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Abstract
From 2002–2005, Panama experienced a malaria epidemic that has been associated with

El Niño Southern Oscillation weather patterns, decreased funding for malaria control, and

landscape modification. Case numbers quickly decreased afterward, and Panama is now in

the pre-elimination stage of malaria eradication. To achieve this new goal, the characteriza-

tion of epidemiological risk factors, foci of transmission, and important anopheline vectors is

needed. Of the 24,681 reported cases in these analyses (2000–2014), ~62% occurred in

epidemic years and ~44% in indigenous comarcas (5.9% of Panama’s population). Sub-

analyses comparing overall numbers of cases in epidemic and non-epidemic years identi-

fied females, comarcas and some 5-year age categories as those disproportionately

affected by malaria during epidemic years. Annual parasites indices (APIs; number of

cases per 1,000 persons) for Plasmodium vivax were higher in comarcas compared to prov-

inces for all study years, though P. falciparum APIs were only higher in comarcas during epi-

demic years. Interestingly, two comarcas report increasing numbers of cases annually,

despite national annual decreases. Inclusion of these comarcas within identified foci of

malaria transmission confirmed their roles in continued transmission. Comparison of spe-

cies distribution models for two important anophelines with Plasmodium case distribution

suggest An. albimanus is the primary malaria vector in Panama, confirmed by identification

of nine P. vivax-infected specimen pools. Future malaria eradication strategies in Panama

should focus on indigenous comarcas and include both active surveillance for cases and

comprehensive anopheline vector surveys.

Author Summary

The study of malaria epidemiology and the spatial distributions of both malaria cases and
vectors of malaria are essential for the elimination of this disease. Although Panama
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experienced a malaria epidemic in the early 2000s, this country reports fewer than 1,000
autochthonous cases each year. By understanding the risk factors for Plasmodium trans-
mission and the locations of hot spots, vector and malaria control interventions can be tar-
geted to both high risk individuals and regions, to maximize impact. In this research
article, our results underscore the health disparities experienced by the indigenous people
of Panama, as we identify them as those at greatest risk of malaria and their comarcas
(indigenous reservations) as transmission hot spots. Additionally, we are able to implicate
Anopheles albimanus as the primary vector of malaria in Panama through testing of col-
lected specimens for Plasmodium vivax and P. falciparum infection and by calculating the
odds of co-occurrence of both vectors with cases of malaria throughout Panama.

Introduction
Between 2002 and 2005, Panama experienced a malaria epidemic which reached a peak of
5,085 cases in 2004 [1,2], associated with El Niño Southern Oscillation events [3], decreased
malaria control funding [3,4] and extensive landscape modification/deforestation [5]. Intensi-
fied control efforts [6] quickly reduced the number of annually reported cases, with the Pana-
manian Ministry of Health (MINSA) reporting only 747 cases (100% P. vivax) in 2014,
restricted to eastern Panama. Because of its current low level of malaria transmission, Panama
is now in the pre-elimination stage of malaria eradication [7].

The process of malaria elimination will be difficult, as residual malaria cases are likely to
occur in hard-to-access communities; thus the reported number of cases is an underestimate of
the actual situation [8]. In 2014, ~63% of incident malaria cases in Panama occurred in the
comarcas (indigenous reservations) of eastern Panama, near malaria endemic western Colom-
bia [5]. Despite efforts to reduce migration of Colombians into Panama from this region, those
successful at crossing the border are mobile, and rarely included in malaria surveillance pro-
grams [5]. Elimination-oriented control measures must identify spatial foci (hot spots) of resid-
ual infections using spatial tools, such as clustering analyses and risk mapping, to target
interventions [9,10,11]. To increase the effectiveness of these control measures, it is useful to
identify socio-demographic risk factors, using active surveillance with prompt treatment of
identified cases (symptomatic and asymptomatic), evaluating current control methods by mea-
suring their impact, and, finally, conducting vector biology studies to understand local anophe-
line ecology, biology and behavior [6].

Disparities exist between indigenous (Ngöbe-Buglé, Kuna Yala, Kuna de Madungandí,
Kuna de Wargandí and Emberá-Wounaan) and non-indigenous Panamanians [12]. More
than 96% of Panama’s indigenous population lives below the poverty line ($1,126 per person
per year in 2008), compared to 17.7% among urban populations [3,12,13]. Additionally, indig-
enous Panamanians have a 7 to 9 year reduction in relative life expectancy [12]. A recent study
has associated increased malaria incidence in Panama’s indigenous populations with living
conditions, including homes built with temporary materials [11]. These underserved indige-
nous populations receive outpatient health services fromMINSA, but access is reduced because
of the prohibitively long and costly travel required to reach health posts [12].

Early research into Panama’s malaria vectors identified several Plasmodium-infected
Anopheles species, including Anopheles albimanus, An. pseudopunctipennis, An. tarsimaculata
(Syn. An. aquasalis), An. bachmanni (Syn. An. triannulatus), An. neomaculipalpus, An. puncti-
macula (Syn. An.malefactor), An. argyritarsis, An. eiseni, and An. apicimacula s.l.
[14,15,16,17,18,19]. To date, 15 species and/or species complexes have been identified in
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Panama [2,20]. However, until recently, no single Anopheles species was formally incriminated
as a vector of human Plasmodium spp. since the 1930s [2,20]. A 2015 study that tested anophe-
lines from Comarca Kuna Yala (CKY) for Plasmodium infection found An. albimanus infected
with P. vivax [21].

