagnosis of alcohol abuse/dependence) and #78 (lifetime diagnosis of
drug abuse/dependence), respectively. Hallucinations were assessed
with DIP items #49–53. Thought disorder was assessed with the DIP
items #54–57. Depression was measured by the DIP items #20 (dys-
phoria), #21 (loss of pleasure) and #22 (suicide). Negative symptoms
were assessed using the DIP items #90 (restricted affect), #91 (blunted
affect) and #97 (negative formal thought disorder).

The 28 healthy control participants were screened for a family histo-
ry of mental disorders and did not have a history of movement or



Table 1
Demographic and clinical data for the participant sample.

Variables SZD + PS (n = 34) SZD + LT (n = 35) SZD− (n = 17) HC (n = 28) Group difference

Demographics
Age: years (M, SD) 40.24 (8.98) 37.94 (9.77) 41.12 (11.97) 37.86 (9.66) F(3,110) = 0.70, p = 0.56
Gender (% male) 85% 77% 65% 86% χ2(3) = 3.80, p = 0.28
Scanner location (Melbourne/Sydney/Brisbane/Perth/Newcastle) (7/10/13/2/2) (8/8/14/1/4) (1/7/5/1/3) (8/8/7/4/1) χ2(12) = 11.37, p = 0.50

Drugs
Antipsychotics: months (M, SD) 49.56 (37.85)a 45.53 (35.14)b 55.08 (36.59)c – F(2,76) = 0.34, p = 0.72
Substance abuse (%) 13%a 15%b 6%d – χ2(2) = 0.67, p = 0.71
Alcohol abuse (%) 39%a 33%b 20%d – χ2(2) = 1.61, p = 0.45

Psychopathology
Illness duration: years (M, SD) 15.97 (8.46) 13.43 (7.84) 16.47 (10.18) – F(2,83) = 1.05, p = 0.35
Hallucinations: current (M, SD) 1.5 (2.11) 0.74 (2.02) 1.82 (2.63) – F(2,83) = 1.75, p = 0.18
Hallucinations: remitted (M, SD) 2.20 (2.29) 2.86 (3.32) 3.00 (2.74) – F(2,83) = 0.54, p = 0.59
Thought disorder (M, SD) 0.88 (1.23) 1.03 (1.64) 0.24 (0.56) – F(2,83) = 2.13, p = 0.13
Depression (M, SD) 3.85 (3.40) 4.34 (3.69) 3.47 (3.68) – F(2,83) = 0.37, p = 0.69
Negative symptoms (M, SD) 1.21 (1.34) 1.49 (1.48) 1.71 (1.72) – F(2,83) = 0.71, p = 0.50

Note. SZD + PS = schizophrenia group with present state delusions; SZD + LT = schizophrenia group with lifetime history of delusions; SZD− = schizophrenia group without a lifetime
history or present state delusions; HC = healthy controls; M = mean; SD= standard deviation.

a n = 31 due to missing data.
b n = 34 due to missing data.
c n = 15 due to missing data.
d n = 13 due to missing data.

407L.K.L. Oestreich et al. / NeuroImage: Clinical 12 (2016) 405–414
neurological disorders, organic brain disorders, psychotic disorders, de-
mentias, epilepsy, seizures and/or brain injury.

In order to minimize the possibility that the findings of this study
were driven by demographic or clinical variables other than delusions,
all groups were matched on demographic variables and the three
schizophrenia groupswerematched on all other levels of psychopathol-
ogy (see Table 1). Specifically, all groups were matched on the demo-
graphic variables age, gender and scanner location. The three
schizophrenia groups were additionally matched on the clinical symp-
toms hallucinations (current), hallucinations (remitted), thought disor-
der, depression and negative symptoms, as well as antipsychotics,
substance abuse, alcohol abuse and illness duration. Given that the
SZD- group is a rare and unique sample, we matched all of the other
groups to this group.

