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inTRODUCTiOn

Catatonia was described for the first time by Kahlbaum in 1874 (1). It can be defined schematically 
as a motor dysregulation syndrome accompanied with a behavioral component. There are three main 
forms of catatonia: (i) akinetic, (ii) hyperkinetic, and (iii) malignant catatonia (2). These various phe-
notypes of the same syndrome led to a clinical heterogeneousness making the catatonia difficult to 
recognize and diagnose. It seems, however, that certain clinical signs occur with a greater frequency 
in catatonia. Indeed, in a study involving more than 230 catatonic patients, the “staring,” was found 
in more than 80% of cases. Among other frequent signs, were the immobility in 70% of cases, the 
mutism in 60% of patients, and the withdrawal in 50% of them (3). Various specific scales were 
developed to allow a more accurate diagnostic approach to catatonia. The Bush-Francis catatonia 
rating scale is the most commonly used one. It has many advantages: in addition to having a sensitiv-
ity of reaching 100% and a specificity between 75 and 100%, it is fast and easy to use in daily clinical 
practice (4). It is important to note that catatonia is a transnosographic syndrome with various 
underlying psychiatric and somatic causes. Most common somatic causes include epilepsy, systemic 
lupus erythematosus, intermittent porphyria, traumatic brain injury, dementia, encephalopathies 
(autoimmune, paraneoplastic, Hashimoto, etc.) (5). Furthermore, catatonia is found among 10% of 
psychiatric inpatients (6). Under the influence of Kraeplin, catatonia was linked for a long time exclu-
sively with schizophrenia (7). However, recent epidemiological studies showed that schizophrenia 
is found only in 20% of catatonic cases while mood disorders underlie 45% of cases (8). Catatonia 
is also frequent in children and adolescents, particularly in autism spectrum disorders where the 
prevalence varies between 12 and 17% (9). Despite these clinical and epidemiological facts, few data 
exist concerning the exact pathophysiological mechanisms underlying this syndrome. In this paper, 
we will make the synthesis of the existing data concerning the neurocognitive and neurobiological 
mechanisms involved in the akinetic forms of catatonia.

pREFROnTAL pHYSiOLOGY OF EMOTiOnS

Moskowitz considered catatonia as an evolutionary remainder of defense strategies associated with 
intense fear (10). It seems that in front of predators, several survival behaviors have been developed. 
Among them, the most known one was the “fight or flight” strategy. In cases where none of these 
two options was possible, a third strategy called “tonic immobility” (TI) would be set up which 
consists of a tonic suspension of motor activity. This defense strategy is based on the fact that many 
predators are attracted by their prey’s movements. This hypothesis seems to be confirmed by the 
subjective experience of catatonic patients. Indeed, once remitted from their catatonia, patients 
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report having felt invaded by a major and uncontrollable anxiety. 
Conversely, they do not seem to have been aware of their motor 
state (11). To better understand the brain abnormalities found in 
catatonic patients, it seems essential to focus on the neurological 
mechanisms involved in the physiological integration of emo-
tions. The amygdala appears to have a central role in emotional 
regulation processes, particularly negative emotions, such as fear 
or anxiety (12). The environmental informations are conveyed to 
different brain areas according to each specific sensory modality 
(for example, visual stimuli are conveyed to occipital cortex, audi-
tory informations to temporal cortex, etc.) and secondarily sent 
to the amygdala, serving as an emotional crossroad (12). To start 
making the link amygdala/emotions/catatonia, it may already be 
interesting to note that, in animals, hyperactivation of the amyg-
dala is responsible of a freezing behavior, which is similar to TI 
and symptoms found in the akinetic forms of catatonia (13). Once 
informations are integrated in the amygdala, they may, depend-
ing on the emotional valence, activate different neural circuits. In 
particular, functional MRI studies found that negative emotions 
are associated with increased activation of the orbitofrontal 
cortex (OFC) and the ventromedial prefrontal cortex (VMPFC) 
and decreased activity of dorsolateral prefrontal cortex (DLPFC). 
The exact opposite activation profile occurs with positive emo-
tions making the PFC a regulating crossroad depending on the 
emotion type (14). These variations in the activation/deactivation 
pattern seem to be modulated by the GABAergic system (15).
Each of the involved brain areas is associated with specific func-
tions. OFC is involved in decoding the emotional environmental 
situations and in taking decisions depending on the context (16). 
VMPFC is considered as a self-centered emotional integration 
center. It will allow, in some way, perceiving emotions (17). 
Regarding DLPFC role, it is implicated in cognitive processes 
and action planification (18). It will allow a cognitive approach in 
understanding emotions and a negative feedback on emotional 
processes, especially amygdalian ones. In other words, DLPFC 
performs cognitive control of emotions (19, 20). Furthermore, 
the DLPFC is a major integrative crossroad. Indeed, it receives 
informations, among others, from the posterior parietal cortex, 
which is itself involved in negative emotions (21). DLPFC will 
then project mainly on motor areas (22). It is therefore considered 
as a sensorimotor associative region bridging the gap between 
emotional cognitive perception and motor skills (23).

pATHOpHYSiOLOGY OF CATATOniA

To confirm TI hypothesis in catatonia, functional MRI studies 
have investigated catatonic brain activation during emotional 
processing. One of them compared patients who remitted from 
catatonia to non-catatonic psychiatric patients and finally to 
healthy subjects. Authors found among remitted catatonic 
patients, a hyperactivation of the OFC and the VMPFCs dur-
ing negative emotions compared to the two other groups (24). 
Furthermore, statistical analysis showed a positive correlation 
between the hyperactivation of the OFC and behavioral/emo-
tional symptoms and between the hyperactivation of VMPFCs 
and motor symptoms (24). The authors also found alterations 
in corticocortical connections between (i) OFC and VMPFC; 