In 2008, Loaiza et al. [20] summarized selected vector biology metrics of anophelines col-
lected over 35 years throughout the western Atlantic coast and eastern provinces/comarcas of
Panama. These data provided important information on the complex nature of local Plasmo-
dium transmission, and An. albimanus and An. punctimacula s.l. were identified as the most
widespread and abundant anophelines [20]. Anopheles albimanus is a major regional malaria
vector, with a distribution from southern Mexico to northern South America [22,23]. It is gen-
erally considered an exophagic, zoophilic vector that bites in the evening and throughout the
night, though its behavior varies across its distribution [22,24]. Anopheles punctimacula s.l., a
zoophilic vector [25], shares much of its distribution with An. albimanus, and has been
observed fromMexico to Argentina, and in the Caribbean Islands [26,27].

The present study aims to address some of the knowledge gaps, advocated by [6], which
might impede the implementation of effective malaria elimination strategies in Panama. The
goal of elimination can be achieved by identifying risk factors associated with epidemic and
non-epidemic malaria years in Panama, from 2000–2014, and determining the locations of
malaria hot spots, both of which are critical during the pre-elimination stage of malaria eradi-
cation [11]. Additionally, this study aims to determine which Anopheles species are likely
involved in malaria transmission, using spatial statistics, species distribution modeling, and
testing of specimens for Plasmodium infection.

Materials and Methods

Malaria incidence, census, and geographic data
De-identified, national malaria incidence data (2000–2014) were obtained from the Depart-
ment of Statistics and Vector Control of MINSA. These data included case location (i.e., prov-
ince, district, and corregimiento–administrative subdivision of a district), age (years), and
Plasmodium species (determined by blood smear microscopy). Cases identified as “imported”
in the database were removed prior to analyses. Demographic information was obtained from
the 2010 Panamanian census (Institute of Census and Statistics of the Comptroller office of the
Republic of Panama) [28,29], and included both the total number of persons per corregimiento
and the number of people in each province/comarca per 5-year age category. An ArcMap-com-
patible (ESRI, Redlands, California) shapefile depicting the geographic boundaries of Panama’s
provinces, districts and corregimientos was obtained from the Smithsonian Tropical Research
Institute (STRI) geographic information systems (GIS) information portal [30]. Case data that
could not be matched to a corregimiento present in the STRI GIS shapefile were excluded prior
to analyses.

Epidemiological analyses
Chi-squared statistics were used to determine statistically significant differences in distribu-
tions of cases between non-epidemic (2000–2001, 2006–2014) and epidemic (2002–2005)
years, by relevant demographic variables, including sex, age category (5-year intervals), loca-
tion (i.e., province or comarca), and Plasmodium species. Logistic regression was used to deter-
mine statistically significant differences between non-epidemic and epidemic years (binary
variable; 0 = non-epidemic, 1 = epidemic), while controlling for Plasmodium species (binary;
0 = P. vivax, 1 = P. falciparum) and multiple demographic variables simultaneously [province/
comarca (binary; 0 = province, 1 = comarca), age in years (continuous), sex (binary; 0 = female,
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1 = male), and an interaction variable between sex and province/comarca). Annual Parasite
Indices (APIs; annual number of cases per 1000 persons) per Plasmodium species were plotted
by year and location to visualize differences in temporal transmission intensities between prov-
inces and comarcas. Finally, the average API in epidemic versus non-epidemic years was plot-
ted versus age category, by sex and location, for each Plasmodium species separately, to better
characterize risk factors for epidemic and non-epidemic malaria. Non-parametric Kolmogo-
rov-Smirnov tests for equality in continuous distribution functions were employed to assess
differences in age category patterns of cases by sex and Plasmodium species between epidemic
and non-epidemic years. R v.3.1.3 software [31] and RStudio v.0.98.1091 (Boston, MA) were
used for all statistical testing.

Identification of spatial foci of increased transmission
Two cluster detection methods were used to identify malaria incidence hot spots for each year
of the study: Kulldorff’s spatial scan statistic [32,33] and Getis-Ord Gi� [34,35]. The Kulldorff
method was employed using Clusterseer software (BioMedware, Ann Arbor, Michigan) and
requires spatial, census and case data. Getis-Ord statistics were undertaken using ArcMap soft-
ware v.10.2.2 and the Spatial Statistics extension (Mapping Clusters>> Optimized Hot Spot
Analysis), using spatial and incidence rate (API) information. All hot spot analyses were con-
ducted using yearly case data or API information and the 2010 census. Additionally, the spatial
location of cases was considered the centroid of the corregimiento from which the cases were
reported. The number of centroids (corregimientos) per province and comarca can be found in
Table 1. The results of the two spatial analyses were combined by summing the frequency of a
corregimiento being identified (per year) by either or both methods. These frequency data were
then summarized by summing the frequencies of each corregimiento in epidemic years and
non-epidemic years separately, as in Xia et al. [36]. Maximum corregimiento-specific frequency
in epidemic years is 8 (2 detection methods x 4 epidemic years), and the maximum in non-epi-
demic years is 22 (2 detection methods x 11 non-epidemic years). The summed frequencies
were then projected onto the STRI GIS Panama shapefile to visualize their geographic locations
and to provide a summarized distribution of the foci of increased malaria transmission during
each period.

Table 1. Number of districts and corregimientos (centroids) per province or comarca in Panama.