2.2. Data acquisition and preprocessing

Diffusion weighted images were acquired from five identical 1.5 T
Siemens Avanto scanners (Siemens, Erlangen, Germany) from different
locations within Australia. The imaging parameters across all five scan-
ners were identical: TR = 8400 ms, TE = 88 ms, FOV = 25 cm,
104 × 104matrix and 2.4mm slice thickness. One volumewas acquired
with diffusionweighting b=0 s/mm2, and 64 volumeswith non-collin-
ear gradients and diffusion-weighting b = 1000 s/mm2 were acquired
in the axial plane.

2.3. Preprocessing

Intra-scan misalignments due to head movements and eddy cur-
rents were removed for each individual participant through affine reg-
istration of the diffusion weighted images to the baseline image (FSL,
Functional MRI of the Brain [FMRIB] Software Library [FSL]). After
masking and manually editing a label map to remove non-brain tissue
using 3D Slicer software (version 4.3.1; www.slicer.org), diffusion ten-
sor maps were estimated from the eddy current and motion corrected
diffusion-weighted images based on least-squares estimation.

2.4. Diffusion tensor tractography

The cingulum bundle, fornix and uncinate fasciculus were extracted
with deterministic (streamline) tractography using 3D Slicer software
(see Fig. 1). Themotor fibers of the internal capsule were also extracted
as a control region. Tracts were manually seeded by placing a fiducial
(2.50 mm) in the fasciculus-of-interest (identified on a color-by-orien-
tation map) by a single rater who was blind to participant diagnosis.
Fiber tracking was repeated by an independent rater on five subjects,
randomly selected from the SZD− group, to assess inter-rater reliabil-
ities. Tracts were generated using an eigenvector-tracking algorithm
from the seedpoints defined by the fiducial. A step size of 1.00 mm
was applied and tractography was terminated upon reaching the stop-
ping criterion (FA b 0.25). Minimum path length was set to 20.00 mm,
maximum path length to 800.00 mm and integrated step length to
0.50 mm. The spatial positions of fiducials were manually adjusted
until the distinctive fibers of the tracts of interest became apparent,
based on the atlas by Catani and Thiebaut de Schotten (2008). A binary
label map was generated for each fiber bundle by labeling all voxels
through which any fibers passed.

Free-watermaps and free-water correctedDTImapswere generated
directly from the diffusion weighted images by fitting the following
model in each voxel (Pasternak et al., 2009): Aq(D, f) = f exp(−bq-
TDq)+ (1− f)exp(−bdwater).Whereby Aq is the attenuated signal, nor-
malized by the b0 for the diffusion gradient q, and b represents the b-
value. The first term represents the tissue compartment, where f is the
fractional volume of the tissue compartment (Pasternak et al., 2009).
This tissue compartment accounts for water molecules in close proxim-
ity to tissue membranes and is modeled with the diffusion tensor D,
which can then be converted to scalar measures that are corrected for
free-water, such as free-water corrected fractional anisotropy (FAT),
free-water corrected radial diffusivity (RDT), and free-water corrected
axial diffusivity (ADT; Pasternak et al., 2009). The second term, which
represents the isotropic free-water compartment, ismodeled by the dif-
fusion coefficient, dwater set to the diffusivity of water in body tempera-
ture (3 × 10−3 mm2/s; Pasternak et al., 2009). This free-water
compartment accounts for water molecules that diffuse freely and
isotropically, which, with current diffusion times, may only be found
in the extracellular space. It is defined by a single parameter, namely
the fractional volume of free-water (FW) quantified as 1 − f
(Pasternak et al., 2009).

After extraction of the tracts, FAT, RDT, ADT and FW were calculated
for each of the four fiber bundles of interest by averaging across all
voxels in each participant's label map.