(ii) between VMPFC/DLPFC and motor/premotor cortex (24). 
Another study examined the effect of lorazepam [a benzodiaz-
epine known for its effectiveness in catatonia (25, 26)] on the 
modulation of activation patterns of the PFC during negative 
emotions. A decrease in OFC and VMPC hyperactivation was 
observed with lorazepam in successfully treated catatonic 
patients, leading to a regularization of the OCF activity, compared 
to control (27). It seems that GABA and especially the GABA-A 
receptors may play an important role in the pathophysiology of 
catatonia. One study looked at the density of GABA-A receptors 
as well as changes in cerebral perfusion in catatonic patients 
compared to non-catatonic psychiatric patients and healthy 
subjects. The authors found a decrease of the GABA-A receptors 
density in the DLPFC associated with a decrease of cerebral per-
fusion in prefrontal and posterior parietal cortex (28). Moreover, 
motor and affective symptoms were significantly associated with 
the decreased GABA-A receptors density in the DLPFC (28). 
Involvement of the DLPF in catatonia has also been demon-
strated by indirect evidences, such as the therapeutic efficacy 
of high-frequency transcranial magnetic stimulation applied to 
this area (29, 30). Some authors tried to correlate brain activa-
tion changes with different catatonic symptoms, especially motor 
ones. A controlled study using different motor tasks (idle status, 
self-initiated movements, and movements on request) showed a 
decreased activity of the prefrontal cortex, the parietal cortex, and 
the supplementary motor area in catatonic patients compared 
to controls (31). These changes persisted even after remission. 
Specifically, it seems that it is the latency of late motors poten-
tials at the frontoparietal line that is affected in catatonia with 
GABAergic altered sensitivity compared to control (31). These 
results are in agreement with the fact that catatonic patients may 
successfully initiate movements but present difficulties in termi-
nating them (32, 33). Another study examined cerebral perfusion 
changes in catatonic patients before and after treatment with 
electroconvulsive therapy (ECT) and found increased perfusion 
in the parietal cortex after successful treatment (34). Indeed, it 
appears that the parietal cortex may play an important role in 
motricity as demonstrated by the occurrence of a catatonic state 
in patients with a parietal lesion (35). Considering these studies, 
it seems that different brain areas, in addition to the PFC, are 
involved in the catatonia. Neurocognitive studies showed a selec-
tive deficit in visual–spatial performances in catatonic patients 
compared to controls (36). These results confirmed indirectly 
the role of the posterior parietal cortex dysfunction in catatonia 
as it is broadly implicated in visual–spatial performance (37, 
38). A positive correlation was also found between the activity 
of mirror neurons and echophenomena (echopraxia, echolalia) 
and their disappearance after administration of lorazepam (39). 
Indeed, these echo-phenomena seem to be attributed to the 
disinhibition of the mirror neurons, which would be related to 
a control deficit of the GABAergic system, within the OCF, the 
VMPFC, the DLPFC, and the parietal cortex (40). Moreover, 
glutamate seems to be involved in catatonia as well, particularly 
via the NMDA receptors activity. These assumptions are based 
primarily on the efficacy of NMDA-receptor antagonists, such as 
amantadine in catatonia and also in cases of catatonia related to 
anti-NMDA receptor encephalitis (41–44). Amantadine may act 
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by decreasing cerebral glutamatergic activity creating a relative 
increase in the inhibitory GABAergic activity (45).

COnCLUSiOn AnD pERSpECTiVE

The exact mechanisms underlying the pathophysiology of 
catatonia still remain a mystery. It seems that some people 
are more predisposed than others to develop this syndrome. 
Indeed, most studies agreed on the existence of trait markers, 
especially GABAergic cortical dysregulation, resulting in the 
failure of cognitive control of emotions. When intense emo-
tional changes generated by psychiatric disorders (depression, 
mania, and schizophrenia) are added to these predispositions, 
this would precipitate a state of TI: in other words, catatonia. 
Schematically, in response to negative emotions, the GABAergic 
inhibitory control at the OFC could not take place, leading to 
a deregulation in VMPFC/DLPFC balance, which would then 
prevent cognitive control of negative emotions by the DLPFC. 
In addition, the deficit in DLPFC activation would impair its 
associative function, and particularly its connectivity with the 
parietal cortex and the motor areas leading to the occurrence of 
the motor signs found in akinetic forms of catatonia. There are 
many limits to the studies mentioned above: (i) they included a 
small number of patients, (ii) few of them compared catatonic 
patients to healthy controls or to controls with psychiatric 
disorders, and (iii) clinical heterogeneity of catatonia was not 
taken in consideration in these studies. In the future, it might be 
interesting to develop clinico-morphological correlation studies 

with particular attention to the potential role of the amygdala in 
catatonia. This approach might open the way for new therapeutic 
options targeting the amygdala. For example, oxytocin seems to 
have a direct attenuating effect on reactions of fear and anxiety by 
acting directly on the amygdala (46). Other studies focusing on 
the role of glutamate in catatonia could pave the way for thera-
peutic innovations. For example, it is possible to imagine the use 
of drugs with dual action on both GABAergic and glutamatergic 
systems to treat resistant forms of catatonia. Some drugs having 
such properties are already available, especially acamprosate and 
lamotrigine which possesses this dual receptor profile (47). Rapid 
and accurate diagnosis and treatment of catatonia is crucial in 
clinical practice not only to avoid somatic complications but to 
avoid the development of resistance to treatment as well. Indeed, 
the longer catatonic symptoms last, the more will be the risk of 
developing resistance to treatment (48). Consequently, rapid 
achievement of full remission of catatonic symptoms should be 
an essential goal.
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