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Abstract

Previous studies have suggested that trait differences in emotional awareness (tEA) are clinically relevant, and associated
with differences in neural structure/function. While multiple leading theories suggest that conscious awareness requires
widespread information integration across the brain, no study has yet tested the hypothesis that higher tEA corresponds to
more efficient brain-wide information exchange. Twenty-six healthy volunteers (13 females) underwent a resting state
functional magnetic resonance imaging scan, and completed the Levels of Emotional Awareness Scale (LEAS; a measure of
tEA) and the Wechsler Abbreviated Scale of Intelligence (WASI-II; a measure of general intelligence quotient [IQ]). Using a
whole-brain (functionally defined) region of interest (ROI) atlas, we computed several graph theory metrics to assess the
efficiency of brain-wide information exchange. After statistically controlling for differences in age, gender and IQ, we first
observed a significant relationship between higher LEAS scores and greater average degree (i.e. overall whole-brain network
density). When controlling for average degree, we found that higher LEAS scores were also associated with shorter average
path lengths across the collective network of all included ROIs. These results jointly suggest that individuals with higher
tEA display more efficient global information exchange throughout the brain. This is consistent with the idea that conscious
awareness requires global accessibility of represented information.
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Introduction

The construct of trait emotional awareness (tEA) refers to an indi-
vidual’s stable ability to conceptualize the affective responses of
self and others in a fine-grained and differentiated manner (Lane
et al., 2015; Smith et al., 2017b). For example, those with low tEA
would tend to conceptualize affective responses in somatic (e.g.
‘feeling sick to my stomach’) or coarse-grained (e.g. ‘feeling bad’)

terms, and they would have trouble recognizing that others may
feel differently than they do; in contrast, those with high tEA
would tend to understand such responses in fine-grained concep-
tual (e.g. ‘feeling a blend of sadness and anger’) terms, and could
more easily differentiate the emotions of self and others.

An individual’s tEA level, as measured by the Levels of
Emotional Awareness Scale (LEAS) (Lane and Schwartz, 1987;
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Lane et al., 1990), is widely recognized as an important factor in
both physical and mental health. Across multiple studies,
higher LEAS scores have been correlated with several adaptive
traits/abilities (e.g. greater emotion recognition ability, impulse
control, openness to experience, empathy, and stability of felt
well-being; Lane et al., 1990, 1996, 2000; Ciarrochi et al., 2003;
Barchard and Hakstian, 2004; Bréjard et al. 2012; Wright et al.,
2017). On the other hand, low LEAS scores (relative to healthy
individuals) have been observed within multiple clinical popu-
lations (e.g. eating disorders, post-traumatic stress disorder,
schizophrenia, borderline personality disorder, essential hyper-
tension, and somatoform disorders, among others; Levine et al.,
1997; Berthoz et al., 2000; Bydlowski et al., 2005; Donges et al.,
2005; Lackner, 2005; Subic-Wrana et al., 2005, 2007; Frewen et al.,
2008; Baslet et al., 2009; Consoli et al., 2010; Beutel et al., 2013).

The underlying brain basis of tEA has also been investigated
in a number of studies. For example, higher LEAS scores have
been associated with greater activity in the dorsolateral pre-
frontal cortex (DLPFC), anterior temporal cortex, and the dorsal
(dACC) and rostral (rACC) anterior cingulate cortex in a range of
task-based contexts (Lane et al., 1998; Frewen et al., 2008; McRae
et al., 2008; Tavares et al., 2011; Smith et al., 2017c). More recently,
structural and functional imaging studies have further exam-
ined the large-scale network correlates of tEA (for reviews of
large-scale networks, see Yeo et al., 2011; Barrett and Satpute,
2013), finding correspondences between higher LEAS scores and
greater cortical thickness within the limbic network (LN; which
includes orbitofrontal and anterior temporal cortex regions)
(Smith et al., 2018), as well as stronger functional connectivity
within regions of the salience network (SN; which includes
dACC) and within regions of the default mode network (DMN;
which includes rACC) (Smith et al., 2017a). Together, this work
has led to the proposal of a “three-process model” (Smith et al.,
2017b), which suggests that higher tEA may reflect (i) more
context-sensitive affective response generation processes with-
in the LN, (ii) more efficient interoception and emotion concep-
tualization processes within the SN and DMN (respectively),
and (iii) greater attention to, and maintenance of, emotion-
related representations within working memory (supported by
DLPFC and other regions of the ‘executive control network’ or
ECN).

While the studies described above have examined the asso-
ciation between tEA and the structure/function of specific
regions/networks, at present no study has yet examined
whether tEA is associated with broader differences in the over-
all efficiency of large-scale information integration throughout
the brain. This is an important theoretical question, given that
leading empirically supported models of the neural basis of con-
scious awareness posit that conscious access to represented in-
formation (including represented information about emotions)
requires a brain-wide integration process in which the informa-
tion represented in one brain system is “globally broadcast” and
made available to all other relevant brain systems (Gaillard
et al., 2009; Dehaene, 2014; Dehaene et al., 2014; Smith, 2016,
2017). These models have also been specifically applied to gain-
ing conscious access to (i.e. awareness of) the various aspects of
emotional experience (Lane et al., 2015; Smith and Lane, 2015,
2016; Panksepp et al., 2017; Smith et al., 2017d). Therefore,
greater conscious awareness of emotion in those with higher
tEA could perhaps be explained by more efficient patterns of
functional connectivity that facilitate long-range information
integration.