Province No. of Districts No. of Corregimientos

Bocas del Toro 3 17

Chiriquí 13 96

Coclé 6 42

Colón 5 40

Darién 2 25

Herrera 7 48

Los Santos 7 80

Panamá 11 111

Veraguas 12 95

Comarca Emberá-Wounaan 2 5

Comarca Kuna Yala 1 4

Comarca Ngöbe-Buglé 7 58

doi:10.1371/journal.pntd.0004718.t001
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Species distribution modeling
Species distribution models for An. albimanus and An. punctimacula s.l. were generated using
maximum entropy modeling, implemented in MaxEnt v.3.3.3k [37,38]. Species occurrence
data were obtained from VectorMap [39] and through literature review
[20,25,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57], representing collection locations
across the entire distribution of both species. MaxEnt models were built using climate and
landscape variables, including 19 Bioclim variables (spatial resolution of 30 arc-seconds) [58],
world soil suborder [59], altitude [60], hydrological variables (flow accumulation and flow
direction) [61], and tree cover [62]. The MaxEnt program was run with default parameters,
with the following differences: create response curves, jackknife to measure variable impor-
tance, random seed, do not write clamp grid when projecting, 25 random test percentage, 2 reg-
ularization multiplier, 15 replicates, subsample replicated run type, do not write output grids,
and 5000 maximum iterations. A bias file was created for each species to inform the program
that the area of interest was not sampled uniformly [63].

After running the full model for each species, predictor variables were assessed for their per-
cent contribution to the model (� 3%) and pair-wise correlations (cut-off�|0.80|), as in
Young et al. [64]. The percent contribution of each variable is given in the MaxEnt output.
However, pairwise correlations were determined using the SDM Toolbox extension for Arc-
Map [65]. The predictor variables that met the above criteria were then used to create the final,
parsimonious model, representing the average distributions of 15 MaxEnt iterations. These dis-
tributions, which represent the probability of species occurrence at each pixel of the map, were
reclassified into a binary image (0 = absent, 1 = present) using the MaxEnt calculated maxi-
mum training sensitivity plus specificity logistic threshold in ArcMap. This threshold has been
shown to be reliable when using presence-only data [66].

Correlation of anopheline predicted distributions with incidence of
malaria
Predicted An. albimanus and An. punctimacula s.l. distributions were compared, statistically,
with those of malaria hot spots and API per corregimiento using odds ratios (99% confidence
intervals), as in [67]. Eight comparisons were made per vector species (P. vivax and P. falcipa-
rum for API and hot spot analyses, separately, in epidemic versus non-epidemic years). Odds
ratios (ORs) were calculated with the raster [68] and abd R packages [69], using binary pres-
ence/absence SDMmaps compared to binary hot spot maps (0: never identified in a hot spot;
1: identified in a hot spot) or corregimiento-level API maps (0: unstable transmission, average
API< 0.1 cases per 1,000; 1: stable transmission, average API� 0.1 cases per 1,000).

Collection and Plasmodium testing of anopheline specimens
Anophelesmosquitoes were captured during overnight collections using human-landing catch,
CDC light traps, Shannon traps, or resting. Collections occurred in thirty-one localities
throughout Panama (n = 22 in 2006–2007, n = 14 in 2008–2015; Fig 1, S1 Table). Specimens
were morphologically identified using a dichotomous key [70]. The heads and thoraces of spec-
imens were pooled (n� 5 per pool) by species, locality and collection date, and extracted using
a Qiagen BioSprint 96 robot DNA extractor and Qiagen BioSprint 96 DNA Blood kits (Venlo,
Netherlands). Specimens collected between 2006 and 2007 were tested for Plasmodium infec-
tion using ELISA [71], and those collected afterward (2008–2015) were tested using nested,
real-time TaqMan PCR [72]. Inconclusive PCR results (i.e., Plasmodium genus-specific prod-
uct amplified, but P. vivax and P. falciparum-specific products not amplified), were amplified
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again and the genus-specific product was sequenced and submitted to the National Center for
Biotechnology Information (NCBI) Blastn database to assess species homology within the Plas-
modium genus. Additionally, any Plasmodium-positive mosquito specimens not able to be
morphologically identified (e.g., a member of a species complex) were molecularly identified
using the ITS2 region of the mosquito 5.8S ribosomal RNA [73].

Results

Epidemiological data and analyses
Between 2000 and 2014, 24,937 malaria cases were reported from Panama. Of these, 256 (236
P. vivax, 16 P. falciparum, and 4 unknown) were excluded from analysis because the case corre-
gimiento was not present in the Panama shapefile (n = 153), the age of the case was not avail-
able (n = 99), or the Plasmodium species was unknown (n = 4). The final data set included
24,681 cases, and no differences were noted in proportions of Plasmodium species between the
original and final data sets. Plasmodium vivax cases were reported in every year of the study.
However, no P. falciparum cases have been reported in Panama since 2010 (Fig 2). The epi-
demic peaks for both P. vivax and P. falciparum occurred in comarcas in 2003, and a year later
in the provinces. During the malaria epidemic years (2002–2005), the average number of cases
per year far exceeded that of non-epidemic years (2000–2001, 2006–2014) for both parasites
(average 3.8-fold and 20.9-fold increases for P. vivax and P. falciparum, respectively). For all P.
falciparum analyses, 2000–2001 and 2006–2010 were used as the non-epidemic years, since no
P. falciparum cases were reported after 2010.