2.5. Statistical analysis

Statistical analyses were performed using SPSS (version 22, www.
spss.com). A mixed analysis of covariance (ANCOVA) – with group (4

http://www.slicer.org
http://www.spss.com
http://www.spss.com


Fig. 1. The cingulum bundle (red), the fornix (green), the uncinate fasciculus (blue) and the motor fibers of the internal capsule (yellow), extracted with deterministic tractography.
Coronal (left column), sagittal (middle column) and axial (right column) views. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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levels: HC; SZD−; SZD + LT; SZD + PS) as the between-subjects factor and
tract (4 levels: cingulum bundle, fornix, uncinate fasciculus, internal
capsule) and hemisphere (2 levels: left, right) as within-subjects factors
– was performed for each of the four diffusion metrics (FAT, RDT, ADT,
FW). To control for the different scanner locations, four dummy vari-
ableswere created for thefive scanner locations and added as covariates
into all analyses. In the case of a group ∗ tract interaction, two-tailed
follow-up contrastswere used to examine theunderlying simple effects.
The effect size measure partial eta squared (ƞp

2) was reported for the
ANCOVA analyses and the effect size measure Cohen's d (d) was report-
ed for the follow-up contrasts. Bonferroni correctionwas used to correct
for multiple comparisons, whereby a comparison of 4 groups across 4
tracts involved 24 contrasts. Corrections to alpha with k = 24 compar-
isons were therefore applied by multiplying the uncorrected p-values
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of the follow-up contrasts by 24. Statistical significance was defined as
p b 0.05, and a trend towards significance was defined as
0.05 b p b 0.1. Intra-class correlation coefficients (ICC) were calculated
to assess the inter-rater reliability between two raters across five sub-
jects from the SZD− group for all tracts (cingulum bundle, fornix, unci-
nate fasciculus, internal capsule), across all measures (FAT, RDT, ADT,
FW) and both hemispheres (left, right).

3. Results

The four groups did not significantly differ from each other on the
demographic variables age, gender or scanner location (see Table 1).
Furthermore, aside from delusions, the three schizophrenia groups did
not significantly differ from each other on any other measures of psy-
chopathology, including negative symptoms, thought disorder, depres-
sion, hallucinations, lifetime history of hallucinations, medication, or
alcohol and antipsychotic drug use. High intra-class correlation coeffi-
cients were observed across all tracts and measures, with ICCs(3,2)
ranging from 85.6% to 99.9% (see Table 2).

3.1. Free-water corrected fractional anisotropy (FAT)

Scatterplots illustrating the between-group differences in FAT are
provided in Fig. 2. A mixed ANCOVA identified a significant main effect
for tract [F(3,318) = 182.579, p b 0.001, ƞp

2 = 0.633] and a significant
tract ∗ group interaction [F(9,318) = 3.871, p b 0.001, ƞp

2 = 0.099]. A
trend towards a main effect for group was also observed [F(3,106) =
2.185, p = 0.094, ƞp

2 = 0.058]. No main effect was observed for hemi-
sphere [F(1,106) = 0.621, p = 0.432, ƞp

2 = 0.006] and no
hemisphere ∗ group interaction [F(3,106) = 0.223, p = 0.880, ƞp

2 =
0.006] was present. The SZD + PS group had significantly reduced FAT

in the cingulum bundle bilaterally compared to the HC group (see
Table 3). Additionally, the SZD + LT group had significantly reduced
FAT in the right cingulum bundle compared to the HC group (see
Table 3).

3.2. Free-water corrected radial diffusivity (RDT)

Scatterplots illustrating the between-group differences in RDT are
provided in Fig. 3. A mixed ANCOVA identified a significant main effect
for tract [F(3,318) = 172.808, p b 0.001, ƞp

2 = 0.620] and a significant
main effect for group [F(3,106) = 3.638, p = 0.015, ƞp

2 = 0.093]. A
trend towards a tract ∗ group interaction [F(9,318) = 1.901, p =
0.095, ƞp

2 = 0.051] was observed. There was no main effect for hemi-
sphere [F(1,106) = 0.900, p = 0.345, ƞp

2 = 0.008] and no
hemisphere ∗ group interaction [F(3,106) = 1.193, p = 0.316, ƞp

2 =
0.033]. The SZD + PS group had increased RDT compared to the HC
group in the cingulum bundle bilaterally (see Table 3). The SZD + LT

group had significantly increased RDT in the cingulumbundle bilaterally
compared to the HC group (see Table 3).
Table 2
Intra-class correlation coefficients.