Whole-brain graph theory analyses (Bullmore and Sporns,
2009) represent one unexplored approach to studying such

network properties in relation to tEA and leading theories of the
neural basis of conscious awareness. This approach to studying
tEA could also inform a growing literature using graph theory
metrics to examine a broader range of individual differences in
cognitive-affective and social trait variables. For example, re-
cent graph-theoretic analyses investigating personality varia-
bles have found that greater openness to experience is
associated with greater network efficiency within the DMN
(Beaty et al., 2016), and greater trait anxiety is associated with
reduced efficiency in regions of the SN (Markett et al., 2016).
Measures of reduced whole-network efficiency have also been
linked to patient populations with theory-of-mind and related
social-cognitive deficits (Serra et al., 2016; Keown et al., 2017).
However, while graph theory approaches have begun to be
applied to some aspects of socio-emotional processes (Huang
et al., 2018), recent reviews of the social neuroscience literature
have highlighted the need for greater application of these
approaches to further refine neural theories of social, emotion-
al, and related cognitive differences between individuals (Li
et al., 2014), with tEA representing one such individual
difference.

Based on the work reviewed above, we hypothesized that
individuals with higher tEA would display indices of more effi-
cient brain-wide information integration. In this study, we used
whole-brain graph-theoretic analyses to test this hypothesis,
with the specific prediction that higher tEA would be associated
with graph theory indices of more efficient global information
exchange (for a review of graph theory metrics, see Bullmore
and Sporns, 2009); these indices included higher “network
density” (or “average degree”; indicating more direct functional
connections overall), as well as greater “global efficiency” and
shorter “average path length” (both indicating more efficient
message passing from any region to any other region on aver-
age). If this hypothesis were confirmed, it would provide empir-
ical support for the notion that awareness of emotion is
facilitated by the same kinds of whole-brain signal integration
processes implicated in conscious awareness more generally
(Dehaene, 2014). We also examined the possibility that higher
tEA might correspond to indices of greater local processing
efficiency and clustering, which could indicate enhanced
domain-specific processing of relevant affective signals (e.g.
more adaptive integration of somatovisceral sensations). We
reasoned that such findings could also add more broadly to
trends in the recent work reviewed above linking greater
network processing efficiency to the personality and socio-
cognitive variables with conceptual links to tEA.

Materials and methods
Participants

We recruited 26 adults (13 females; mean age ¼23.1 6 4.0) from
the general population of Tucson, AZ to participate in the pre-
sent study, via Internet advertisements and flyers. Participants
did not have any history of neurological or psychiatric disorders
(assessed using a phone screen questionnaire based on criteria
within the Diagnostic and Statistical Manual for Mental
Disorders, fourth edition; DSM-IV-TR), they were not taking any
psychoactive medications, they did not report any other chronic
diseases, they were all right-handed, and they all had English as
a primary language (assessed via self-report). Prior to enroll-
ment, all participants provided written informed consent.
Participants received nominal financial compensation for their
time. The Institutional Review Board of the University of
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Arizona reviewed and approved the research protocol of the
present study.

Procedure

During a single-day visit to the lab, and after completing the
informed consent process, each participant was taken to the
magnetic resonance imaging (MRI) scanner at the University of
Arizona where they underwent a resting state functional MRI
scan (see Neuroimaging methods section). After completing the
resting state scan, participants were brought back to the lab,
seated at a laptop computer, and asked to complete an on-line
version of the LEAS (www.eleastest.net) that uses a validated
automatic scoring program (Barchard et al., 2010).

LEAS. The LEAS presents participants with descriptions of 20 so-
cial situations (two to four sentences per description), where
each situation includes 2 people. The described situations are
designed to elicit four types of emotion (anger, sadness, happi-
ness, and fear) at five levels of complexity. One situation de-
scription is presented on each electronically presented page,
followed by two questions: “How would you feel?” and “How
would the other person feel?” Separate response boxes are pro-
vided for typing in the answers to each question. When typing
their responses into these boxes, participants are instructed to
use as much or as little space as needed to answer. The only
rule given is that they must use the word “feel” in their
responses.

Trait emotional awareness level scores are assigned to each
written response based on word choice. The lowest scores
(Level 0) are given to words that do not refer to feelings. Level 1
scores are assigned to words that refer to physiological sensa-
tions (e.g. ‘tired’), whereas Level 2 scores are given to words
referring to feeling-related actions (e.g. ‘hugging’) or simple va-
lence discriminations (e.g. ‘bad’, ‘good’) that have inherent
avoidance- or approach-related content. Level 3 scores are given
to words referring to single emotion concepts (e.g. ‘happy’,
‘angry’). Level 4 scores are assigned to a response when at least
two words from Level 3 are used (i.e. conveying greater emo-
tional differentiation than either word alone). For each item, the
self- and other-related responses are scored separately (i.e. with
a value of 0–4). A “total” score is also given for each of the 20
LEAS items, which reflects the higher of the self- and other-
related scores, unless a score of 4 is given for both. In this case,
a total score of 5 is given for the item, as long as the self- and
other-related responses are sufficiently differentiable (for more
detail, see Lane et al., 1990). The final LEAS score is calculated by
summing the scores assigned to each of the 20 items (i.e. LEAS
SELF score ¼ the sum of the scores for the 20 “How would you
feel?” responses; LEAS OTHER score ¼ the sum of the scores for
the 20 “How would the other person feel?” responses, and LEAS
TOTAL score ¼ the sum of the 20 “total” item scores).