Chi-squared analyses detected statistically significant differences in the distribution of cases
in epidemic and non-epidemic years by sex (w2df¼1 = 4.968, p = 0.026), location (w2df¼1 = 61.856,

Fig 1. Map of Panama, depicting anopheline collection sites, provinces, and comarcas. 2006–2007
collection sites = black circles; 2008–2015 collection sites = grey squares; provinces = white; comarcas =
grey. Yellow star indicates location of Panama City. Each province and comarca is labeled. BOC = Bocas del
Toro; CHI = Chirquí, CNB = Comarca Ngöbe-Buglé, VER = Veraguas; HER = Herrera; LST = Los Santos;
COC = Coclé, COL = Colón; PAN = Panamá, CKY = Comarca Kuna Yala; CKM = Comarca Kuna de
Madungandí; CKW = Comarca Kuna deWargandí, CEM = Comarca Embera-Wounaan; DAR = Darién. CKM
is a territory within PAN province; CKW is a territory within DAR province. Insets depict details in northern
BOC and in southwestern DAR provinces. Panama GIS shapefile obtained from STRI [30].

doi:10.1371/journal.pntd.0004718.g001
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p< 0.001), age category (w2
df¼16 = 50.484, p< 0.001), and Plasmodium species (w2

df¼1 =

1228.476, p< 0.001; Table 2). During epidemic years, the indigenous people of the comarcas,
females, and some age groups experienced more cases than expected. In addition, more cases
of P. falciparum were reported in epidemic years than expected.

Logistic regression analyses uncovered statistically significant differences between non-epi-
demic and epidemic years with respect to Plasmodium species and some demographic vari-
ables. The final, adjusted logistic model included Plasmodium species, province/comarca, age
in years, sex, and an interaction term between sex and province/comarca. In epidemic years,
there was a statistically significant 41% increase (odds ratio = 1.41, 95% confidence inter-
val = 1.39–1.44) in the odds of a case being due to P. falciparum compared to non-epidemic
years, controlling for all other variables. Additionally, in epidemic years, there was a statistically
significant increase in the odds of a case occurring in a comarca (OR = 1.08, 95% CI = 1.06–
1.10), compared to non-epidemic years, and controlling for all other variables. Finally, in epi-
demic years, there was a statistically significant interaction between sex and province/comarca
resulting in a decrease in odds of a male case occurring in a comarca (OR = 0.97, 95%
CI = 0.95–0.99), compared to non-epidemic years, and controlling for all other variables. Age
(in years) and sex did not contribute to a statistically significant difference in odds of a case
between non-epidemic and epidemic years in these analyses, after controlling for all other
variables.

Visualization of average API per Plasmodium species showed striking differences in malaria
transmission and epidemiology experienced by provinces and comarcas. The API for P. vivax
in comarcas was higher than that of the provinces for all years in this study (peak ~12.3 cases
per 1,000 persons in 2003; Fig 3A). However, the P. falciparum API was higher only in the epi-
demic years (peak of ~2.6 cases per 1,000 persons in 2003) and nearly equal in non-epidemic
years (Fig 3C). Further analysis by individual provinces and comarcas allowed for a more direct
determination of the regions which had a disproportionate number of cases. CNB contributed
the most P. vivax cases to the epidemic early on (~15 cases per 1,000 in 2003); in contrast,
other comarcas and provinces, such as Comarca Emberá-Wounaan (CEM) and BOC reached
their peaks in 2005 (Fig 3B). Despite their recognition as indigenous territories since January
1996 and July 2000 respectively [28], no cases of malaria were reported from Comarca Kuna de

Fig 2. Number of cases of Plasmodium vivax and Plasmodium falciparum in the provinces and
comarcas of Panama by year.Grey lines = comarcas; black lines = provinces; solid lines = P. vivax; dashed
lines = P. falciparum.

doi:10.1371/journal.pntd.0004718.g002
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Madungandí (CKM) and Comarca Kuna de Wargandí (CKW) before 2008. However, since
reporting began, the P. vivax API in both has increased, on average–a pattern unique to these
comarcas (Fig 3B). Increases in P. falciparum API occurred primarily during the 2002–2005
malaria epidemic, beginning with a drastic increase in CKY (16.2 cases per 1,000 in 2003; Fig
3D). This increase was followed by subsequent increases in CEM (~3.5 cases per 1,000 in
2004), and in DAR (~3.7 and 4.6 cases per 1,000 in 2004 and 2005, respectively) and CKY
(~3.1 cases per 1,000 in 2005) (Fig 3D).

In general, average API per age category was greatest in comarcas in epidemic years for both
sexes and both parasites (Fig 4). Plasmodium vivax API age category patterns (Fig 4A and 4C)
do not differ greatly by province/comarca in epidemic and non-epidemic years, though male

Table 2. Basic characteristics of malaria cases in Panama during non-epidemic and epidemic years (2000–2014).