Tract

Cingulum bundle Fornix Uncinate fasciculus Internal capsule

FAT left 0.984 0.999 0.952 0.973
FAT right 0.965 0.998 0.935 0.977
RDT left 0.970 0.980 0.946 0.919
RDT right 0.987 0.973 0.939 0.992
ADT left 0.934 0.995 0.915 0.905
ADT right 0.946 0.955 0.924 0.967
FW left 0.998 0.991 0.982 0.984
FW right 0.998 0.979 0.856 0.965

Note. FAT= free-water corrected fractional anisotropy; RDT= free-water corrected radial
diffusivity; ADT = free-water corrected axial diffusivity; FW= free-water.
3.3. Free-water corrected axial diffusivity (ADT)

A mixed ANCOVA identified a significant main effect for tract
[F(3,318) = 175.362, p b 0.001, ƞp

2 = 0.623]. A trend towards a
tract ∗ group interaction [F(9,318) = 1.882, p = 0.077, ƞp

2 = 0.051]
was also observed. There was no main effect for hemisphere
[F(1,106) = 0.856, p = 0.357, ƞp2 = 0.008], no main effect for group
[F(3,106)=0.156, p=0.925,ƞp

2=0.004] and no hemisphere ∗ group in-
teraction [F(3,106) = 1.035, p = 0.380, ƞp

2 = 0.028]. No significant be-
tween-group differences were observed for ADT.

3.4. Free-water (FW)

Scatterplots illustrating the between-group differences in FW are
provided in Fig. 4. A mixed ANCOVA identified a significant main effect
for tract [F(3,318) = 610.133, p b 0.001, ƞp

2 = 0.852] and a significant
main effect for group [F(3,106) = 3.858, p = 0.012, ƞp

2 = 0.098]. A
trend towards a tract ∗ group interaction was observed [F(9,318) =
2.061, p=0.091, ƞp

2 = 0.055]. No significant main effect for hemisphere
[F(1,106) = 0.936, p = 0.335, ƞp

2 = 0.009] and no significant
hemisphere ∗ group interaction [F(3,106) = 0.544, p = 0.653, ƞp

2 =
0.015] were observed. The SZD + PS group had significantly increased
FW compared to theHC group in the left cingulum bundle (see Table 3).

No significant between-group differences were observed for any of
the diffusion metrics for the fornix, uncinate fasciculus or internal
capsule.

4. Discussion

Thepresent studyused diffusion tensor tractography in combination
with free-water correction to investigate the diffusion properties of the
whitematter fasciculi of the limbic system – namely, the cingulum bun-
dle, fornix, and uncinate fasciculus – in relation to the presence and his-
tory of delusions in patients with chronic schizophrenia. The findings
from this study suggest that state and trait delusions in chronic schizo-
phrenia are associated with reduced FAT, and can be further explained
by increased RDT. Additionally, increased FW in the left cingulum
bundle seems to be specifically associated with state delusions. Taken
together, these results provide preliminary evidence that microstruc-
tural processes, such as myelin abnormalities (as indicated by increased
RDT) of the cingulum bundle may be related to delusions in chronic
schizophrenia. Furthermore, extracellular processes, such as neuroin-
flammation or atrophy (as indicated by increased FW) of the left cingu-
lum bundle may be involved during active delusional states in chronic
schizophrenia.