General intelligence. We estimated the intelligence quotient (IQ)
of each participant using the two-subtest form (FSIQ-2) of the
Wechsler Abbreviated Scale of Intelligence–Second Edition
(WASI-II; Pearson Assessment, Inc., San Antonio, TX, USA;
Wechsler, 2011). These scores were used to control for potential
differences in general intelligence when examining graph-
theoretic correlates of LEAS scores. This was based on the fact
that LEAS scores have been positively related to general intelli-
gence in previous studies (e.g. Barrett et al., 2000). We were also
interested in assessing the unique contribution of tEA to func-
tional network properties (i.e. over and above what might be

explained by greater cognitive performance ability more
generally).

Neuroimaging methods

We used a 3T Siemens Skyra MRI scanner (Siemens, Erlangen,
Germany) with a 32-channel head coil to collect neuroimaging
data. T1-weighted structural images (3D MPRAGE) were
acquired (TR/TE/flip angle ¼2.1 s/2.33 ms/12�) covering 176 sagit-
tal slices (256 �256) with a slice thickness of 1 mm (voxel
size ¼1�1�1). Functional T2*-weighted scans were acquired
over 32 transverse slices (2.5 mm thickness; matrix: 88 �84; field
of view ¼240 mm). An interleaved sequence was used to collect
each volume (TR/TE/flip angle ¼2 s/25 ms/90�). The T2* sequence
voxel size was 2.5�2.5�3.5 mm (i.e. with a 40% slice gap, allow-
ing collection of 300 volumes within a 10-min acquisition time).

Resting-state preprocessing

We used the publicly available CONN functional connectivity
toolbox (version 16.a; https://www.nitrc.org/projects/conn), in
conjunction with SPM12 (Wellcome Department of Cognitive
Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm), to
perform all preprocessing steps (using CONN’s default prepro-
cessing pipeline), as well as subsequent statistical analyses, on
all collected MRI scans. In this preprocessing pipeline, raw func-
tional images are slice-time corrected, realigned (motion cor-
rected), unwarped, and coregistered to each subject’s MPRAGE
image in accordance with standard algorithms. Images are then
normalized to Montreal Neurological Institute coordinate space,
spatially smoothed (8 mm full-width at half maximum) and
resliced to 2�2�2 mm voxels. We also used the Artifact
Detection Tool (ART; http://www.nitrc.org/projects/artifact_de
tect/) to regress out scans as nuisance covariates in the first-
level analysis exceeding 3 s.d. in mean global intensity and
scan-to-scan motion that exceeded 0.5 mm. These were added
in addition to covariates for the six rotation/translation move-
ment parameters.

Graph theory analyses

Graph theory analyses were performed using the default func-
tional connectivity processing pipeline in the CONN toolbox (for
details, see Whitfield-Gabrieli and Nieto-Castanon, 2012). Using
this processing pipeline, physiological and other sources of
noise were estimated with the aCompcor method (Behzadi et al.,
2007; Whitfield-Gabrieli et al., 2009; Chai et al., 2012); they were
then removed along with the movement- and artifact-related
covariates mentioned above. The residual BOLD time-series was
then band-pass filtered (0.008–0.09 Hz). Every participant’s
structural image was segmented into gray matter, white matter,
and cerebral spinal fluid using SPM12. White matter and cere-
bral spinal fluid noise effects were removed through regression.
The regions of interest (ROIs) in the present study were derived
from a freely available ROI atlas defined by correlated activation
patterns (http://findlab.stanford.edu/functional_ROIs.html). The
90 ROIs within this atlas span several networks: the anterior
and posterior SNs, dorsal and ventral DMNs, left and right ECNs,
auditory network, basal ganglia network, higher visual network,
language network, sensorimotor network, primary visual net-
work, visuospatial network and precuneus network (for details,
see Shirer et al., 2012). However, rather than focus on any of
these networks in isolation, we treated all ROIs as “nodes” with-
in a whole-brain network.
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We extracted the residual BOLD time course for each ROI for
each participant to produce single-participant Pearson’s correl-
ation maps for the time courses of all pairs of ROIs. At the se-
cond level, controlling for age, gender and IQ, we used the
CONN toolbox’s automated graph theory analysis algorithms
(for a detailed description, see https://sites.google.com/view/
conn/resources/manuals) to examine the relationship between
LEAS TOTAL scores and several graph theory metrics: (i) Average
path length, defined as the mean shortest path length among all
possible pairs of nodes, represents the efficiency of information
transfer between ROIs (for this measure, CONN only computes
the average path length across connected nodes; i.e. the ana-
lysis excludes ROIs with no connections to the graph, as the
average path length from this node to any other node would be
infinite). (ii) The global efficiency of the network, defined as the
mean inverse shortest path length for all possible pairs of
nodes, represents a complementary measure of the efficiency
of information transfer among all ROIs. (iii) Local efficiency, which
can be thought of as the global efficiency of the sub-network
consisting only of a node’s neighbors (regions to which a given
ROI has direct functional connections; excluding the ROI itself);
at the whole-network level, local efficiency reflects the average
sub-network efficiency across all ROIs, and indicates the net-
work’s ability to effectively compensate for the localized failure
of a single node. (iv) The clustering coefficient, which reflects the
degree to which nodes tend to cluster together (i.e. the regions
to which an ROI is directly connected also have direct connec-
tions among themselves); on the whole-network level, the clus-
tering coefficient can be thought of as the average level of
clustering (as defined above) across all ROIs—representing the
average efficiency of information transfer within local ROI clus-
ters. (v) The degree of connectivity is the number of edges linked
to a node, representing the number of direct functional connec-
tions between an ROI and other ROIs. Average degree, also
called ‘network density’, is a measure of the interconnectedness
of the network as a whole.