Variable Non-epidemic* Epidemic† X2 p-value

no. % no. %

Sex

Male 5506 58.93% 8816 57.48% p = 0.026

Female 3838 41.07% 6521 42.52%

Location

Province 5536 59.25% 8301 54.12% p < 0.001

Comarca 3808 40.75% 7036 45.88%

Age Category

0–4 1190 12.74% 1889 12.32% p < 0.001#

5–9 1287 13.77% 2069 13.49%

10–14 1150 12.31% 2144 13.98%

15–19 1109 11.87% 1894 12.35%

20–24 921 9.86% 1562 10.18%

25–29 760 8.13% 1272 8.29%

30–34 655 7.01% 1155 7.53%

35–39 540 5.78% 806 5.26%

40–44 509 5.45% 855 5.57%

45–49 302 3.23% 390 2.54%

50–54 270 2.89% 404 2.63%

55–59 195 2.09% 274 1.79%

60–64 186 1.99% 294 1.92%

65–69 125 1.34% 159 1.04%

70–74 82 0.88% 92 0.60%

75–79 31 0.33% 41 0.27%

80–84 25 0.27% 23 0.15%

85–89 3 0.03% 9 0.06%

90–94 2 0.02% 5 0.03%

95–100 2 0.02% 0 0.00%

Species

P. vivax 9128 97.69% 12741 83.07% p < 0.001

P. falciparum 216 2.31% 2596 16.93%

* Non-epidemic years: 2000–2001, 2006–2014

† Epidemic years: 2002–2005

# Age categories 85–89, 90–94 and 95–100 were excluded from Chi-squared analyses due to low sample size.

doi:10.1371/journal.pntd.0004718.t002
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APIs were greater than those of females in general. Additionally, there is an overall decreasing
trend in P. vivax API with increasing age (Fig 4A and 4C). However, P. falciparum APIs were
much more variable across age categories (Fig 4B and 4D). Kolmogorov-Smirnov tests compar-
ing age category-related patterns in cases between epidemic and non-epidemic years found no
differences by sex and province/comarca for P. vivax (comarcamales, p = 0.819; province
males, p = 0.560; comarca females, p = 0.819; province females, p = 0.819). However,

Fig 3. Annual Parasite Index (API) per year and location. Provinces = black dashed lines; comarcas =
grey solid lines.A andC) Plasmodium vivax and P. falciparum, respectively, with provinces and comarcas
grouped;B andD) P. vivax and P. falciparum, respectively, with provinces and comarcas separated. Note
different y-axis scales on each panel. CNB = Comarca Ngöbe-Buglé, CKW = Comarca Kuna deWargandí,
CKM = Comarca Kuna de Madungandí, CKY = Comarca Kuna Yala, CEM = Comarca Emberá-Wounaan,
DAR = Darién province.

doi:10.1371/journal.pntd.0004718.g003

Fig 4. Annual Parasite Index (API) versus age group for epidemic and non-epidemic malaria years, by
sex and location. Epidemic years = solid lines; non-epidemic years = dashed lines; provinces = black;
comarcas = grey. Left y-axis represents comarca APIs and right y-axis represents province APIs.A andC)
Plasmodium vivax API among males and females, respectively; B andD) P. falciparum API among males
and females, respectively.

doi:10.1371/journal.pntd.0004718.g004
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statistically significant differences in the age category-related patterns were identified for P. fal-
ciparum cases in all four categories (p< 0.001, p = 0.001, p< 0.001, and p = 0.348
respectively).

Identification of spatial foci of increased transmission
Hot spot analyses show two major foci of increased P. vivax transmission in epidemic years:
CNB, and southern DAR and the southwestern part of CEM (Figs 5A and S1). The locations of
these foci differ from those of non-epidemic years, where only one major focus was observed in
eastern Panama and included CKM, CKY, northern and southern DAR, CKW, and CEM (Figs
5C and S1). A smaller focus, identified less frequently in non-epidemic years, was observed in
BOC, Veraguas (VER), and CNB (Fig 5C). Foci of P. falciparum transmission were only found
in eastern Panama and largely overlapped between epidemic and non-epidemic years (Figs 5B,
5D and S2). The focus was centered near the Caribbean coast of eastern Panama in epidemic
years and included CKM, CKY, northern DAR, CKW and northern CEM. However, it was
centered near the Pacific coast in non-epidemic years, primarily in DAR and CEM.

Species distribution models and correlation with Plasmodium
The An. albimanus full model produced a mean area under the curve (AUC) of 0.938. AUC
ranges from 0.5 (random ranking of presence versus background sites) to 1.0 (perfect ranking),
and is a value used to assess model performance [38]. Altitude, soil substrate, tree cover and
Bioclim variables bio2 (mean diurnal range), bio4 (temperature seasonality), bio6 (minimum
temperature of the coldest month), and bio9 (mean temperature of the driest quarter) all
contributed� 3% to the model. Pairwise variable correlations� |0.8| were observed among
the Bioclim variables bio2 and bio6 (bio6 was removed). The final/parsimonious model (mean
AUC = 0.931) included altitude, soil substrate, tree cover, bio2, bio4, and bio9. The maximum
training sensitivity plus specificity logistic threshold (0.1969) was used to create an An. albima-
nus species presence/absence species distribution map (Fig 6A).

Fig 5. Total frequency of cluster occurrence for Plasmodium vivax and P. falciparum in Panama.Corregimientos are colored by the
frequency at which they were identified by both hot spot detection methods over the designated period.A) P. vivax cluster frequency by
corregimiento in epidemic years (2002–2005; maximum frequency = 8). B) P. falciparum cluster frequency by corregimiento in epidemic
years (2002–2005; maximum frequency = 8). C) P. vivax cluster frequency by corregimiento in non-epidemic years (2000–2001, 2006–
2014; maximum frequency = 22).D) P. falciparum cluster frequency by corregimiento in non-epidemic years (2000–2001, 2006–2010;
maximum frequency = 14). Frequencies were calculated using data shown in S1 and S2 Figs. Panama GIS shapefile obtained from STRI
[30].

doi:10.1371/journal.pntd.0004718.g005
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The An. punctimacula s.l. full model produced a mean AUC of 0.885. Altitude, soil sub-
strate, tree cover, bio2 (mean diurnal range), bio6 (minimum temperature of the coldest
month), bio7 (annual temperature range), and bio14 (precipitation of the driest month) all
contributed� 3% to the model. Pairwise variable correlations� |0.8| were observed among
the Bioclim variables bio2, bio6 and bio7 (bio6 and bio7 were removed). The final/parsimoni-
ous model (mean AUC = 0.888) included altitude, soil substrate, tree cover, bio2, and bio14.
The maximum training sensitivity plus specificity logistic threshold (0.2588) was used to create
an An. punctimacula s.l. presence/absence species distribution map (Fig 6B).