The findings of reduced FAT and increased RDT are in linewith previ-
ous studies, which observed a correlation between positive symptoms
in schizophrenia patients and structural white matter changes in the
cingulum bundle (Fitzsimmons et al., 2014; Fujiwara et al., 2007; Tang
et al., 2010; Whitford et al., 2014a). However, in the present study, the
diffusion measures in the fornix and the uncinate fasciculus were pre-
served in all patient groups. This result is inconsistent with many
(Abdul-Rahman et al., 2011; Kawashima et al., 2009; Kitis et al., 2012;
Kuroki et al., 2006; McIntosh et al., 2008; Price et al., 2008; Takei et al.,
2008), though not all (Highley et al., 2002; Jones et al., 2006; Kubicki
et al., 2002), previous studies, which have identified decreased FA and
increased RD in schizophrenia patients. One potential explanation as
to why previous studies reported significant white matter changes in
the uncinate fasciculus and fornix, contrary to the present study, is
that these studies employed uncorrected FA and RDmeasures, whereas
the present study employed free-water corrected FAT and RDT, thus
eliminating biases of partial volume effects. This is likely particularly
true for the fornix, as changes in the ventricle size have been shown to
affect diffusion measures in the fornix in the absence of free-water cor-
rection (Metzler-Baddeley et al., 2012).



Fig. 2. Free-water corrected fractional anisotropy (FAT) of the left and right cingulum bundle (red), fornix (green), uncinate fasciculus (blue) and the motor fibers of the internal capsule
(yellow). HC= healthy control subjects (n= 28), SZD−= schizophrenia patients without a lifetime history or present state delusions (n= 17), SZD + LT= schizophrenia patients with a
lifetime history but currently remitted delusions (n= 35), SZD + PS = schizophrenia patients with present state delusions (n= 34). Error bars represent standard deviations.**p ≤ 0.01,
***p ≤ 0.001. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The structural changes in the cingulum bundle observed in the pres-
ent study are in line with findings from functional studies that report
fronto-limbic imbalances during delusional states (Javanbakht, 2006).
The cingulum bundle connects several areas of the limbic system with
the prefrontal cortex and is therefore a likely communication route of
these brain regions (Nestor et al., 2007). It is possible that recurrent de-
lusions, which are thought to be induced by an increase in limbic dopa-
mine, ultimately lead to a change in the structural integrity of the
connections to and from the limbic system. Alternatively, it is also
possible that preexisting structural changes are responsible for abnor-
mal functional connectivity between the limbic system and other
brain areas such as the prefrontal cortex, which might represent a vul-
nerability for functional disconnectivity and as such could lead to the
development of delusions. It remains to be seen whether an increase
in limbic dopamine, which has been associated with active delusional
states (Javanbakht 2006), is related to the increase in extracellular FW,
such as we observed in the left cingulum bundle of schizophrenia pa-
tients with active delusional states in the present study. However, it



Table 3
Significant follow-up contrasts in the cingulum bundle.

FAT RDT FW

df hemisphere t p d t p d t p d

HC vs SZD+PS 60
left 3.794 0.006 0.875 4.647 b 0.001 1.061 4.359 b 0.001 1.184
right 4.031 0.003 0.726 4.340 b 0.001 1.024

HC vs SZD+LT 61
left 3.333 0.03 0.850
right 4.339 b 0.001 1.181 4.440 b 0.001 1.165

Note.All p-values adjustedwith the Bonferroni correction, based on 24 comparisons. FAT= free-water corrected fractional anisotropy, RDT= free-water corrected radial diffusivity, FW=
free-water, df= degrees of freedom, t = t-statistic, p = p-values, d = Cohen’s d HC= healthy controls, SZD+PS= schizophrenia patients with present state delusions. SZD+LT = schizo-
phrenia patients with lifetime history of delusions.