Each of these metrics can be seen as complementary meas-
ures of how efficiently the information represented within a
given node could be passed to (i.e. made available to) any other
node in the network (for a review of these graph theory metrics,
see Bullmore and Sporns, 2009). We predicted that individuals
with higher tEA would display greater efficiency of information
transfer throughout the brain, such that, for the whole-brain
network, higher LEAS TOTAL scores would be associated with
shorter average path length, higher global and local efficiency, a
greater clustering coefficient, and higher network density. For
these analyses, we initially set a binary ROI-to-ROI correlation
threshold of r¼0.3 to define the presence/absence of edges/con-
nections between all possible pairs of nodes. However, as there
is little consensus in the field about proper a priori threshold se-
lection in graph theoretic neural network analyses, we repeated
the analyses with thresholds of r¼0.2 and r¼0.4 as well (see
Supplementary Results).

After confirming our a priori hypotheses regarding whole-
network-level relationships between LEAS TOTAL scores and
the above-mentioned graph theory metrics, we also explored
ROI-specific graph-theoretic results using a false discovery
rate (FDR)-corrected P-value threshold of P�0.05 (all reported
P-values are two-tailed).

Finally, we then re-performed the analyses of several of the
graph theory metrics above, while controlling for individual dif-
ferences in network density (average degree). This was done in
order to clarify between two possible interpretations of our
results, which arise because of the relationship between

network density and these other measures. Namely, increases
in network density can either leave these other metrics un-
changed or increase their measurement of network efficiency.
Therefore, these analyses were performed to ascertain whether
the increases in measured efficiency we observed using these
other metrics were due primarily to a greater number of edges/
connections in general during the resting state, or due to differ-
ences in network characteristics that were independent of
density differences.

Results
Behavioral results

LEAS scores for the group as a whole were as follows:
TOTAL¼74.0 (69.8), SELF¼63.0 (68.7), OTHER¼58.5 (610.7).
Females had numerically higher LEAS TOTAL scores than males
(means: females ¼ 76.8 6 10.6; males ¼ 71.2 6 8.4), but this dif-
ference was non-significant [t(24)¼1.5, P¼0.147). The correlation
between age and LEAS scores for the sample as a whole was
negative and non-significant (r¼�0.315, P¼0.12).

WASI-II FSIQ-2 scores had a mean of 115.23 (611.7). LEAS
TOTAL scores were significantly positively correlated with FSIQ-
2 scores (r¼0.619, P¼0.001).1

Whole-network graph theoretic results

Manual inspection within CONN confirmed that every network
graph examined had one connected component. After statistic-
ally controlling for differences in age, gender, and IQ, we
observed significant relationships (in the expected directions)
between LEAS scores and (i) average path length [t(21)¼�3.48,
P¼ 0.002; Figure 1], (ii) global efficiency [t(21)¼2.35, P¼0.029], (iii)
local efficiency [t(21)¼2.66, P¼0.014], (iv) clustering coefficient
[t(21)¼2.37, P¼0.027] and (v) network density/degree [t(21)¼2.52,
P¼0.020; Figure 2] for the collective network of all included ROIs.
All of these whole-network results were also significant at the
alternative liberal (r¼0.2) and conservative (r¼0.4) thresholds,
with the exception of average path length at r¼0.4
(Supplementary Results and Table S1.1).

To provide a post-hoc estimate of the statistical power
afforded by our sample size in these analyses, we used the
strength of the observed relationship between LEAS scores and
network density/degree (i.e. partial R2 ¼0.23; i.e. after controlling
for age, gender, and IQ) as a representative result. With 26 par-
ticipants, and an alpha threshold of 0.05, this analysis (per-
formed using G*Power; Faul et al., 2007) revealed a power
estimate of 0.76, indicating a 24% chance of false negatives.