Overall, An. punctimacula s.l. has a wider distribution than An. albimanus in Panama.
Although areas of predicted An. punctimacula s.l. presence are found throughout western Pan-
ama and in nearly all areas of central and eastern Panama, areas of predicted An. albimanus
presence tended to be found nearer to the coasts. In general, correlative analyses showed signif-
icantly increased odds of both P. vivax and P. falciparum (corregimiento-associated API and
areas identified in hot spot analyses) in areas of predicted An. albimanus presence in both epi-
demic and non-epidemic years (Table 3). However, there was a significant reduction in odds of
epidemic and non-epidemic Plasmodium transmission in areas of predicted An. punctimacula
s.l. presence (Table 3).

Plasmodium testing of anophelines
Collecting efforts in thirty-one localities across Panama (Fig 1) resulted in 19,163 anopheline
specimens (13,803 in 2006–2007 and 5,360 in 2008–2015; Table 4, S1 Table). Among these
specimens, members of eight species (An. albimanus, An. aquasalis, An.malefactor, An. neivai,
An. neomaculipalpus, An. nuneztovari s.s., An. pseudopunctipennis, and An. vestitipennis) and
four species complexes (An. apicimacula s.l., An. punctimacula s.l., An. strodei s.l., and An. tri-
annulatus s.l.; Table 4, S1 Table) were identified using morphological identification. Because
the [70] morphological key is not reliable for all anopheline species in eastern Panama, speci-
mens originally considered to be An. oswaldoi were molecularly identified using the COI bar-
code, as in [75]; all these specimens were An. nuneztovari s.s. Four specimens could not be
identified morphologically (2 –Anopheles (Nyssorhynchus) spp. and 2 –Anopheles (Arribalzagia
series) spp.).

ELISA testing of specimens collected in 2006–2007 identified nine pools of An. albimanus
infected with P. vivax (3 with VK210 variant and 6 with VK247 variant). These specimens were
collected in BOC (Fig 1, Table 4, S1 Table). Real-time PCR of specimen pools from 2008–2015

Fig 6. Species distribution models. A andC) Anopheles albimanus andB andD) Anopheles punctimacula
s.l. in Panama. PanelsA andB represent the full extent of the species distribution models. PanelsC andD
represent the distributions of each species within Panama. Color shading indicates areas of predicted
suitable habitat/presence of the species; white indicates areas of predicted absence of the species. Central
and South American GIS shapefiles freely available from DIVA-GIS [74]. Panama GIS shapefile obtained
from STRI [30].

doi:10.1371/journal.pntd.0004718.g006
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resulted in the identification of one Plasmodium spp. positive An. punctimacula s.l. pool (rest-
ing collection in BOC, Table 4, S1 Table). This PCR result was inconclusive, and the Plasmo-
dium genus-specific PCR product sequence analysis showed the presence of Plasmodium
juxtanucleare (163 bp fragment of 18S ribosomal RNA gene, 99% identity, 0 gaps, GenBank
accession AF463507.1). Further analysis of the Plasmodium positive An. punctimacula s.l.,
using ITS2, determined that it belongs to clade B (100% identity, 0 gaps, GenBank accession
JX212812.1). Furthermore, the collection site of this mosquito pool is congruent with the pub-
lished distribution of An. punctimacula clade B in Panama [76].

Discussion
As Panama makes progress toward malaria elimination, a greater push for identification of
cases in the remote corregimientos and comarcas of the country will be essential. Despite
increases in the number of cases among some demographic groups, such as females, during
epidemic years, the indigenous people of Panama were identified as those most disproportion-
ately affected by malaria in all years of this study (Table 2, Figs 3 and 4). Many indigenous peo-
ple live in poverty and have limited access to health services [3,12]. In 2014, with only 747 P.
vivax and 0 P. falciparum cases nationally, the people living within the indigenous territories of
CKM and CKW experienced APIs of ~58 and 27 cases per 1,000 people, respectively (Fig 3).
The province or comarca with the third highest API in 2014 in Panama (CKY), had an API of
~3.6 (17-fold and 7-fold lower than CKM and CKW). Even though these territories have rela-
tively small populations (CKM: 4,271; CKW: 1,914) [28], they serve as an important focus of
residual malaria transmission.

During the 2002–2005 malaria epidemic, there was a marked increase in the number of P.
falciparum cases (16.9% of cases in epidemic years, 2.3% of cases in non-epidemic years;

Table 3. Comparison of predicted Anopheles albimanus and An. punctimacula s.l. distributions together with the distributions of Plasmodium
vivax and P. falciparum cases in Panama.

An. albimanus An. punctimacula s.l.