Fig. 3. Free-water corrected radial diffusivity (RDT) of the left and right cingulum bundle (red), fornix (green), uncinate fasciculus (blue) and the motor fibers of the internal capsule
(yellow). HC = healthy control subjects (n = 28), SZD− = schizophrenia patients without a lifetime history or present state delusions (n = 17), SZD + LT = schizophrenia patients
with a lifetime history but currently remitted delusions (n = 35), SZD + PS = schizophrenia patients with present state delusions (n = 34). Error bars represent standard deviations.
*p ≤ 0.05,***p ≤ 0.001. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Free-water (FW) of the left and right cingulum bundle (red), fornix (green), uncinate fasciculus (blue) and the motor fibers of the internal capsule (yellow). HC= healthy control
subjects (n = 28), SZD− = schizophrenia patients without a lifetime history or present state delusions (n= 17), SZD + LT = schizophrenia patients with a lifetime history but currently
remitted delusions (n = 35), SZD + PS = schizophrenia patients with present state delusions (n = 34). Error bars represent standard deviations. ***p ≤ 0.001. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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must be acknowledged that the proposed account is, at the present
time, highly speculative and would benefit from empirical validation
in future studies.

The association between delusions and RDT (but not ADT) could be
indicative of alteredmyelination in this tract. Although increased extra-
cellular volume can also be caused by a range of pathologies such as at-
rophy, a breakdown of the cellular membrane, low dendritic quantity
and low cell density (Pasternak et al., 2012; Selemon et al., 2002), pre-
vious research suggests that a plausible reason for the increased
extracellular volume in schizophrenia is neuroinflammation
(Pasternak et al., 2015). Neuroinflammation results from a cellular re-
sponse to injury of the central nervous system by the activation of mi-
croglia and astrocytes (Pasternak et al., 2012; Streit, 2006). The
activation of microglia is responsible for multiple metabolic and bio-
chemical changes, which lead to profuse osmosis of water from blood
and therefore increased extracellular volume (Schwartz et al., 2006;
Syková and Nicholson, 2008). This increase in extracellular volume is
reflected in increased free-water values, whereas the fiber structure
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itself, and therefore the free-water corrected values, remain unaffected
(Pasternak et al., 2012). In a recent PET study, microglial activity was
found to be enhanced in patients with schizophrenia as well as in indi-
viduals at ultra-high risk for psychosis (Bloomfield et al., 2016), which
supports the involvement of neuroinflammatory processes in the illness
progression of schizophrenia. Moreover, and in line with the present
study, neuroinflammation has been reported to be related to symptom
severity and subclinical psychotic symptoms (Bloomfield et al., 2016).
In order to have greater confidence in these tentative conclusions, bet-
ter-powered studies are required, as well as studies that correlate
free-water imaging findings with additional measures of neuroinflam-
mation, such as PET or blood-markers of neuroinflammation.

The present study has a number of limitations. First, while data on
duration of antipsychotic drugs are reported, dosage data were not
available. Second, the data used in this study were acquired from five
scanners. While all scanners were the samemodel and build, it is possi-
ble that disparities between the scanners had an impact on DTI mea-
sures. However, it should be noted that the same imaging sequences
were used across the five sites, there were no significant group differ-
ences in terms of scanner site, and scanner location was included as a
covariate in all analyses. Third, there are disadvantages associated
with deterministic tractography, including the fact that it does not pro-
vide an index of confidence as to how likely a voxel is to occur within a
given fasciculus, and the fact that one-tensor tractographic techniques
(such aswe employed in the current study) can have difficulty resolving
crossing fibers (Jones, 2008).

In conclusion, the present study found reduced FAT and increased
RDT to be associated with both present-state delusions and a lifetime
history of delusions in patients with chronic schizophrenia. Additional-
ly, increased FW in the left cingulum bundle was found to be associated
with active delusional states in chronic schizophrenia. These results are
consistent with a combination of altered myelination and neuroinflam-
mation or atrophy in this tract. If confirmed by future studies, thiswould
have important clinical implications, as it suggests that potential treat-
ments for delusions in schizophrenia could aim to both increase
myelination and reduce neuroinflammation and atrophy in the cingu-
lum bundle, which would likely require polypharmacy.
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