ROI-specific graph theoretic results

After statistically controlling for differences in age, gender, and
IQ, we subsequently observed significant relationships (using
an FDR-corrected P-value threshold of P�0.05) between LEAS
scores and several graph theory metrics for specific ROIs. In this
case, we observed that those with higher LEAS TOTAL scores
also displayed shorter average path lengths for specific ROIs
within the anterior and posterior SNs (four ROIs in each), audi-
tory network (right thalamus), basal ganglia network (three

1 The LEAS scores and FSIQ-2 scores from this data set have previously
been published in conjunction with both task-related and resting state
imaging data (Smith et al., 2017a,c, 2018). However, their relation to the
graph-theoretic metrics presented here is novel to the present
manuscript.
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Fig. 1. Illustration of our initial analysis examining the relationship between LEAS Total scores and Average Path Length. The top panel provides two depictions of the

resulting graph’s edges and FDR-corrected significant nodes (listed in Table 1), in which larger blue nodes indicate stronger negative relationships (i.e. T-values; while

statistically accounting for age, gender and IQ). The bottom panel displays a scatterplot illustrating the (zero-order) correlational relationship between LEAS Total

scores and whole-network Average Path Length (i.e. prior to accounting for our covariates stated above, where accounting for these covariates increased the strength

of the observed relationship).

Fig. 2. Illustration of our initial analysis examining the relationship between LEAS Total scores and Degree. The top panel provides two depictions of the resulting

graph’s edges and significant nodes. Larger red nodes indicate stronger positive relationships (i.e. T-values; while statistically accounting for age, gender and IQ). To

provide a clearer illustration of how the distribution of nodal relationships contributes to our whole-network results, we have displayed all nodes that showed a signifi-

cant relationship with Degree at a liberal threshold of P<0.05, uncorrected (these included nodes within the majority of functionally defined networks examined, ex-

cept for the auditory network, sensorimotor network, and the primary and higher visual networks). T-values range from 2.10 to 4.29. The three large nodes with black

outlines are those that survived FDR-correction (listed in Table 2). The bottom panel displays a scatterplot illustrating the (zero-order) correlational relationship be-

tween LEAS Total scores and whole-network Density (or average degree; i.e. prior to accounting for our covariates stated above, where accounting for these covariates

increased the strength of the observed relationship).
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ROIs), dorsal and ventral DMNs (seven and two ROIs, respective-
ly), language network (two ROIs), precuneus network (two ROIs),
primary visual network (calcarine sulcus), right and left ECNs
(four and three ROIs, respectively), sensorimotor network (one
ROI) and visuospatial network (one ROI) (displayed in Figure 1).
We also observed that those with higher LEAS TOTAL scores
displayed greater degree within two basal ganglia ROIs and one
posterior SN ROI (i.e. the nodes outlined in black within
Figure 2). For detailed ROI-specific results, see Tables 1 and 2.
For ROI-specific results at the alternative liberal (r¼0.2) and con-
servative (r¼0.4) thresholds we examined, see Supplementary
Results and Tables S2–S4.

Analyses controlling for network density

After adding network density (average degree) as an additional
covariate, and re-performing the other analyses described
above, we observed that many of the other graph theory metrics
no longer showed a significant relationship with LEAS TOTAL
scores. Specifically, only average path length at the whole-
network-level continued to display the significant negative rela-
tionship with LEAS TOTAL scores observed above [t(20)¼�2.34,
P¼ 0.03; Figure 3]. Qualitatively similar to our initial whole-
network results for average path length described above, this
finding also held at a trend level [t(20)¼�1.88, P¼ 0.075] using
the alternative liberal (r¼0.2) threshold, but was not present at
the conservative (r¼0.4) threshold. No other significant whole-
network or ROI-specific (i.e. after FDR-correction) relationships
with LEAS TOTAL scores were observed in these analyses.

Discussion
Major findings

In this study, we hypothesized that higher levels of tEA (as indi-
cated by higher LEAS TOTAL scores) would be associated with a
range of complimentary graph theory metrics that reflect
greater efficiency of whole-brain information exchange. As pre-
dicted, across a whole-brain network of 90 functionally defined
ROIs (nodes) we initially observed that individuals with higher
tEA also displayed shorter average path lengths, higher global
and local efficiency, a higher clustering coefficient and higher
network density. Importantly, age, gender, and IQ were each
statistically controlled for, which affords greater confidence
that these results cannot be attributed to any of these other fac-
tors (especially as IQ was positively associated with tEA in our
sample). These findings also remained significant when alter-
natively tested using more liberal (r¼0.2) and conservative
(r¼0.4) edge thresholds (i.e. with the exception of average path
length, which was not significant at the r¼0.4 threshold; see
Supplementary Results). The qualitatively similar network-level
results, and somewhat overlapping ROI-specific results, at each
threshold, provide added confidence in the robustness of our
findings (i.e. especially the hypothesized network-level results),
and suggest that they are not simply due to the selection of a
single arbitrary threshold.

After subsequently controlling for individual differences in
network density (average degree), however, we found that only
shorter average path length continued to show the initially
observed association with higher tEA. This suggests that the
other indices of more efficient information exchange that we
observed with increasing tEA were primarily due to the fact that
increasing levels of tEA appear to correspond to a generally
increasing number of functional connections (edges) present

during the resting state. That is, they are less plausibly attribut-
able to differences in network properties that are independent
of overall differences in the number of total connections.
Therefore, these findings suggest that the indices of more
efficient whole-brain information exchange we observed

Table 1. Significant relationships observed between LEAS TOTAL
scores and average path length (edge threshold: r¼ 0.3)