P. vivax

API

Non-epidemic 1.68 (1.62–1.74) 0.36 (0.34–0.37)

Epidemic 1.35 (1.30–1.40) 0.42 (0.40–0.43)

Hotspot

Non-epidemic 2.30 (2.22–2.39) 0.36 (0.35–0.38)

Epidemic 2.47 (2.38–2.57) 0.42 (0.40–0.44)

P. falciparum

API

Non-epidemic 1.02 (0.96–1.09) 0.04 (0.03–0.05)

Epidemic 1.23 (1.18–1.28) 0.13 (0.12–0.14)

Hotspot

Non-epidemic 1.13 (1.08–1.17) 0.10 (0.09–0.11)

Epidemic 1.03 (0.99–1.07) 0.09 (0.08–0.10)

Values represent odds ratio (99% confidence interval)

API = annual parasite index

Hotspot = areas identified as part of a focus of increased malaria transmission by one or both detection methods

Non-epidemic = 2000–2001, 2006–2014 for P. vivax; 2000–2001, 2006–2010 for P. falciparum

Epidemic = 2002–2005 for both Plasmodium species

doi:10.1371/journal.pntd.0004718.t003
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Table 4. Anophelesmosquito specimens collected throughout Panama, for Plasmodium testing (Fig 1).

Province Anopheles species 2006–2007 2008–2015

# Tested # Infected (ELISA) # Tested # Infected (rtPCR)

BOC albimanus 5990 9 120

BOC aquasalis 3

BOC neomaculipalpus 186

BOC punctimacula s.l. 340 60 1

BOC strodei s.l. 24 320

BOC vestitipennis 210

CHI albimanus 560

CKM albimanus 405

CKM punctimacula s.l. 15

CKM triannulatus s.l. 51

CKY albimanus 1020 291

CKY apicimacula s.l. 12

CKY aquasalis 135 146

CKY malefactor 9

CKY punctimacula s.l. 65 72

CKY pseudopuctipennis 30

CKY strodei s.l. 84

CNB albimanus 2405 331

CNB apicimacula s.l. 781

CNB aquasalis 9 78

CNB neivai 63 152

CNB neomaculipalpus 5

CNB punctimacula s.l. 735

COC albimanus 200

COL albimanus 520

COL aquasalis 69

DAR albimanus 90 1017

DAR Anopheles (Arribalzagia series) sp. 2

DAR Anopheles (Nyssorhynchus) 2

DAR apicimacula s.l. 125

DAR malefactor 7

DAR neomaculipalpus 9

DAR nuneztovari s.s. 754

DAR pseudopuctipennis 38

DAR punctimacula s.l. 257 786

DAR strodei s.l. 82

DAR triannulatus s.l. 53

PAN punctimacula s.l. 5

PAN strodei s.l. 40

VER albimanus 400

ELISA = Enzyme-Linked ImmunoSorbent Assay, rtPCR = real-time Polymerase Chain Reaction, BOC = Bocas del Toro, CHI = Chiriquí, CKM = Comarca

Kuna de Madungandí, CKY = Comarca Kuna Yala, CNB = Comarca Ngöbe-Buglé, COC = Coclé, COL = Colón, DAR = Darién, PAN = Panamá,

VER = Veraguas. Additional collection information can be found in S1 Table.

doi:10.1371/journal.pntd.0004718.t004
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Table 2, Fig 2). This P. falciparum epidemic was restricted to eastern Panama, and primarily
affected CKY, CEM and DAR (Figs 3 and 5). Restriction of cases near the Colombian border is
consistent with the results of a recent study characterizing P. falciparum haplotypes in Panama,
confirming Colombia as their origin [77]. However, the P. vivax epidemic was more wide-
spread, affecting eastern Panama, along with CNB and BOC in the west (Figs 3 and 5). Interest-
ingly, only one major non-epidemic focus of P. vivax was identified, and it was centered in
eastern Panama (Figs 3 and 5). These results suggest that current P. vivax transmission in Pan-
ama could be related to the influx and movement of migrants from the malarious regions of
western Colombia [5].

For the most part, Kulldorff’s spatial scan statistic and Getis-Ord Gi� provided congruent
results in analyses identifying spatial foci of increased Plasmodium transmission (S1 and S2
Figs). However, there are some instances where small numbers of cases in a given region were
identified by only one method as a hot spot. For example, hot spots were identified by Kull-
dorff’s scan statistic for P. vivax (S1 Fig, black circles; 2003, 2005, 2006, 2008–2014) and P. fal-
ciparum (S2 Fig, black circles; 2010), despite not being identified by Getis-Ord Gi�. The
opposite is true, too. Getis-Ord Gi� identified areas of statistically significantly increased inci-
dence of P. vivax (S1 Fig, pink/red shading; 2005) and in P. falciparum (S2 Fig, pink/red shad-
ing; 2009). These findings support the use of two separate statistical methods for the
identification of hot spots of Plasmodium incidence, and the combination of the results from
the two methods allows for a better, more complete picture of the true spatial heterogeneity of
malaria cases in Panama over time.

With the exception of P. falciparum in comarcas during epidemic years, Plasmodium APIs
tended to decrease with increasing human age, suggesting that some individuals in Panama,
especially in comarcas, could be asymptomatic carriers/reservoirs of the parasite [78,79]. Simi-
lar patterns have been reported elsewhere [78,80,81,82,83], and, in some cases, asymptomatic
patients have been shown to outnumber symptomatic ones by 4–5 fold [80]. Determining
whether there are asymptomatic carriers of Plasmodium among those living in areas with con-
tinued malaria transmission in Panama is essential for current and future malaria elimination
efforts. These individuals cannot be identified through passive disease surveillance, but must be
detected through active case detection strategies with PCR testing of samples, as suggested by
[84], and must be accompanied by comprehensive treatment.