Average path length

ROIs by network T P-FDR

Basal ganglia
R thalamus, R caudate, R putamen �3.20 0.031
L thalamus, L caudate �3.74 0.031
L inferior frontal gyrus �3.17 0.031
Dorsal default mode
L angular gyrus �2.69 0.042
Medial prefrontal cortex, anterior cingulate

cortex, orbitofrontal cortex
�2.54 0.048

Posterior cingulate cortex, precuneus �2.67 0.043
R angular gyrus �2.85 0.040
R hippocampus �3.57 0.031
R superior frontal gyrus �3.09 0.034
L thalamus, R thalamus �2.74 0.042
Ventral default mode
Precuneus �3.27 0.031
L retrosplenial cortex, L posterior cingulate

cortex
�2.59 0.048

Left executive control
L middle frontal gyrus, L superior frontal gyrus �2.68 0.042
L inferior frontal gyrus, L orbitofrontal gyrus �3.29 0.031
L superior parietal gyrus, L inferior parietal gyrus,

L precuneus, L angular gyrus
�2.90 0.040

Right executive control
R middle frontal gyrus, R superior frontal gyrus �3.07 0.034
R middle frontal gyrus �3.42 0.031
R inferior parietal gyrus, R supramarginal gyrus,

R angular gyrus
�2.69 0.042

R caudate �2.71 0.042
Anterior salience
L middle frontal gyrus �2.73 0.042
L insula �3.51 0.031
L lobule VI, L crus I �4.00 0.029
R lobule VI, R crus I �3.26 0.031
Posterior salience
L thalamus �3.75 0.031
R thalamus �4.02 0.029
L lobule VI �3.01 0.037
L posterior insula, L putamen �2.57 0.048
Auditory
R thalamus �2.8 0.048
Language
L inferior frontal gyrus �2.70 0.042
L middle temporal gyrus, L superior temporal

gyrus, L supramarginal gyrus, L angular gyrus
�2.87 0.040

Precuneus
L angular gyrus �2.94 0.039
Precuneus �2.80 0.042
Primary visual
Calcarine sulcus �2.93 0.039
Sensorimotor
L precentral gyrus, L postcentral gyrus �2.57 0.048
Visuospatial (dorsal attention)
R frontal operculum, R inferior frontal gyrus �3.31 0.031
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(with increasing tEA levels) primarily reflect independent con-
tributions of decreasing average path lengths and increasing de-
gree/network density.

In general, these results provide support for the application
of leading empirical models of conscious awareness (Dehaene,
2014; Dehaene et al., 2014) to the domain of emotion (e.g. as in
the three-process model described in the introduction; Smith
et al., 2017b; also see Lane et al., 2015; Smith and Lane, 2015,
2016; Panksepp et al., 2017). This is because such models suggest
that becoming consciously aware of emotion requires that rele-
vant locally represented information (e.g. situational appraisals,
interoceptive/somatic percepts, emotion concepts, etc.) is
“globally broadcast” to a domain-general “global neuronal

workspace” of cortical network hubs throughout the brain’s as-
sociation cortices (i.e. plausibly requiring direct functional con-
nections from one region to many others; i.e. higher degree).
This is thought to allow that information to be maintained in
working memory and integrated into multi-step, goal-directed
decision-making and action selection processes. Other pro-
posals also similarly suggest that conscious experience requires
the kind of complex information integration processes that
would be supported by efficiently connected whole-brain net-
works (Oizumi et al., 2014; Tononi et al., 2016). Therefore, one
would expect that greater awareness of emotion would corres-
pond to whole-brain network architectures supporting more ef-
ficient global information exchange (e.g. with higher degree,
facilitating the widespread broadcasting/integration processes
postulated in the previously described theories). It is also worth
highlighting that, because we used a functionally defined atlas
of ROIs covering the whole brain (Shirer et al., 2012), this helps
to ensure that the relationships we observed were between
functionally homogenous regions (and likely improves within-
ROI signal-to-noise ratios). This therefore adds to the plausibil-
ity of the functional interpretation we suggest here.

Possible implications of findings for distinct metrics

We will now consider more specific implications that might fol-
low from the specific measures we examined. At the network

Fig. 3. Illustration of our subsequent results when examining the relationship between LEAS Total scores and Average Path Length, after further accounting for individ-

ual differences in Network Density. Only the whole-network relationship remained significant in this analysis. However, to provide a clearer illustration of how the dis-

tribution of nodal relationships contributes to the aforementioned whole-network results, we have displayed all nodes that showed a significant relationship with

Average Path Length at a liberal threshold of P<0.05, uncorrected (these included nodes within the dorsal DMN, basal ganglia network, auditory network, and both an-

terior and posterior SNs). Larger blue nodes indicate stronger negative T-values. T-values range from �2.14 to 2.80.

Table 2. Significant relationships observed between LEAS TOTAL
scores and Degree (edge threshold: r¼ 0.3)

Degree

ROIs by network T P-FDR

Basal ganglia
R thalamus, R caudate, R putamen 3.74 0.036
L thalamus, L caudate 4.17 0.020
Posterior salience
L thalamus 4.29 0.020
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level, average path length is a measure of how many intermedi-
ate nodes (on average) a signal would need to pass through in
order for any node to convey information to any other node
throughout the brain. Thus, the finding that higher tEA corre-
sponds to shorter average path length suggests that locally rep-
resented information about emotion could be more easily/
efficiently passed to other brain regions/networks. When subse-
quently exploring this metric for individual nodes, we also
observed a large number of ROIs that contribute to several
large-scale neural networks, which also showed the same rela-
tionship with tEA. This included: (i) Salience and Sensorimotor
network regions (perhaps suggesting more efficient broadcast-
ing/use of information about affective bodily states in those
with higher tEA; Smith et al., 2009, 2017a; Yeo et al., 2011; Chong
et al., 2017); (ii) Auditory and Language Network regions
(perhaps suggesting more efficient broadcasting/use of verbal
information in those with higher tEA; Fedorenko and
Thompson-Schill, 2014); (iii) Primary Visual, Precuneus and
DMN regions (perhaps suggesting more efficient broadcasting/
use of emotion-related information in episodic/semantic mem-
ory in those with higher tEA, including their use in internal
simulation processes such as those involved in imagining feel-
ings in the LEAS’s hypothetical scenarios; Barrett and Satpute,
2013; Eustache et al., 2016); (iv) Visuospatial (Dorsal Attention)
and ECN regions (perhaps reflecting more efficient top-down
control processes in those with higher tEA; Seeley et al., 2007;
Corbetta et al., 2008; Yeo et al., 2011) and (v) Basal Ganglia
Network regions (perhaps reflecting more efficient cognitive/be-
havioral reward-/habit-learning processes, and more efficient
broadcasting of affective value information, in those with
higher tEA; Hazy et al., 2007; Dolan and Dayan, 2013). However,
none of these ROI-specific results remained significant after
controlling for network density (i.e. although average path
length at the whole-network level did); as such, these possible
region-specific functional implications would most plausibly
follow from their greater number of direct connections (as
opposed to the specific character of those connections).

Previous studies have also found evidence that differences
in tEA correspond to differences in resting state and task-
related activation within similar DMN, ECN, and SN regions
(Lane et al., 1998; Frewen et al., 2008; McRae et al., 2008; Smith
et al., 2017c); however, this is the first study to find evidence of
tEA-related differences in function within the other network
regions listed above, and no previous study has examined the
relationship between tEA and average path length (although
only findings for some Default Mode, Salience, Visuospatial,
and Basal Ganglia Network regions remained significant at the
alternative r¼0.2 threshold, and none were significant the r¼0.4
threshold; see Supplementary Results). While future studies
will be necessary to replicate these novel findings, this provides
initial evidence that tEA may index very widespread differences
in information processing throughout the brain.

At the network level, density (average degree) can be
thought of as a measure of overall network complexity (i.e. the
average number of connections per node). Therefore, the find-
ing that higher tEA corresponds to greater average values for
this metric further supports the idea that awareness of emotion
is supported by more complex network architectures capable of
supporting more thorough information integration. These rela-
tionships were also present for Basal Ganglia Network regions
and for one subcortical SN region (i.e. a left thalamic region
involved in interoceptive processing). This further supports the
idea mentioned above that tEA may in part reflect the efficiency
of processing/broadcasting information about affective body

states and reward/value information (these findings also
remained significant at the alternative r¼0.2 threshold, al-
though not at the r¼0.4 threshold; see Supplementary Results).

It is important to note that many of the same psychiatric dis-
orders associated with lower tEA (reviewed in the introduction)
have also been found to have aberrant values for graph theory
metrics consistent with what we observed with lower tEA. For
example, relative to healthy individuals, those with schizophre-
nia show significantly lower values for clustering coefficient
and local efficiency (Kambeitz et al., 2016), as well as lower glo-
bal efficiency and greater average path length (Zhu et al., 2016).
Individuals with depression show similar reductions in cluster-
ing coefficient and global efficiency, as well as increases in aver-
age path length (Luo et al., 2015). Decreased global and local
efficiency have also been found in cocaine addiction (as well as
other types of substance-dependence; Wang et al., 2015). Given
that these disorders are also characterized by lower tEA
(reviewed in Lane et al., 2015), this opens up interesting ques-
tions for future research about the relationship between tEA,
psychiatric symptoms, and functional network architectures.
For example, it is possible (i) that lower tEA levels index particu-
lar network architectures that in turn promote vulnerabilities to
psychiatric symptoms, (ii) that psychiatric disorders reflect ab-
errant network architectures, which in turn hinder performance
during assessments of tEA or (iii) that there are bi-directional
combinations of these influences over time. Longitudinal stud-
ies would be necessary to investigate such questions, and the
results of the present study underscore the importance of carry-
ing out such studies.

It is also worth highlighting that socio-cognitive and personal-
ity variables, with both empirical and conceptual links to tEA,
have also been studied using graph theory—and these previous
results dovetail well with our own. For example, greater openness
to experience has been associated with both higher tEA (Lane
et al., 1990; Smith et al., 2018) and with metrics of greater network
efficiency within the DMN (Beaty et al., 2016). Thus, our present
results suggest that greater network efficiency could perhaps re-
late to the shared variance in these two individual difference var-
iables. As another example, individuals with autism display
reduced whole-brain network efficiency, and are also character-
ized in part by reduced theory-of-mind abilities (Keown et al.,
2017). Given that low tEA in part indexes low affective theory-of-
mind abilities, our results further suggest that high network effi-
ciency may be important for theory-of-mind abilities generally. It
will be important for future work to employ graph theory analy-
ses to further examine these relationships, as well as other simi-
lar social and affective information processing abilities.