In this study, we identified nine specimen pools of An. albimanus infected with P. vivax.
However, because collection efforts were spread throughout Panama and, in general, of short
duration, it is possible that other important local vectors may have been missed. However, the
absence of Plasmodium infected anopheline pools from 2008–2015 may truly reflect the low
level of malaria endemicity in Panama, though a recent study in CKY found the presence of P.
vivax-infected An. albimanus in CKY [21]. Anophelesmosquito surveys and Plasmodium test-
ing should be repeated using the epidemiological and spatial statistics results presented here as
a framework for locality identification. For example, these surveys should be completed in the
indigenous comarcas (e.g., CKM and CKW) since indigenous people reported 63.2% of the
malaria cases in Panama during this study, but make up only 6.2% of the population, according
to the 2010 census [28]. Also, mosquito-sampling effort should increase in future studies to
account for the potential regional transmission role of An. darlingi, especially in southern
DAR.

Anopheles albimanus was identified in this study as the most important malaria vector in
Panama. However, the lack of an association between the distributions of An. punctimacula s.l.
and Plasmodium does not mean that this species has no role in local transmission. Within this
species complex, there are multiple molecular lineages [76], and further research is needed to
model their individual distributions and to characterize the possible importance of each in
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malaria transmission. One of the assumptions of the spatial hot spot analyses in this study is
that incident malaria occurred randomly throughout each corregimiento since it was not possi-
ble to georeference every locality with reported malaria cases. Anopheles albimanus has
increased odds of co-occurrence and is likely the major vector in this country, but this does not
mean that An. punctimacula and other anophelines did not play important roles in local trans-
mission of Plasmodium in both epidemic and non-epidemic years. Additionally, because An.
punctimacula appears to be much more of an ecological generalist, compared to An. albimanus
in these analyses, it is predicted to be present in many areas where no malaria transmission was
reported during the study period, greatly diminishing its odds of co-occurrence with incident
malaria and potentially underestimating its importance as a vector in Panama. Among the
anophelines tested for Plasmodium, one pool of An. punctimacula s.l. (collected resting in
BOC) was positive for Plasmodium juxtanucleare, an avian parasite [85,86,87,88]. Despite
being found in an anopheline (previous work suggests that Anophelesmosquitoes are refrac-
tory to this parasite [89]), the primary vectors of P. juxtanucleare are normally Culex spp.
[89,90,91,92].

This study has a number of limitations. Firstly, the epidemiological analyses used in this
study relied on malaria cases reported to the Panamanian MINSA either passively, through
patients visiting health posts, or actively by MINSA workers visiting villages with current
malaria cases. Despite the hard work of the Panamanian MINSA, the number of reported
malaria cases in Panama, particularly those within comarcas, is likely to be an underestimate,
due to the difficulty accessing remote villages and/or traveling from these villages to local
health posts. Secondly, some administrative areas in Panama underwent restructuring between
the 2000 and 2010 censuses. Because of these changes, and because the GIS shapefiles used in
this study reflected the current administrative boundaries in Panama, it was not possible to use
the 2000 census data for API calculations. As a result, we used 2010 census numbers for all
years of the study, knowing that these numbers may not reflect the true populations in each
province, district or municipality during all years. Thirdly, because it was not possible to geore-
ference each reported malaria case, data were aggregated to summarize each corregimiento per
year, reducing the resolution of the spatial hot spot analyses. Finally, despite the mosquito col-
lections summarized in this study occurring during times of known malaria transmission,
these collections occurred after the 2002–2005 epidemic, making it impossible to determine
the vectors playing roles in transmission during this period. However, Loaiza et al. [20] sum-
marizes 35 years of anopheline collections in Panama, and throughout that time period, An.
albimanus was found to be the most abundant vector, suggesting that it was likely to play an
important role in 2002–2005 malaria epidemic in Panama.

Recent research on malaria hotspots in areas of low or unstable transmission has shown the
importance of PCR and serology based data for identification of regions with increased levels
of asymptomatic carriage of Plasmodium parasites [93,94,95], rather than the use of micros-
copy [79,93]. In Panama, we recommend the use of PCR for the identification of people with
low levels of parasitemia, rather than serology, because high antibody titers may not represent
a current infection, but rather a past exposure [96]. After prospective surveys of the hot spots
identified in this study, using PCR identification of Plasmodium infection, these data can be
analyzed using Bayesian geostatistics [97] to predict the spatiotemporal patterns of asymptom-
atic Plasmodium infections in Panama, giving further guidance to malaria elimination efforts.
A recent cluster-randomized, controlled trial tested the effectiveness of interventions targeting
malaria hot spots and identified important factors that need to be recognized and addressed in
the future [98]. Bousema et al. [98] suggest the failure of their interventions to decrease local
malaria transmission is due to unrecognized insecticide resistance in the local vector
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populations, transmission of Plasmodium or spread of infected mosquitoes from other, local
transmission hot spots, and/or introduction of Plasmodium through human movement/
migration.

Overall, this study underscores the disparities between the indigenous and non-indigenous
people of Panama, with respect to health care access. Current and future malaria elimination
efforts must be focused on the comarcas to maximize their effect, and must include active sur-
veillance systems to identify asymptomatic reservoirs of Plasmodium, and thorough anophe-
line surveys, to identify the species that are involved in transmission. Vectors identified as
important in the identified hot spots should be studied to determine their feeding and resting
behaviors, biting time patterns, population genetics and insecticide resistance, in order to cre-
ate tailored, effective vector control interventions. Additionally, human movement and migra-
tion must be better studied and understood in Panama, since it is likely that Plasmodium
transmission in eastern Panama is associated with the immigration of people from Colombia,
and because the importation of Plasmodium is known to hinder malaria elimination programs
[99,100].
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