Limitations, future directions and conclusions

One limitation of the present study was that our sample size
was relatively small. Therefore, we may have failed to detect
existing relationships between network properties and LEAS
scores due to reduced power (e.g. power ¼ 0.76 for the network
density analysis). This possibility of false negatives is especially
notable for our subsequent ROI-specific analyses, given the need
to correct for a large number of multiple comparisons. Some
related limitations were that our sample had a fairly restricted
age range (i.e. early adulthood), and was in the above-average
range for both IQ and LEAS scores. Each of these limitations calls
the generalizability of our results into question. Therefore, future
studies should attempt to replicate these findings in larger sam-
ples with greater power that include older adults as well as indi-
viduals with a wider range of IQ and LEAS scores. Yet another
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limitation is the lack of total consistency in our ROI-specific
results at different edge thresholds. Our suggested interpreta-
tions of ROI-specific findings should therefore be treated with
caution prior to replication in future work. In general, given that
some (but not all) of the ROI-specific results at the intermediate
(r¼0.3) threshold were also present at the liberal (r¼0.2) thresh-
old, and that almost none survived at the conservative (r¼0.4)
threshold, this suggests that tEA may be most relevant for pre-
dicting differences in the liberal-to-intermediate threshold range
(i.e. in individuals with higher tEA, more ROI-to-ROI connections
survive the jump in threshold from r¼0.2 to 0.3 than in those
with lower tEA, but most relevant connection differences are
removed by the jump from the r¼0.3 to 0.4 threshold). Finally, as
our results are purely correlational, no causal/directional claims
are warranted. Therefore, future studies, and perhaps especially
longitudinal studies, will be necessary to ascertain whether indi-
viduals with higher tEA subsequently develop greater network
complexity, or whether greater network complexity instead pro-
motes the development of higher tEA. At present, it appears
most plausible to expect that such interactions would be bidirec-
tional and mutually reinforcing.

In summary, the findings of the present study extend previ-
ous work on the neural basis of stable individual differences in
emotional awareness. While previous work has focused on pat-
terns of activation/connectivity in specific brain regions/net-
works, this is the first study to examine how tEA is related to
brain-wide information integration processes using graph the-
ory metrics. Consistent with current neural models of conscious
awareness in general (e.g. Dehaene, 2014; Smith, 2016, 2017),
and conscious awareness of emotion in particular (e.g. Smith
et al., 2017b), our findings support the idea that stable tenden-
cies to become more aware of emotions may be facilitated by
more complex and efficient information sharing dynamics
throughout the brain. As differences in tEA are currently
thought to play a role in moderating the development and treat-
ment of multiple emotional and systemic medical conditions
(reviewed in Lane et al., 2015), graph-theoretic analyses should
be extended to such clinical populations in future work. This
may represent a currently under-investigated avenue for dis-
covering potential biomarkers useful to differential diagnosis
and the prediction of treatment outcomes. Finally, our results
add to a small but growing body of literature using graph theory
to examine individual differences in personality and social, cog-
nitive, and affective processing abilities, and they highlight the
need for further work in this area. This could help elucidate
both common and unique neural network properties that may
underlie these important differences.

Supplementary data

Supplementary data are available at SCAN online.
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(2005). Emotional awareness deficits in inpatients of a psycho-
somatic ward: a comparison of two different measures of alex-
ithymia. Psychosomatic Medicine, 67(3), 483–9.

Tavares, P., Barnard, P., Lawrence, A. (2011). Emotional complex-
ity and the neural representation of emotion in motion. Social
Cognitive and Affective Neuroscience, 6(1), 98–108.

Tononi, G., Boly, M., Massimini, M., Koch, C. (2016).
Integrated information theory: from consciousness to its
physical substrate. Nature Reviews Neuroscience, 17(7),
450–61.

Wang, Z., Suh, J., Li, Z., et al. (2015). A hyper-connected but less
efficient small-world network in the substance-dependent
brain. Drug and Alcohol Dependence, 152, 102–8.

Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence–Second
Edition (WASI-II). San Antonio, TX: NCS Pearson.

Whitfield-Gabrieli, S., Nieto-Castanon, A. (2012). Conn: a func-
tional connectivity toolbox for correlated and anticorrelated
brain networks. Brain Connectivity, 2(3), 125–41.

Whitfield-Gabrieli, S., Thermenos, H.W., Milanovic, S., et al.
(2009). Hyperactivity and hyperconnectivity of the default net-
work in schizophrenia and in first-degree relatives of persons
with schizophrenia. Proceedings of the National Academy of
Sciences of the United States of America, 106(4), 1279–84.

Wright, R., Riedel, R., Sechrest, L., Lane, R., Smith, R. (2017). Sex
differences in emotion recognition ability: the mediating role
of trait emotional awareness. Motivation and Emotion, 1, 12.

Yeo, B.T., Krienen, F.M., Sepulcre, J., et al. (2011). The organization
of the human cerebral cortex estimated by intrinsic functional
connectivity. Journal of Neurophysiology, 106(3), 1125–65.

Zhu, J., Wang, C., Liu, F., Qin, W., Li, J., Zhuo, C. (2016). Alterations
of functional and structural networks in schizophrenia
patients with auditory verbal hallucinations. Frontiers in
Human Neuroscience, 10, 114.

R. Smith et al. | 675


	nsy047-FN1



